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Abstract. We present a model for attacking various cryptographic schemes by taking
advantage of random hardware faults. The model consists of a black-box containing
some cryptographic secret. The box interacts with the outside world by following a
cryptographic protocol. The model supposes that from time to time the box is affected
by a random hardware fault causing it to output incorrect values. For example, the
hardware fault flips an internal register bit at some point during the computation. We
show that for many digital signature and identification schemes these incorrect outputs
completely expose the secrets stored in the box. We present the following results: (1)
The secret signing key used in an implementation of RSA based on the Chinese Re-
mainder Theorem (CRT) is completely exposed from asingleerroneous RSA signature,
(2) for non-CRT implementations of RSA the secret key is exposed given a large number
(e.g. 1000) of erroneous signatures, (3) the secret key used in Fiat–Shamir identifica-
tion is exposed after a small number (e.g. 10) of faulty executions of the protocol, and
(4) the secret key used in Schnorr’s identification protocol is exposed after a much larger
number (e.g. 10,000) of faulty executions. Our estimates for the number of necessary
faults are based on standard security parameters such as a 1024-bit modulus, and a 2−40

identification error probability. Our results demonstrate the importance of preventing
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errors in cryptographic computations. We conclude the paper with various methods for
preventing these attacks.

Key words. Hardware faults, Cryptanalysis, RSA, CRT, Fiat–Shamir identification,
Schnorr identification, Public key systems, Identification protocols.

1. Introduction

Direct attacks on the famous RSA cryptosystem seem to require that one factors the
modulus. Therefore, it is interesting to ask whether there are attacks that avoid this. The
answer is yes: the first was an attack due to Kocher [14] based on timing. Kocher observed
that the secret key can be obtained by precisely measuring thetime that operations
took. This allows one to attack the system without directly factoring the modulus. More
powerful attacks, due to Kocher et al. [15], show how to obtain the secret key by measuring
a device’spowerconsumption during decryption.

We present another type of attack that also avoids directly factoring the modulus. We
essentially use the fact that from time to time the hardware or software performing the
computationsmayintroduce errors. We show that erroneous cryptographic values (e.g.
erroneous RSA signatures) jeopardize security by enabling an attacker to expose secret
information. We describe a number of environments where the attack may apply:

Certificate Authority. A certificate authority (CA) issues certificates to various enti-
ties. During certificate generation, the CA uses its private key to sign the data contained
in the certificate [18]. The CA’s private key is highly guarded since anyone possessing the
private key can issue fake certificates. Suppose that during certificate generation a rare
computer error on the CA’s machine (hardware or software) results in a certificate con-
taining an erroneous CA signature. We show that such invalid certificates can completely
expose the CA’s private key. At the extreme, asingleerroneous certificate is sufficient to
recover the CA’s private key. Note that typically the user is alerted whenever an invalid
certificate is received, at which point the user could try to exploit this certificate to attack
the CA’s key.

Web Server. A web server uses a secret key to authenticate itself to a web browser
and to establish a secure session with the browser. Suppose that during key exchange, a
rare computer error on the web server causes it to miscalculate. The resulting value sent
to the browser can completely expose the server’s private key.

Smartcard. Smartcards are typically used to authenticate their owners and sign certain
contracts on behalf of their owners. As before, a glitch in the smartcard’s processor may
cause it to send an erroneous value to the outside world. These values expose the secret
keys stored on the card.

Obfuscated Keys. Several software products contain an embedded secret key. The
secret key is “hidden” in the software so that it is supposedly hard to extract from the
executable. For example, several software audio players running on desktop computers
contain a secret key used to defend against music piracy. The embedded key is used to
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decrypt encrypted music sent to the user. To extract the embedded key, an attacker could
randomly add a single instruction to the decryption code, thus causing the decryption
process to malfunction. The invalid decryptions produced expose the secret key embed-
ded in the player. This attack extracts the secret key without reverse engineering the
software.

One may wonder whether hardware or software errors are a concern. After all, most
hardware and software used in every day life appears to be reliable. Nevertheless, several
scenarios may enable an adversary to collect and possibly cause faults. We group these
into three categories.

Latent Faults. Latent errors are hardware or software bugs that are difficult to catch.
As an example, consider Intel’s floating point division bug [12]. A crypto library using a
faulty floating point unit for multi-precision arithmetic may, on rare occasions, generate
incorrect values. Similarly, latentsoftwarebugs in the multi-precision package could
also lead to incorrect results.

Transient faults. Transient faults are random hardware glitches that cause the proces-
sor to miscalculate. These may be caused by power glitches, high temperature, static
electricity, etc. A transient error that takes place during signature generation will result
in an invalid signature.

Induced Faults. When an adversary has physical access to a device she may try to
induce hardware faults purposely. For instance, one may attempt to attack a tamper-
resistant device by deliberately causing it to malfunction. See the discussion by Anderson
and Kuhn [1] for examples of tampering with tamper resistant devices. Fortunately, most
smartcards have built in sensors to detect various forms of tampering. Hence, it is likely
that the cost of inducing useful faults is higher than the potential gains.

1.1. The Attack Model

Throughout the paper our model consists of a black-box interacting with the outside
world according to a predefined protocol. The black-box contains secret keys that are
inaccessible to the outside world. For example, a CA may be viewed as a black-box
that issues certificates on demand. The CA’s private key is stored inside the box. The
adversary’s goal is to interact with the black-box and extract the secret keys stored in
it using only the values output by the box. The assumption is that, on rare occasions,
errors within the box machinery (either hardware or software) cause it to output incorrect
values. The attacks described in the paper show how these values enable an adversary to
deduce the secret keys stored inside the box.

