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Abstract. We present a model for attacking various cryptographic schemes by taking
advantage of random hardware faults. The model consists of a black-box containing
some cryptographic secret. The box interacts with the outside world by following a
cryptographic protocol. The model supposes that from time to time the box is affected
by a random hardware fault causing it to output incorrect values. For example, the
hardware fault flips an internal register bit at some point during the computation. We
show that for many digital signature and identification schemes these incorrect outputs
completely expose the secrets stored in the box. We present the following results: (1)
The secret signing key used in an implementation of RSA based on the Chinese Re-
mainder Theorem (CRT) is completely exposed frosingleerroneous RSA signature,

(2) for non-CRT implementations of RSA the secret key is exposed given a large number
(e.g. 1000) of erroneous signatures, (3) the secret key used in Fiat—-Shamir identifica-
tion is exposed after a small number (e.g. 10) of faulty executions of the protocol, and
(4) the secret key used in Schnorr’s identification protocol is exposed after a much larger
number (e.g. 10,000) of faulty executions. Our estimates for the number of necessary
faults are based on standard security parameters such as a 1024-bit modulus;@nd a 2
identification error probability. Our results demonstrate the importance of preventing

* This is an expanded version of an earlier paper that appeafénof Eurocrypt'97.

101



102 D. Boneh, R. A. DeMillo, and R. J. Lipton

errors in cryptographic computations. We conclude the paper with various methods for
preventing these attacks.

Key words. Hardware faults, Cryptanalysis, RSA, CRT, Fiat-Shamir identification,
Schnorr identification, Public key systems, Identification protocols.

1. Introduction

Direct attacks on the famous RSA cryptosystem seem to require that one factors the
modulus. Therefore, it is interesting to ask whether there are attacks that avoid this. The
answer is yes: the first was an attack due to Kocher [14] based on timing. Kocher observed
that the secret key can be obtained by precisely measuringntieethat operations

took. This allows one to attack the system without directly factoring the modulus. More
powerful attacks, due to Kocher et al. [15], show how to obtain the secret key by measuring
a device'spowerconsumption during decryption.

We present another type of attack that also avoids directly factoring the modulus. We
essentially use the fact that from time to time the hardware or software performing the
computationgnayintroduce errors. We show that erroneous cryptographic values (e.g.
erroneous RSA signatures) jeopardize security by enabling an attacker to expose secret
information. We describe a number of environments where the attack may apply:

Certificate Authority. A certificate authority (CA) issues certificates to various enti-
ties. During certificate generation, the CA uses its private key to sign the data contained
in the certificate [18]. The CA's private key is highly guarded since anyone possessing the
private key can issue fake certificates. Suppose that during certificate generation a rare
computer error on the CA's machine (hardware or software) results in a certificate con-
taining an erroneous CA signature. We show that such invalid certificates can completely
expose the CA's private key. At the extremesjrgleerroneous certificate is sufficient to
recover the CA's private key. Note that typically the user is alerted whenever an invalid
certificate is received, at which point the user could try to exploit this certificate to attack
the CAs key.

Web Server. A web server uses a secret key to authenticate itself to a web browser
and to establish a secure session with the browser. Suppose that during key exchange, a
rare computer error on the web server causes it to miscalculate. The resulting value sent
to the browser can completely expose the server’s private key.

Smartcard. Smartcards are typically used to authenticate their owners and sign certain
contracts on behalf of their owners. As before, a glitch in the smartcard’s processor may
cause it to send an erroneous value to the outside world. These values expose the secret
keys stored on the card.

Obfuscated Keys. Several software products contain an embedded secret key. The
secret key is “hidden” in the software so that it is supposedly hard to extract from the
executable. For example, several software audio players running on desktop computers
contain a secret key used to defend against music piracy. The embedded key is used to



On the Importance of Eliminating Errors in Cryptographic Computations 103

decrypt encrypted music sent to the user. To extract the embedded key, an attacker could
randomly add a single instruction to the decryption code, thus causing the decryption
process to malfunction. The invalid decryptions produced expose the secret key embed-
ded in the player. This attack extracts the secret key without reverse engineering the
software.

One may wonder whether hardware or software errors are a concern. After all, most
hardware and software used in every day life appears to be reliable. Nevertheless, several
scenarios may enable an adversary to collect and possibly cause faults. We group these
into three categories.

Latent Faults. Latent errors are hardware or software bugs that are difficult to catch.
As an example, consider Intel’s floating point division bug [12]. A crypto library using a
faulty floating point unit for multi-precision arithmetic may, on rare occasions, generate
incorrect values. Similarly, latersioftwarebugs in the multi-precision package could
also lead to incorrect results.

Transient faults. Transient faults are random hardware glitches that cause the proces-
sor to miscalculate. These may be caused by power glitches, high temperature, static
electricity, etc. A transient error that takes place during signature generation will result
in an invalid signature.

Induced Faults. When an adversary has physical access to a device she may try to

induce hardware faults purposely. For instance, one may attempt to attack a tamper-
resistant device by deliberately causing it to malfunction. See the discussion by Anderson
and Kuhn [1] for examples of tampering with tamper resistant devices. Fortunately, most

smartcards have built in sensors to detect various forms of tampering. Hence, it is likely

that the cost of inducing useful faults is higher than the potential gains.

1.1. The Attack Model

Throughout the paper our model consists of a black-box interacting with the outside
world according to a predefined protocol. The black-box contains secret keys that are
inaccessible to the outside world. For example, a CA may be viewed as a black-box
that issues certificates on demand. The CA's private key is stored inside the box. The
adversary’s goal is to interact with the black-box and extract the secret keys stored in

it using only the values output by the box. The assumption is that, on rare occasions,
errors within the box machinery (either hardware or software) cause it to output incorrect
values. The attacks described in the paper show how these values enable an adversary to
deduce the secret keys stored inside the box.

The attack described in Section 2.2 is the most powerful and is capable of dealing
with arbitrary errors. Other attacks in the paper assume more “hardware-like” errors. We
refer to these more specialized errorgegister faults The idea is as follows: suppose
that at some point during a computation (such as signature generation) a temporary value
stored in a register is corrupted. More precisely, one bit in the register flips between the
time the value is loaded onto the register and the time it is read out of the register. The
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bit flip causes one of the register bits to flip from a “1” to a “0” or vice versa. Typically,

the bit flip results from a premature power drain on one of the register cells. We will
show that the secret keys used in several cryptographic schemes are completely exposed
in the presence of register faults.

1.2. Summary of Results

Our attack is effective against several cryptographic schemes such as the RSA system
and Rabin signatures [21] as well as several identification protocols. As expected, the
effectiveness of the attack depends on the exact implementation of each of these schemes.
We briefly review the results:

e For public key systems we present the following results:
RSA + CRT. For an implementation of RSA based on the Chinese Remainder
Theorem (CRT) we show that giveneerroneous RSA signature one can efficiently
factor the RSA modulus with high probability. The same approach can also be used
to attack Rabin’s signature scheme. Our attack shows that one invalid signature
along with a valid signature on the same message is sufficient for factoring the
modulus. A later improvement due to Lenstra [16] shows that an invalid signature
along with the original message to be signed is sufficient.
RSA. Register faults can be used to attack other implementations of the RSA
system though many more erroneous signatures are required. WelnitaRSA
modulus is used the number of required fault®ig).

o For identification schemes we show the following:
Fiat—Shamir. A few erroneous executions of the Fiat—Shamir identification pro-
tocol [8] enable an adversary to recover the private key of the party trying to
authenticate itself. When a single execution of the protocol has secuatitwe
requireO(t) erroneous executions. Furthermore, in case the prover is a smartcard
the adversary mounts the attack by inducing a register fault while the card is waiting
for a challenge. Thus, precise timing of the induced register fault is not necessary.
Schnorr. Similar results hold for Schnorr’s identification protocol [22] though a
larger number of erroneous executions is necessary. Whesbéimodulus is used
the number of executions@(n logn). The attack uses faults that corrupt the prover
while it is waiting for a challenge from the verifier.

Since the initial publication of our results several authors devised attacks based on
faults for other cryptographic systems. Biham and Shamir [5] presented elegant and
novel attacks on DES. Some of their techniques can be used to recover the secret key of
atotally unknown cipherAnderson and Kuhn [2] used a different fault model to obtain
attacks against symmetric ciphers. Bao et al. [3] devised fault attacks against DSS and
several other signature schemes. Joye et al. [13] noted that CRT attacks (described in the
next section) can also be mounted against several elliptic curve systems. Finally, Zheng
and Matsumoto [24] showed how faults in the random number generator can be used to
attack systems.

It is important to emphasize that the attacks described in this paper are currently
theoretical. We are not aware of any published results physically experimenting with this
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type of attack. The purpose of these results is to demonstrate the danger that hardware
or software bugs pose to various cryptographic systems. In conjunction with Kocher's
work our results show that a pure mathematical analysis of a cryptographic algorithm is
insufficient. One must also analyze the actual implementation to ensure it does not leak
timing or power information and never outputs faulty values.