The attack described in Section 2.2 is the most powerful and is capable of dealing
with arbitrary errors. Other attacks in the paper assume more “hardware-like” errors. We
refer to these more specialized errors asregister faults. The idea is as follows: suppose
that at some point during a computation (such as signature generation) a temporary value
stored in a register is corrupted. More precisely, one bit in the register flips between the
time the value is loaded onto the register and the time it is read out of the register. The



104 D. Boneh, R. A. DeMillo, and R. J. Lipton

bit flip causes one of the register bits to flip from a “1” to a “0” or vice versa. Typically,
the bit flip results from a premature power drain on one of the register cells. We will
show that the secret keys used in several cryptographic schemes are completely exposed
in the presence of register faults.

1.2. Summary of Results

Our attack is effective against several cryptographic schemes such as the RSA system
and Rabin signatures [21] as well as several identification protocols. As expected, the
effectiveness of the attack depends on the exact implementation of each of these schemes.
We briefly review the results:

• For public key systems we present the following results:
RSA+ CRT. For an implementation of RSA based on the Chinese Remainder
Theorem (CRT) we show that givenoneerroneous RSA signature one can efficiently
factor the RSA modulus with high probability. The same approach can also be used
to attack Rabin’s signature scheme. Our attack shows that one invalid signature
along with a valid signature on the same message is sufficient for factoring the
modulus. A later improvement due to Lenstra [16] shows that an invalid signature
along with the original message to be signed is sufficient.
RSA. Register faults can be used to attack other implementations of the RSA
system though many more erroneous signatures are required. When ann-bit RSA
modulus is used the number of required faults isO(n).
• For identification schemes we show the following:

Fiat–Shamir. A few erroneous executions of the Fiat–Shamir identification pro-
tocol [8] enable an adversary to recover the private key of the party trying to
authenticate itself. When a single execution of the protocol has security 2−t we
requireO(t) erroneous executions. Furthermore, in case the prover is a smartcard
the adversary mounts the attack by inducing a register fault while the card is waiting
for a challenge. Thus, precise timing of the induced register fault is not necessary.
Schnorr. Similar results hold for Schnorr’s identification protocol [22] though a
larger number of erroneous executions is necessary. When ann-bit modulus is used
the number of executions isO(n logn). The attack uses faults that corrupt the prover
while it is waiting for a challenge from the verifier.

Since the initial publication of our results several authors devised attacks based on
faults for other cryptographic systems. Biham and Shamir [5] presented elegant and
novel attacks on DES. Some of their techniques can be used to recover the secret key of
a totally unknown cipher. Anderson and Kuhn [2] used a different fault model to obtain
attacks against symmetric ciphers. Bao et al. [3] devised fault attacks against DSS and
several other signature schemes. Joye et al. [13] noted that CRT attacks (described in the
next section) can also be mounted against several elliptic curve systems. Finally, Zheng
and Matsumoto [24] showed how faults in the random number generator can be used to
attack systems.

It is important to emphasize that the attacks described in this paper are currently
theoretical. We are not aware of any published results physically experimenting with this
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type of attack. The purpose of these results is to demonstrate the danger that hardware
or software bugs pose to various cryptographic systems. In conjunction with Kocher’s
work our results show that a pure mathematical analysis of a cryptographic algorithm is
insufficient. One must also analyze the actual implementation to ensure it does not leak
timing or power information and never outputs faulty values.

There are many ways to prevent attacks based on hardware faults. The simplest solution
is to ensure the black-box verifies the values it computes before sending them out to
the outside world. In protocols where the black-box has to keep some state (such as
in identification protocols) our results show the importance of protecting the registers
storing the state information using error detection bits. Preventing errors is crucial in
many areas unrelated to cryptography. For instance, special precautions are taken to
ensure error-free computations in core memories of large computers [17], in computers
onboard satellites crossing the Van Allen belt, and many other embedded control systems.
Scientists working in these areas may not be aware that their techniques are also critical
for securing cryptographic implementations. We discuss methods for preventing errors
in cryptographic computations in Section 4.

We note that FIPS publication 140-1 [9] suggests that hardware faults may compromise
the security of a module. Our results explicitly demonstrate the extent of damage caused
by such faults. We give algorithms that show how certain faults can expose sensitive
security information. FIPS 140-1 also specifies a list of self-tests a module should apply
to itself. Our results suggest that these tests are insufficient and a full verification of
computed values is necessary.

2. RSA’s Vulnerability to Hardware Faults

We are now ready to describe the various attacks. We begin by describing RSA’s vulner-
ability to hardware faults.

2.1. The RSA System

Let N = pq be a product of two large primes eachn/2 bits long. To sign a messagex ∈
ZN using RSA one computesS= xd mod N whered is a secret signing exponent.1 The
computationally expensive part of signing using RSA is the modular exponentiation of
x. For efficiency most implementations exponentiate as follows: using repeated squaring
they first computeS1 = xd mod p andS2 = xd modq. They then use CRT to construct
the signatureS= xd mod N. This last CRT step takes negligible time compared with the
two exponentiations. It is done by computingS= aS1+bS2 mod N for some predefined
constantsa,b ∈ ZN .

Exponentiation using CRT is much faster than repeated squaring moduloN. To see this
observe thatS1 = xd mod p = xdmod(p−1) mod p. Usuallyd is of orderN while d mod
(p−1) is of orderp. Consequently, computingS1 requires half as many multiplications

as computingS directly. In addition, intermediate values during the computation ofS1

are only half as big—they are in the range [1, p] rather than [1, N]. When quadratic

1 Note that for simplicity we assume the messagex is an integer in the range 1 toN. Usually one uses a
hash and a formatting function to convert the message into an integer in that range [19], [4].
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time multiplication is used, multiplying two numbers inZp takes a quarter of the time
as multiplying elements inZN . Hence, computingS1 takes an eighth of the time of
computingSdirectly. Computing bothS1 andS2 takes a quarter of the time of computing
S directly. Thus, CRT exponentiation isfour timesfaster than direct exponentiation.
This is why RSA with CRT is the preferred method for generating RSA signatures [18,
p. 613], [20].

2.2. An Attack on “RSA–CRT”

We show that RSA with CRT is especially susceptible to software or hardware errors.
The attack enables us to factor the modulusN. The attack is based on obtaining two
signatures of the same message. One signature is the correct one; the other is a faulty
signature.