There are many ways to prevent attacks based on hardware faults. The simplest solution
is to ensure the black-box verifies the values it computes before sending them out to
the outside world. In protocols where the black-box has to keep some state (such as
in identification protocols) our results show the importance of protecting the registers
storing the state information using error detection bits. Preventing errors is crucial in
many areas unrelated to cryptography. For instance, special precautions are taken to
ensure error-free computations in core memories of large computers [17], in computers
onboard satellites crossing the Van Allen belt, and many other embedded control systems.
Scientists working in these areas may not be aware that their techniques are also critical
for securing cryptographic implementations. We discuss methods for preventing errors
in cryptographic computations in Section 4.

We note that FIPS publication 140-1[9] suggests that hardware faults may compromise
the security of a module. Our results explicitly demonstrate the extent of damage caused
by such faults. We give algorithms that show how certain faults can expose sensitive
security information. FIPS 140-1 also specifies a list of self-tests a module should apply
to itself. Our results suggest that these tests are insufficient and a full verification of
computed values is necessary.

2. RSA's Vulnerability to Hardware Faults

We are now ready to describe the various attacks. We begin by describing RSA's vulner-
ability to hardware faults.

2.1. The RSA System

Let N = pqbe a product of two large primes eatf? bits long. To sign a messages
Zn using RSA one compute®= x% mod N whered is a secret signing exponehthe
computationally expensive part of signing using RSA is the modular exponentiation of
X. For efficiency most implementations exponentiate as follows: using repeated squaring
they first computes; = x¢ mod p andS, = x4 modq. They then use CRT to construct
the signaturé& = x® mod N. This last CRT step takes negligible time compared with the
two exponentiations. Itis done by computiig= a5 +bS mod N for some predefined
constants, b € Zy.

Exponentiation using CRT is much faster than repeated squaring middiitosee this

observe thag, = x4 mod p = x4mo4P-D mod p. Usuallyd is of orderN whiled mod

(p—1) is of orderp. Consequently, computing requires half as many multiplications

as computingS directly. In addition, intermediate values during the computatios, of

are only half as big—they are in the range fl rather than [1N]. When quadratic

1 Note that for simplicity we assume the message an integer in the range 1 td. Usually one uses a
hash and a formatting function to convert the message into an integer in that range [19], [4].
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time multiplication is used, multiplying two numbers#j takes a quarter of the time

as multiplying elements ifZ.y. Hence, computings, takes an eighth of the time of
computingSdirectly. Computing botts, andS; takes a quarter of the time of computing

S directly. Thus, CRT exponentiation feur timesfaster than direct exponentiation.
This is why RSA with CRT is the preferred method for generating RSA signatures [18,
p. 613], [20].

2.2. An Attack on “RSA-CRT”

We show that RSA with CRT is especially susceptible to software or hardware errors.
The attack enables us to factor the modulisThe attack is based on obtaining two
signatures of the same message. One signature is the correct one; the other is a faulty
signature.

Letx € Zy be a message and I8t= x? mod N be a valid RSA signature of Let S
be a faulty signature. Recall thétis computed by first computing andS,. Similarly,
Sis computed by first computin, andS,. Suppose that during the computationSf
an error occurs during the computation of ooheof S, $. Without loss of generality,
suppose a hardware fault occurs during the computatic @fe. S, # S, mod p) but
no fault occurs during the computation 8f (i.e. S = $). ThenS = Smodq, but
S+ Smod p. Therefore,

gcdS— S N) =g

and soN can be easily factored.

We see that using one faulty signature and one correct signature the mhidzcdnde
efficiently factored. The above attack works under a very general fault model. It makes
no difference what type of error or how many errors occur in the computatiSn &l
we rely on is the fact that faults occur in the computation modulo only one of the primes.
To obtain both a correct signature and a faulty signature cfdheemessage an attacker
can query the black-box on the same message multiple times. Since standard signature
formats (e.gpkcsl) do not involve any randomness, the satwill be fed through the
signing engine every time.

Based on our results Lenstra [16] observed that one faulty signature of a known mes-
sagex is sufficient. There is no need to obtain a valid signature as well. For completeness
we describe Lenstra’s improvement here. Set x4 mod N. Let Sbe a faulty signature
obtained under the same model as above, th@tisS modq but S # Smod p. Then
x = $modq butx # $ mod p, wheree is the public exponent used to verify the
signature, i.eS°* = x mod N. It now follows that

gedx — &, N) =q.