Let x ∈ ZN be a message and letS= xd mod N be a valid RSA signature ofx. Let Ŝ
be a faulty signature. Recall thatS is computed by first computingS1 andS2. Similarly,
Ŝ is computed by first computinĝS1 andŜ2. Suppose that during the computation ofŜ
an error occurs during the computation of onlyoneof Ŝ1, Ŝ2. Without loss of generality,
suppose a hardware fault occurs during the computation ofŜ1 (i.e. S1 6= Ŝ1 mod p) but
no fault occurs during the computation ofŜ2 (i.e. Ŝ2 = S2). ThenS = Ŝ modq, but
S 6= Ŝ mod p. Therefore,

gcd(S− Ŝ, N) = q

and soN can be easily factored.
We see that using one faulty signature and one correct signature the modulusN can be

efficiently factored. The above attack works under a very general fault model. It makes
no difference what type of error or how many errors occur in the computation ofS1. All
we rely on is the fact that faults occur in the computation modulo only one of the primes.
To obtain both a correct signature and a faulty signature of thesamemessage an attacker
can query the black-box on the same message multiple times. Since standard signature
formats (e.g.PKCS1) do not involve any randomness, the samex will be fed through the
signing engine every time.

Based on our results Lenstra [16] observed that one faulty signature of a known mes-
sagex is sufficient. There is no need to obtain a valid signature as well. For completeness
we describe Lenstra’s improvement here. LetS= xd mod N. Let Ŝbe a faulty signature
obtained under the same model as above, that isS= Ŝ modq but S 6= Ŝ mod p. Then
x = Ŝe modq but x 6= Ŝe mod p, wheree is the public exponent used to verify the
signature, i.e.Se = x mod N. It now follows that

gcd(x − Ŝe, N) = q.

Lenstra’s improvement shows that as long as the entire signed messagex is known, a
single interaction with the black-box resulting in an invalid signatureŜ is sufficient for
factoring the modulus.

2.2.1. Attacks on Other Systems Using CRT

The attack on CRT implementations applies to other cryptosystems as well. For instance,
the same attack applies to Rabin’s signature scheme [21]. A Rabin signature of a number
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x mod N is the modular square root ofx. When the extraction of square roots modulo
a composite uses CRT the same attack as above applies. Other attacks on systems using
CRT are described in [13].

2.3. An Attack on RSA without CRT

In the previous section we observed that RSA–CRT is susceptible to hardware or software
errors. In this section we show that using register faults it is possible to attack other
implementations of RSA as well. The attack is not as practical as attacks on RSA–CRT.
Nevertheless, it illustrates the vulnerability of non-CRT implementations.

Let N be ann-bit RSA composite and letd be a secret exponent. The exponentiation
function x −→ xd mod N is often computed using the following algorithm (we let
d = dn−1dn−2 · · ·d1d0 be the binary representation ofd):

Algorithm 1

init y← x ; z← 1.
main For k = 0, . . . ,n− 1.

If dk = 1, thenz← z · y (mod N).

y← y2 (mod N).
Outputz.

When the above algorithm is used, several faulty signatures are sufficient to recover the
secret keyd. Here faulty signatures refer to signatures obtained in the presence of register
faults (see Section 1.1). The attack uses erroneous signatures ofrandommessages inZN

(as opposed to chosen messages). Furthermore, the attacker need not obtain the correct
signature of any of the messages nor does she need to obtain multiple signatures of the
same message.

The attack proceeds as follows: the attacker asks the black-box to sign messages
M1,M2, . . . ,Ml . The attacker collects the responses until she has sufficiently many
erroneous signatureŝSi . The pairs〈Mi , Ŝi 〉 are then used to deduce the secret signing
key d. We assume that for each pair〈Mi , Ŝi 〉 a single register fault occurs during the
computation ofŜi . The fault occurs at a random iteration during the exponentiation
algorithm and flips one bit of the value stored in the variablez. The following result was
the starting point of our research on fault-based cryptanalysis.

Theorem 2.1. Let N = pq be an n-bit RSA modulus. For any 1 ≤ m ≤ n, given

(n/m) log(2n) pairs 〈Mi , Ŝi 〉, the secret exponent d can be extracted from a black-box
implementing the above exponentiation algorithm with probability at least1

2. The proba-
bility is over the location of the register faults and the random messages Mi ∈ ZN .The al-
gorithm’s running time is dominated by the time it takes to perform O((2mn3 log2 n)/m2)

full modular exponentiationsmod N.

Remark. Takingm = log 2n shows that the secretd can be recovered usingn faults
andO(n4 · log2 n)modular exponentiations. Withm= 1 the secretd can be found using
n logn faults andO(n3 · log2 n) exponentiations.
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Proof. Let M ∈ ZN be a message to be signed. Suppose that at a single random point
during the exponentiation algorithm (Algorithm 1) on inputM exactly one of the bits of
the registerz is flipped. We denote the resulting erroneous signature byŜ. We show that
an ensemble of such erroneous signatures enables one to recover the secret exponentd.

Let l = (n/m) log(2n) and letM1, . . . ,Ml ∈ ZN be a set of random messages. Let
Si = Md

i mod N be the correct signature onMi . Let Ŝi be an erroneous signature ofMi .
We are givenŜi but do not knowSi . By assumption, a register fault occurs at exactly one
point during the computation of̂Si . For each faulty signature,Ŝi , letki denote the value of
k at the time at which the fault occurred (recallk is the counter used in the exponentiation
algorithm). We may sort the messages so that 0≤ k1 ≤ k2 ≤ · · · ≤ kl < n. The time at
which the faults occur is chosen uniformly (among then iterations) and independently
at random. It follows that givenl such faults, with probability at least1

2, ki+1 − ki < m
for all i = 1, . . . , l − 1. To see this observe that the probability that no fault occurs in
a specific interval of widthm is (1−m/n)l < 1/(2n). Since there are at mostn such
intervals the probability that all of them contain a fault is at least 1− n · 1/(2n) = 1

2.
Note that since we do not know where the faults occur, the valueski are unknown to us.

Let d = dn−1 · · ·d1d0 be the bits of the secret exponentd. We recover a block of these
bits at a time starting with the MSBs. Suppose we already know bitsdn−1dn−2 · · ·dki for
somei . Initially i = l +1 indicating that no bits are known. We show how to expose the
bits of d in positionski − 1, ki − 2, . . . , ki−1. To simplify the notation leta = ki and
c = ki−1. To expose the block of bitsda−1da−2 · · ·dc+1dc ∈ {0,1}a−c we intend to try
all possible bit vectors until the correct one is found. Since even the length of the block,
namelya − c, is unknown we try all possible lengths. The attack algorithm works as
follows:

1. For all lengthsr = 1,2,3 . . . ,m do:
2. For all candidater -bit vectorsu = ua−1ua−2 · · ·ua−r do:
3. Setw =∑n−1

j=a dj 2 j +∑a−1
j=a−r uj 2 j . In other words,w matches the bits ofd and

the bits ofu at all bit positions that are already exposed and is zero everywhere
else.

4. Test if the current candidate bit vectoru is correct by checking if one of the
erroneous signatureŝSj for j = 1, . . . , l satisfies

∃b ∈ {0, . . . ,n} s.t.
(

Ŝj ± 2bMw
j

)e
= Mj (mod N).

Recall thate is the public signature verification exponent. The± means that the
condition is satisfied if it holds with either a plus or minus.

5. If a signature satisfying the above condition is found, outputua−1ua−2 · · ·ua−r

and stop. At this point we know thatki−1 = c = a − r andda−1da−2 · · ·da−r =
ua−1ua−2 · · ·ua−r . Hence,r more bits ofd are exposed.

We show that the condition at step 4 is satisfied by the correct candidateua−1ua−2 · · ·uc.
To see this recall that̂Si−1 is obtained from a fault at iteration numberc = ki−1. That
is, at theki−1st iteration the value ofz was changed tôz← z± 2b for someb (corre-
sponding to a register fault on the bit in positionb). A simple property of Algorithm 1
is that just before the fault took effect we hadz = Mdcdc−1···d0

i−1 mod N. By definition of
w it follows that Si−1 = z · Mw

i−1 mod N. Since no faults occurred in the remaining
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iterations, replacingz by ẑ produces an erroneous signatureŜi−1 satisfying

Ŝi−1 = ẑ · Mw
i−1 = (z± 2b)Mw

i−1 = Si−1± 2bMw
i−1 (mod N).

When in step 4 the erroneous signatureŜi−1 is corrected (by adding 2bMw
i−1) it properly

verifies when raised to the public exponente. Consequently, when the correct candidate
u is tested, the faulty signaturêSi−1 guarantees that it is accepted.

To bound the running time of the algorithm we bound the number of times the condition
of step 4 is executed. Each invocation of step 4 requiresn · l modular exponentiations.
Working through the loops in steps 1 and 2 we see that the total number of modular
exponentiations is at most

n · l ·
[

n−kl∑
r=1

2r +
kl−kl−1∑

r=1

2r + · · · +
k2−k1∑
r=1

2r +
k1∑

r=1

2r

]
≤ n · l

[
l ·

m∑
r=1

2r

]
≤ 2nl22m.

The first inequality follows from the fact thatki − ki−1 < m for all i . Plugging in the
value forl we see that the total run time is dominated by the time it takes to perform
O((2mn3 log2 n)/m2) modular exponentiations.

We still need to show that a wrong candidateu′ will not pass the test of step 4. This
is done in the following lemma. The lemma shows that when the encryption/decryption
exponents〈e,d〉 are chosen at random, and the messagesM1, . . . ,Ml ∈ ZN are random,
a wrong candidateu′ will pass the test with negligible probability.

Lemma 2.2. Let c> 1 be a fixed constant. For all n-bit RSA moduli N= pq at least
one of the following claims hold:

1. The probability that a wrong candidate u′ passes the test of step4 is less than1/nc.
The probability is over the random choice of messages Mi ∈ ZN given to the attack
algorithm and the random choice of the decryption exponent d.

2. There is a uniform polynomial time(in n and2m) algorithm for factoring N.

Proof. We show an algorithm that factors all RSA moduliN for which part 1 is false.
The algorithm works as follows: it picks a random exponentd and random messages
M1, . . . ,Ml ∈ ZN . It then computes erroneous signaturesŜi of the Mi by using the
exponentiation algorithm (Algorithm 1) to computeMd

i mod N and deliberately simu-
lating a random register fault at a random iteration. Let〈Mi , Ŝi 〉li=1 be the resulting set
of faulty signatures. We show there is a polynomial time (inn and 2m) algorithm that
given this data succeeds in factoringN with probability at least 1/nc.

Suppose the attack algorithm were given〈Mi , Ŝi 〉li=1 as input. By assumption, with
probability at least 1/nc, at some point during the algorithm a signatureŜv will incorrectly
cause the wrong candidateu′ to be accepted in step 4. That is,Ŝv ± 2bMw

v = Sv mod N
even thoughŜv was generated by a different fault (herew is defined as in step 3 using
the bits ofu′). We know thatŜv = Sv ± 2b1 Mw1

v for someb1, w1 with w1 6= w. The pair
b1, w1 correspond to the actual location of the fault during the computation ofŜv. Then

Sv ± 2b1 Mw1
v = Sv ± 2bMw

v (mod N).
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Rearranging terms we getMw−w1
v = ±2b1−b mod N. In other words,Mv must be a root

of a polynomial of the form

xw−w1 = a (mod N) (1)

for some known constanta = ±2b1−b. Recall that the messageMv is chosen indepen-
dently of the fault location, i.e. independently ofw, w1, anda. It follows that a random
x ∈ ZN must satisfyxw−w1 = a mod N with non-negligible probability. We show that
consequently we can factorN. First, we bound the number of roots ofxw−w1 = a mod N.
DefineAp = gcd(w −w1, p− 1) andAq = gcd(w −w1,q− 1). The number of roots
of the polynomialxw−w1 = a mod N is exactlyα = Ap · Aq. Hence, the probability that
Ŝv causes the wrongu′ to be accepted isα/N.