Lenstra’s improvement shows that as long as the entire signed messagaown, a
single interaction with the black-box resulting in an invalid signatsire sufficient for
factoring the modulus.

2.2.1. Attacks on Other Systems Using CRT

The attack on CRT implementations applies to other cryptosystems as well. For instance,
the same attack applies to Rabin’s signature scheme [21]. A Rabin signature of a number
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x mod N is the modular square root &f When the extraction of square roots modulo
a composite uses CRT the same attack as above applies. Other attacks on systems using
CRT are described in [13].

2.3. An Attack on RSA without CRT

Inthe previous section we observed that RSA—-CRT is susceptible to hardware or software
errors. In this section we show that using register faults it is possible to attack other
implementations of RSA as well. The attack is not as practical as attacks on RSA-CRT.
Nevertheless, it illustrates the vulnerability of non-CRT implementations.

Let N be ann-bit RSA composite and let be a secret exponent. The exponentiation
functionx — x9 mod N is often computed using the following algorithm (we let
d = dy_1dn_2 - - - d1dy be the binary representation @y

Algorithm 1
int y<«<x ; z<«1
main Fork=0,...,n—1.
If d¢ =1, thenz <— z-y (modN).
y < y? (modN).
Outputz.

When the above algorithm is used, several faulty signatures are sufficient to recover the
secret keyl. Here faulty signatures refer to signatures obtained in the presence of register
faults (see Section 1.1). The attack uses erroneous signatuegglommessages iy

(as opposed to chosen messages). Furthermore, the attacker need not obtain the correct
signature of any of the messages nor does she need to obtain multiple signatures of the
same message.

The attack proceeds as follows: the attacker asks the black-box to sign messages
M1, Mo, ..., M. The attacker collects the responses until she has sufficiently many
erroneous signaturés. The pairs(M;, S) are then used to deduce the secret signing
key d. We assume that for each paM;, §) a singleregister fault occurs during the
computation of§. The fault occurs at a random iteration during the exponentiation
algorithm and flips one bit of the value stored in the variablEhe following result was
the starting point of our research on fault-based cryptanalysis.

Theorem 2.1. Let N = pq be an n-bit RSA moduluBor any1 < m < n, given

PN

(n/m) log(2n) pairs (M;, §), the secret exponent d can be extracted from a black-box
implementing the above exponentiation algorithm with probability at Iéa'ﬁhe proba-
bility is over the location of the register faults and the random messages’E4,. The al-
gorithm’s running time is dominated by the time it takes to perforft2®n® log? n)/m?)

full modular exponentiationsnod N.

Remark Takingm = log 2n shows that the secretcan be recovered usimgfaults
andO(n*-log? n) modular exponentiations. With = 1 the secred can be found using
nlogn faults andO(n® - log? n) exponentiations.
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Proof. LetM e Zy be a message to be signed. Suppose that at a single random point

during the exponentiation algorithm (Algorithm 1) on inpdtexactly one of the bits of

the register is flipped. We denote the resulting erroneous signatur& bye show that

an ensemble of such erroneous signatures enables one to recover the secret exponent
Letl = (n/m)log(2n) and letM4, ..., M| € Zy be a set of random messages. Let

S = Mid mod N be the correct signature dw;. Let é be an erroneous signaturedf.

We are giver§y but do not know§ . By assumption, a register fault occurs at exactly one
point during the computation &. Foreach faulty signaturé,, letk; denote the value of
k at the time at which the fault occurred (redai$ the counter used in the exponentiation
algorithm). We may sort the messages so thatl) < k, <--- <k < n. The time at
which the faults occur is chosen uniformly (among thigerations) and independently
at random. It follows that givehsuch faults, with probability at Ieaét kivi—ki <m
foralli = 1,...,1 — 1. To see this observe that the probability that no fault occurs in
a specific interval of widtim is (1 — m/n)' < 1/(2n). Since there are at mostsuch
intervals the probability that all of them contain a fault is at leastd - 1/(2n) = %
Note that since we do not know where the faults occur, the vadug® unknown to us.
Letd = d_1 - - - didp be the bits of the secret exponehtVe recover a block of these
bits at a time starting with the MSBs. Suppose we already knovdhitsi,_» - - - dy, for
somei. Initially i = | + 1 indicating that no bits are known. We show how to expose the
bits ofd in positionsk; — 1, ki — 2, ..., ki_;. To simplify the notation let = k; and
¢ = ki_;. To expose the block of bitd, 1d; - --dsr1dc € {0, 1}2~¢ we intend to try
all possible bit vectors until the correct one is found. Since even the length of the block,
namelya — c, is unknown we try all possible lengths. The attack algorithm works as
follows:

1. Foralllengths =1,2,3..., mdo:
2. For all candidate-bit vectorsu = ug_1Ua_2 - - - Ug—r dO:
3. Setw = Y7 di2l + Y77 u;2). In other wordsy matches the bits af and
the bits ofu at all bit positions that are already exposed and is zero everywhere

else.
4. Test if the current candidate bit vectoris correct by checking if one of the
erroneous signatures for j =1, ..., | satisfies

. e
Jbe{0,...,n} st (s, :l:Zij“’) =M, (modN).

Recall thate is the public signature verification exponent. Themeans that the
condition is satisfied if it holds with either a plus or minus.

5. If a signature satisfying the above condition is found, outputu, 2 ---Us_r
and stop. At this point we know thtt_; = c=a —r anddy_1d;_2---day =
Ua_1Ua_2 - - - Us_r. Hencey more bits ofd are exposed.

We show that the condition at step 4 is satisfied by the correct candidateg, » - - - uc.
To see this recall tha_; is obtained from a fault at iteration numbee= k_;. That
is, at thek;_;st iteration the value of was changed té < z 4 2° for someb (corre-
sponding to a register fault on the bit in position A simple property of Algorithm 1
is that just before the fault took effect we had= M™% *"® mod N. By definition of
w it follows that §_1 = z- M{*; mod N. Since no faults occurred in the remaining
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iterations, replacing by 2 produces an erroneous signatéye; satisfying

A

Si1=2-M",=@Z+£2®>M"”, =S 1+2°M”, (modN).

When in step 4 the erroneous signatére, is corrected (by adding®” ) it properly
verifies when raised to the public exponen€Consequently, when the correct candidate
u is tested, the faulty signatuée_l guarantees that it is accepted.

To bound the running time of the algorithm we bound the number of times the condition
of step 4 is executed. Each invocation of step 4 requirdsmodular exponentiations.
Working through the loops in steps 1 and 2 we see that the total number of modular
exponentiations is at most

n—k ki —ki_1 ko—k1 k1 m
n-l { 24+ > 244 Zz’+22’} <n-I |:I- 2,} < 2ni%2".
r=1 r=1 r=1 r=1 r=1
The first inequality follows from the fact th&¢ — ki_; < mfor all i. Plugging in the
value forl we see that the total run time is dominated by the time it takes to perform
0((2™n®log? n)/m?) modular exponentiations.

We still need to show that a wrong candidatewill not pass the test of step 4. This
is done in the following lemma. The lemma shows that when the encryjolémnyption
exponentse, d) are chosen at random, and the messagies. ., M, € Zy are random,
a wrong candidata’ will pass the test with negligible probability.

Lemma2.2. Letc> 1be a fixed constanEor all n-bit RSA moduli N= pq at least
one of the following claims hold

1. The probability that a wrong candidaté passes the test of stdjis less tharl/nC.
The probability is over the random choice of messageg My given to the attack
algorithm and the random choice of the decryption exponent d

2. There is a uniform polynomial tim@n n and2™) algorithm for factoring N

Proof. We show an algorithm that factors all RSA modhilifor which part 1 is false.
The algorithm works as follows: it picks a random expongr@nd random messages
Mg, ..., M, € Zy. It then computes erroneous signatuE}zs)f the M; by using the
exponentiation algorithm (Algorithm 1) to compLMgd mod N and deliberately simu-
lating a random register fault at a random iteration. {df, §)!_; be the resulting set
of faulty signatures. We show there is a polynomial timen(iand 2") algorithm that
given this data succeeds in factoriNgwith probability at least An°®.

Suppose the attack algorithm were giv@vi;, S)!:l as input. By assumption, with
probability at least An®, at some point during the algorithm a signatSrwilI incorrectly
cause the wrong candidatéto be accepted in step 4. That&,+ 2°M* = S, mod N
even thougré) was generated by a different fault (heveis defined as in step 3 using
the bits ofu’). We know that§, = S, & 2 M1 for someby, wq with wy # w. The pair
by, w1 correspond to the actual location of the fault during the computati(ﬁ).dfhen

S £2°M" = § 4+ 2°M” (mod N).
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Rearranging terms we git” "+ = +2°~° mod N. In other wordsM, must be a root
of a polynomial of the form

XY =a (modN) (1)

for some known constamt = +2°-P, Recall that the messadé, is chosen indepen-
dently of the fault location, i.e. independentlywf w4, anda. It follows that a random
X € Zn must satisfyx®~*1 = a mod N with non-negligible probability. We show that
consequently we can factbt. First, we bound the number of rootsdf** = a mod N.
Define Ap = gcd(w — wy, p— 1) and Ay = gcdlw — wy, g — 1). The number of roots
of the polynomiak™~** = a mod N is exactlyo = Ap - Aq. Hence, the probability that
§, causes the wrong to be accepted is/N.