To bound the probability that a wrong candidateu′ is accepted throughout the algorithm
we count the number of pairsw,w1. The value ofw1 is essentially the prefix ofd from
the most significant bit to the fault location. Since we havel faulty signatures there are
l possible values forw1. The values ofw are the ones tested in step 4. There are at most
l · 2m possible values. Hence, there arel 22m possible values forw − w1. Let ᾱ be the
maximum value ofα over all pairsw,w1. The probability that a wrong candidate is ever
accepted is at mostl 22m · ᾱ/N.

By assumption, part 1 of the lemma is false. Hence, with probability at least 1/2nc

(over the choice ofd and the fault locations) we have thatl 22m · ᾱ/N > 1/2nc. LetA be
the event thatl 22m · ᾱ/N > 1/2nc. WhenA occurs there exists a pairw,w1 such that

gcd(w − w1, p− 1) · gcd(w − w1,q − 1) = ᾱ > N/(2l 22mnc).

It follows that gcd(w−w1, ϕ(N)) > λ(N)/2l 22mnc whereλ(N) = lcm(p− 1,q− 1).
The factoring algorithm factorsN by trying all pairs ofw,w1. For each pair it computes
gcd(N, gt (w−w1)/2 − 1) for a randomg ∈ ZN and all t ∈ [1, . . . ,2l 22mnc]. Once
t (w −w1) is a multiple ofλ(N) the algorithm will factorN with probability 1

2. Hence,
when the eventA occurs the algorithm factorsN in polynomial time with probability
1
2. Since Pr[A] > 1/2nc repeating this processnc times will factor N with constant
probability.

Remark1. If one allows the attacker to obtain both the erroneous and correct signature
of each messageMi , then the running time of the attack algorithm can be improved. The
test at step 4 of the attack algorithm can be simplified to

∃b ∈ {0, . . . ,n} s.t. Ŝj ± 2bMw
j = Sj (mod N),

thus saving the need for an RSA encryption on every invocation of the test.

Remark2. The messagesMi used by the attack algorithm were assumed to be random
elements ofZN . This was necessary for the proof of Lemma 2.2. However, it should be
clear that heuristically almost any set of messages{Mi } will make the attack algorithm
succeed in exposing the private keyd. In particular, one can use elements ofZN that
are formatted according to thePKCS1 standard [19]. Similarly, the decryption exponent
d was assumed to be random. Again, the attack is certain to work forany valid d. In
particular, it will work for ad that correspond to a low public exponente, e.g.e= 65537.
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3. Attacks on Identification Protocols

We now turn our attention to attacks on identification protocols. Throughout we describe
a scenario in which a prover Alice is authenticating herself to a verifier Bob. At setup
time Alice publishes some public information (public accreditation information) and
keeps certain values secret (secret accreditation information). Whenever she wishes to
authenticate herself to Bob she proves knowledge of the secret information. She does so
by engaging Bob in a zero-knowledge proof of knowledge [8]. We show that for several
classic identification protocols, the presence of register faults on Alice’s machine enables
Bob to extract Alice’s secret accreditation information completely.

3.1. The Fiat–Shamir Identification Scheme

We begin by discussing the Fiat–Shamir [8] identification scheme. Alice and Bob first
agree on ann-bit modulusN which is a product of two large primes, and a security
parametert . A typical value fort is t = 10. At setup time Alice chooses her secret
accreditation information as a set of random invertible elementss1, . . . , st mod N. Her
public accreditation information is the square of these numbersv1 = s2

1, . . . , vt =
s2

t mod N. To authenticate herself to Bob they engage in the following protocol:

1. Commitment: Alice picks a randomr ∈ Z∗N and sendsz= r 2 mod N to Bob.
2. Challenge:Bob picks a random subsetS ⊆ {1, . . . , t} and sends the subset to

Alice.
3. Response:Alice computesy = r ·∏i∈S si mod N and sendsy to Bob.
4. Verify: Bob verifies Alice’s response by checking thatz ∈ Z∗N and thaty2 =

z ·∏i∈Svi (mod N). The protocol completes successfully if the response verifies,
and fails otherwise.

The probability that an imposter who does not know the secret information succeeds
in fooling Bob is 2−t . Typically, the protocol is repeated a small number of times (e.g.
four times) to reduce the probability of error. Usingt = 10 and iterating the protocol
four times results in an error probability of 2−40.

For the purpose of authentication one may implement Alice’s role in a tamper resistant
device. The device contains the secret information and is used by Alice to authenticate
herself to various parties. We show that using register faults one can extract the secret
〈s1, . . . , st 〉 from the device. We use register faults that occur while the device is waiting
for a challenge from the outside world.

Theorem 3.1. Let N be an n-bit modulus and let t be the predetermined security
parameter of the Fiat–Shamir protocol. Given t erroneous executions of the protocol
one can recover the secret〈s1, . . . , st 〉. The algorithm’s running time is dominated by
the time it takes to perform O(nt + t2 log t) modular multiplications. The faults are
collected over t separate runs of the protocol, each fault being a1-bit register fault in
the variable r.

Proof. Suppose that due to a register fault, one of the bits of the register holding the
valuer is flipped while the device is waiting for Bob to send it the challenge setS. In this
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case, Bob receives the correct valuez= r 2 mod N, however,y is computed incorrectly
by the device. Due to the fault, the device outputs

ŷ = (r + E) ·
∏
i∈S

si (mod N),

whereE is the value added to the register as a result of the fault. Since the fault is a
single bit flip we know thatE = ±2b for someb = 0, . . . ,n − 1. Observe that Bob
knows the value

∏
i∈Svi and he can therefore compute(r + E)2 using

(r + E)2 = ŷ2∏
i∈Svi

(mod N).

Since there are onlyn possible values forE, Bob can try all of them until the correct
one is found. Bob can recoverr using ŷ, z, and the correct error valueE. Indeed,

r = (r + E)2− r 2− E2

2E
= [ ŷ2/

∏
i∈Svi ] − z− E2

2E
(mod N).

Bob’s ability to discover the secret random valuer is the main observation that enables
him to attack the system. Using the value ofr andE Bob can compute∏

i∈S

si = ŷ

r + E
= 2E · ŷ

[ ŷ2/
∏

i∈Svi ] − z+ E2
(mod N). (2)

We now show that Bob can verify that a candidate valueE is correct. LetT be the
hypothesized value of

∏
i∈S si obtained from the above formula. To test ifT is correct

Bob can verify that the relationT2 = ∏
i∈Svi mod N holds. Usually only one of the

possible values forE will satisfy the relation. In such a case Bob correctly obtains the
value of

∏
i∈S si .

Even in the unlikely event that two valuesE, E′ satisfy the relation, Bob can still attack
the system. Suppose two candidate valuesE, E′ generate two valuesT, T ′, T 6= T ′,
satisfying the relation. Clearly,T2 = (T ′)2 mod N. If T 6= −T ′ mod N, then Bob can
already factorN by computing gcd(N, T − T ′). SupposeT = −T ′ mod N. Then since
one ofT or T ′ must equal

∏
i∈S si (one ofE, E′ is the correct fault value) it follows that

Bob now knows
∏

i∈S si mod N up to sign. For our purposes this is good enough.
The testing method above enables Bob to check whether a certain value ofE is the

correct one. By testing alln possible values ofE until the correct one is found Bob
can determine

∏
i∈S si . Computing

∏
i∈Svi in (2) takesO(t) modular multiplications.

Evaluating (2) for alln possible values ofE takes timeO(n+ t)modular multiplications
(and inversions). This is the time to determine

∏
i∈S si for a single setS. For t sets we

needO(nt + t2) modular multiplications.
So far we showed that Bob is able to obtain

∏
i∈S si for arbitrary setsSof his choice. We

briefly show that this enables him to recover〈s1, . . . , st 〉 quickly. The simplest approach
is for Bob to obtain

∏
i∈S si for singleton sets, i.e. setsS containing a single element.

If S = {k}, then
∏

i∈S si = sk and hence thesi ’s are immediately found. However, it
is possible that Alice may refuse to accept singleton setsS. In this case Bob can still
find thesi ’s as follows. We represent a setS ⊆ {1, . . . , t} by its characteristic vector
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U ∈ {0,1}t , i.e. Ui = 1 if i ∈ S andUi = 0 otherwise. Bob picks setsS1, . . . , St

such that the corresponding set of characteristic vectorsU1, . . . ,Ut form a t × t full
rank matrix overZ2. Bob then uses the method described above to construct the values
Ti =

∏
i∈Si

si for each of the setsS1, . . . , St . To determines1 Bob constructs elements
a1, . . . ,at ∈ {0,1} such that

a1U1+ · · · + atUt = (1,0,0, . . . ,0) (mod 2).

These elements can be efficiently constructed since the vectorsU1, . . . ,Ut are linearly
independent overZ2. When all computations are done over the integers we obtain that

a1U1+ · · · + atUt = (2b1+ 1,2b2,2b3, . . . ,2bt )

for some known integersb1, . . . ,bt in the range [1, t ]. Bob can now computes1 using
the formula

s1 = Ta1
1 · · · Tat

t

v
b1
1 · · · vbt

t

(mod N).

Recall that the valuesvi = s2
i (modN) are publicly available. The valuess2, . . . , st can

be constructed using the same procedure. This phase of the algorithm requiresO(t2 log t)
modular multiplications.

To summarize, the entire algorithm above makes use oft faults. The running time is
dominated by the time it takes to computeO(nt + t2 log t) modular multiplications.

We emphasize that the faults occur while Alice’s device is waiting for a challenge from
the outside world. Consequently, there is no need to time the induced fault carefully. The
adversary knows to induce a fault on Alice’s device while it is waiting for a challenge
from the outside world.

We described the algorithm above for the case where a register fault causes asingle
bit flip. More generally, the algorithm can be made to handle a small number of bit
flips per register fault. However, finding the correct fault valueE becomes harder. When
a single register fault causesc bits in the register to flip then the algorithm’s running
time becomesO(nct + t2 log t) modular multiplications. Essentially, one has to test all
possible values forE in (2). The number of candidateE’s is O(nc). The rest of the
algorithm remains unchanged.

3.2. A Modification of the Fiat–Shamir Scheme

One may suspect that our attack on the Fiat–Shamir scheme is successful due to the fact
that the scheme is based on squaring. Recall that Bob was able to compute the random
valuer chosen by the device since he was givenr 2 and(r + E)2 whereE is the fault
value. One may try to modify the scheme and use higher powers. We show that our
techniques can be used to attack this modified scheme as well.

The modified scheme uses some publicly known exponente instead of squaring. As
before, Alice’s secret key is a set of invertible elementss1, . . . , st mod N. Her public
key is a set of numbersv1 = se

1, . . . , vt = se
t mod N. To authenticate herself to Bob they

engage in the following protocol:
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1. Commitment: Alice picks a randomr and sendsz= r e mod N to Bob.
2. Challenge:Bob picks a random subsetS ⊆ {1, . . . , t} and sends the subset to

Alice.
3. Response:Alice computesy = r ·∏i∈S si mod N and sendsy to Bob.
4. Verify: Bob verifies Alice’s response by checking thatz ∈ Z∗N and thatye =

r e ·∏i∈Svi (mod N).

When e = 2 this protocol reduces to the original Fiat–Shamir protocol. Using the
methods described in the previous section Bob can obtain the valuesL1 = r e mod N
andL2 = (r + E)e mod N. As before we may assume that Bob guessed the value ofE
correctly. Given these two values Bob can recoverr by observing thatr is a common
root of the two polynomials

xe = L1 (mod N) and (x + E)e = L2 (mod N).

Furthermore,r is very likely to be the only common root of the two polynomials.
Consequently, when the exponente is polynomial inn Bob can recoverr by computing
the GCD of the two polynomials. Once Bob has a method for computingr he can
recover the secretss1, . . . , st as discussed in the previous section. Note that this approach
only works for smalle and hence does not directly apply to the Guillou–Quisquater
authentication scheme [11].

3.3. Schnorr’s Identification Scheme

The security of Schnorr’s identification scheme [22] is based on the hardness of comput-
ing discrete log modulo a prime. Alice and Bob first agree on a primep and an element
g ∈ Z∗p of orderq (clearlyq dividesp− 1). For efficiency reason one typically chooses
q to be much smaller thanp. For instance,p may be 1024 bits long andq only 160
bits long. Alice then chooses her secret accreditation information by choosing a random
elements ∈ Zq. Her public accreditation information isy = gs mod p. To authenticate
herself to Bob, Alice engages in the following protocol:

1. Commitment: Alice picks a random integerr ∈ Zq and sendsz = gr mod p to
Bob.

2. Challenge:Bob picks a random integert ∈ [0, T ] and sendst to Alice. Here
T < q is some upper bound chosen ahead of time.

3. Response:Alice sendsu = r + t · s modq to Bob.
4. Verify: Bob verifies thatgu = z · yt mod p. The protocol completes successfully

if the response verifies, and fails otherwise.

For the purpose of authentication one may implement Alice’s role in a tamper-resistant
device. The device contains the secret information and is used by Alice to authenticate
herself to various parties. We show that using register faults one can extract the secret
s from the device. We use register faults that occur while the device is waiting for a
challenge from the outside world. Throughout the section logx denotes logarithm ofx
to the basee wheree is the base of the natural logarithm,e≈ 2.718.

Theorem 3.2. Suppose q used in Schnorr’s protocol is an n-bit number. Then given
k = n log 4n erroneous executions of the protocol one can recover the secret s with
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probability at least12. The algorithm’s running time is dominated by the time to perform
O(n2 logn) modular multiplications. The faults are collected over k separate runs of
the protocol, each fault being a1-bit register fault in the variable r.

Proof. Bob wishing to extract the secret information stored in Alice’s device first picks
a random challenget in [0, T ]. The same challenge will be used in all invocations of
the protocol. Since the device cannot possibly store all challenges given to it thus far, it
cannot possibly know that Bob is always providing the same challenget . In fact, Bob
could hide the attack queries within a sequence of regular interactions.

The attack enables Bob to determine the valuet ·s modq from which the secret value
s can be easily found. For simplicity we setx = ts modq and assume thatgx mod p is
known to Bob.

Suppose that due to a register fault, one of the bits of the register holding the valuer is
flipped while Alice’s device is waiting for Bob to send it the challenget . Then, when the
third phase of the protocol is executed the device findsr̂ = r ±2i in the register holding
r . Consequently, the device will outputû = r̂ + x modq. Supposêr = r + 2i . Bob can
determine the value ofi (the fault position) by trying all possible valuesi = 0, . . . ,n−1
until an i satisfying

gû = g2i
gr gx (mod p) (3)

is found. Assuming a single bit flip, there is exactly one suchi . The above identity proves
to Bob thatr̂ = r +2i showing that thei th bit of r flipped from a 0 to a 1.Consequently,
Bob deduces that thei th bit of r before the error must have been a “0”. Similar logic
applies when̂r = r − 2i . In this case Bob deduces that thei th bit of r must have been a
“1”. Observe that once the error locationi is known, Bob can undo the error and obtain
the correct value ofu, namelyu = r + x modq.

More abstractly, Bob is givenu1 = x + r (1), . . . ,uk = x + r (k) modq for random
valuesr (1), . . . , r (k) (recallk = n log 4n). Furthermore, Bob knows the value of one bit
in each ofr (1), . . . , r (k). Bob’s goal is to recoverx. Note that obtaining this information
requiresO(n2 logn)modular multiplications since for each of thek faults one must test
all n possible values ofi . Each test requires a constant number of modular multiplications.

We claim that using this information Bob can recoverx in time O(n2). We assume the
k faults occur at uniformly and independently chosen locations in the registerr . Note
that this uniformity assumption may or may not be true depending on the cause for these
faults. Our attack relies on the randomness of the faults. Assuming the faults occur at
random bits ofr the probability that at least one fault occurs in every bit position of
the registerr is at least 1− n (1− 1/n)k ≥ 1− n · e− log 4n = 3

4. In other words, with
probability at least34, for every 0≤ i < n there exists anr (i ) amongr (1), . . . , r (k) such

that thei th bit of r (i ) is known to Bob (we regard the first bit as the LSB).
To recoverx Bob first guesses the log 8n most significant bits ofx. Later we show

that Bob can verify whether his guess is correct. Bob tries all possible log 8n bit strings
until the correct one is found. LetX be the integer that matchesx on the most significant
log 8n bits and is zero on all other bits. For now we assume that Bob correctly guessed
the value ofX. Bob recovers the rest ofx starting with the LSB. Inductively suppose
Bob already knows bitsxi−1 · · · x1x0 of x (initially i = 0). We show how Bob computes
the i th bit of x. Let Y =∑i−1

j=0 2 j xj .
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Bob determinesxi usingr (i ). He knows thei th bit ofr (i ) and the value ofx+r (i ) modq.
Let b be thei th bit of r (i ). We viewx, X, Y, andr (i ) as integers in the range [0,q). Then
assuming 0≤ x + r (i ) − Y − X < q we have that

[x] i = b ⊕ [(x + r (i ))− Y − X modq] i , (4)

where for any integerwwe use [w] i to denote thei th bit in the binary representation ofw.
Equation (4) follows from two facts. First observe that the condition 0≤ x+ r (i )−Y−
X < q implies that the moduloq has no effect. Second, observe that [x−Y−X] i = [x] i

and that [x − Y − X] j = 0 for all j < i . Therefore, thei th bit of (x − Y − X) + r (i )

is [x] i ⊕ [r (i )] i which is simply [x] i ⊕ b. Equation (4) immediately follows. Therefore,
assuming 0≤ x + r (i ) − X − Y < q Bob can easily obtainxi , thei th bit of x.

By construction we know that 0≤ x − X − Y < q/8n. Hence, the condition 0≤
x+ r (i )−Y− X < q will fail only if r (i ) > (1−1/8n)q. Sincer (i ) is uniformly chosen
in the range [0,q) the probability that the condition is not satisfied is 1/8n. Since the
r ’s are independent of each other, the probability that the condition is satisfied for all
i = 1, . . . ,n is (1− 1/8n)n > 3

4.
To summarize, we see that for the algorithm to run correctly two events must simul-

taneously occur. First, all bits ofr must be “covered” by faults. Second, all ther (i ) must
be less than(1−1/8n)q. Since each event occurs with probability at least3

4, both events
happen simultaneously with probability at least1

2. Consequently, with probability at
least1

2, onceX is guessed correctly the algorithm requiresO(n)modular additions and
outputs the correct value ofx. Of course, once a candidatex is found it can be easily
verified using the public data, by testing thatyt = gx mod p (recall thatx was defined
asx = st). Computinggx mod p takesO(n) modular multiplications. There areO(n)
possible values forX and hence the running time of this step isO(n2)modular multipli-
cations. Since the first part of the algorithm takesO(n2 logn) modular multiplications
it dominates in the overall running time.

We note that the attack also works when a register fault induces multiple bit flips
in the registerr (i.e. r̂ = r +∑c

j=1 2i j ). When an error results inc bits being flipped
the location of these errors can be found in timeO(nc). To do so one tries all possible
error vectors until one satisfying (3) is found. Once all error vectors are found, the same
algorithm as in the proof of Theorem 3.2 can be used to recoverx.

We also note that the faults we use occur while Alice’s device is waiting for a challenge
from the outside world. Consequently, the adversary knows to induce the fault just before
giving the challenge.

4. Defending Against Attacks Based on Hardware Faults

There are several methods for defending against the attacks discussed in this paper. The
simplest method is for the device to check the output of every computation before releas-
ing it. Though this extra verification step may reduce system performance, our attack
suggests that it is crucial for security reasons. In some systems verifying a computation
can be done efficiently (e.g. verifying an RSA signature when the public exponent is 3).
In other systems verification appears to be costly (e.g. DSS).
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Due to the extreme vulnerability of RSA–CRT checking should be required whenever it
is used. This is especially true for a CA where a single transient fault could leak the private
key. Shamir [23] presented a clever technique for verifying signatures generated by the
RSA–CRT method. When the public exponente is small (e.g. 3) standard verification (i.e.
raising the signature to the power ofe) is still the best way to go. However, for larger values
of e, Shamir’s trick is a clear win. For completeness we describe Shamir’s approach.
Recall that in RSA–CRT one signs a messageM by computingS1 = Md mod p and
S2 = Md modq. The results are then combined with CRT to buildS. Shamir suggests
picking a small random numberr (e.g. 32 bits) and computingS1 = Md mod pr and
S2 = Md modqr . The overhead in performance is negligible. One then checks that
S1 modr = S2 modr . If the test fails, an error occurred in one of the exponentiations. If
the test succeeds the signatureS is constructed fromS1 mod p andS2 modq. Overall,
the performance cost is negligible. The check done modulor defends against a random
error during the exponentiation. Other methods should be used to defend against errors
in the CRT step.

Our attack on authentication protocols such as the Fiat–Shamir scheme uses a register
fault which occurs while the device is waiting for a response from the outside world.
One cannot protect against this type of a fault by simply verifying the computation. As
far as the device is concerned, it computed the correct output given the input stored in its
memory. Therefore, to protect multi-round authentication schemes one must ensure that
the internal state of the device cannot be affected. Consequently, our attack suggests that
for security reasonsdevices must protect internal memory by using error detection bits.

Another way to prevent our attack on RSA signatures is to introduce randomness into
the signature process. See for instance the system suggested by Bellare and Rogaway
[4]. In such schemes RSA is applied toF(M, r ) whereF is some formatting function
andr is a random string. The randomness ensures that the signer never signs the same
message twice. Furthermore, given an erroneous signature the verifier does not know the
full plain-text F(M, r ) that was signed (r is not a part of the messageM). Consequently,
the attack of Section 2.2 cannot be applied to such a system.

5. Summary and Open Problems

We described general attack techniques based on hardware and software errors. The
attack applies to several cryptosystems. We showed that signature schemes using CRT,
e.g. RSA and Rabin signatures, are especially vulnerable to this kind of attack. Other
implementations of RSA are also vulnerable though many more faults are necessary.
Fault attacks also apply to authentication schemes. For instance, we showed how to
attack the Fiat–Shamir and Schnorr identification protocols.

Verifying the computation and protecting internal storage using error detection bits
defeats attacks based on hardware faults. We hope that this paper demonstrates that
these measures are necessary forsecurity reasons. Methods of program checking [6]
may come in useful when verifying computations in cryptographic protocols. A result
of Frankel et al. [10] could prove useful in this context.

An obvious open problem is whether the attacks described in this paper can be im-
proved. That is, can one mount a successful attack using fewer faults? For instance,
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can a general implementation of RSA be attacked using significantly fewer faults than
n, say

√
n (heren is the size of the modulus)? Such a result would significantly im-

prove Theorem 2.1. Another interesting question is whether an implementation of the
Bellare–Rogaway signature scheme [4] based on RSA–CRT can be attacked using a
single erroneous signature.
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