To bound the probability that a wrong candidatis accepted throughout the algorithm
we count the number of paits, w;. The value ofw; is essentially the prefix af from
the most significant bit to the fault location. Since we hifeulty signatures there are
| possible values fow;. The values ofv are the ones tested in step 4. There are at most
| - 2™ possible values. Hence, there 2™ possible values fow — w;. Leta be the
maximum value of over all pairsw, w1. The probability that a wrong candidate is ever
accepted is at most2™ - @ /N.

By assumption, part 1 of the lemma is false. Hence, with probability at le@sf 1
(over the choice ofl and the fault locations) we have th&2™-&/N > 1/2n°. Let A be
the event thalt?2™ . @/N > 1/2n°. When.A occurs there exists a pair, w; such that

gcdw —wy, p—1) -gcdw — w1, g — 1) =& > N/(222™n°).

It follows that gcdw — w1, 9(N)) > A(N)/2122™n¢ wherea(N) = lem(p — 1, q — 1).
The factoring algorithm factord by trying all pairs ofw, w;. For each pair it computes
gcd(N, gt®~wv/2 _ 1) for a randomg € Zy and allt € [1,...,2122™n°]. Once
t(w — wy) is a multiple ofA(N) the algorithm will factorN with probability%. Hence,
when the even#d occurs the algorithm factofd in polynomial time with probability
%. Since Pri] > 1/2n° repeating this process times will factor N with constant
probability. O

Remarkl. If one allows the attacker to obtain both the erroneous and correct signature
of each messagd;, then the running time of the attack algorithm can be improved. The
test at step 4 of the attack algorithm can be simplified to

dbef0,....n} st §+2°M"=9§ (modN),

thus saving the need for an RSA encryption on every invocation of the test.

Remark2. The messagédd; used by the attack algorithm were assumed to be random
elements ofZy. This was necessary for the proof of Lemma 2.2. However, it should be
clear that heuristically almost any set of messddég will make the attack algorithm
succeed in exposing the private kayln particular, one can use elementsZyf that

are formatted according to timxcsl standard [19]. Similarly, the decryption exponent
d was assumed to be random. Again, the attack is certain to worknfpvalid d. In
particular, it will work for ad that correspond to a low public exponene.g.e = 65537.



On the Importance of Eliminating Errors in Cryptographic Computations 111
3. Attacks on Identification Protocols

We now turn our attention to attacks on identification protocols. Throughout we describe
a scenario in which a prover Alice is authenticating herself to a verifier Bob. At setup
time Alice publishes some public information (public accreditation information) and
keeps certain values secret (secret accreditation information). Whenever she wishes to
authenticate herself to Bob she proves knowledge of the secret information. She does so
by engaging Bob in a zero-knowledge proof of knowledge [8]. We show that for several
classic identification protocols, the presence of register faults on Alice’s machine enables
Bob to extract Alice’s secret accreditation information completely.

3.1. The Fiat—=Shamir Identification Scheme

We begin by discussing the Fiat—Shamir [8] identification scheme. Alice and Bob first
agree on am-bit modulusN which is a product of two large primes, and a security
parametet. A typical value fort ist = 10. At setup time Alice chooses her secret
accreditation information as a set of random invertible elem&nts ., ss mod N. Her
public accreditation information is the square of these numbers- s?,..., v =

s? mod N. To authenticate herself to Bob they engage in the following protocol:

1. Commitment: Alice picks a random e Zj, and sendg = r? mod N to Bob.

2. Challenge:Bob picks a random subs& C {1, ...,t} and sends the subset to
Alice.

3. ResponseAlice computesy =r - [[;.sS mod N and sendy to Bob.

4. Verify: Bob verifies Alice’s response by checking thak Z} and thaty? =
z-[]icsvi (modN). The protocol completes successfully if the response verifies,
and fails otherwise.

The probability that an imposter who does not know the secret information succeeds
in fooling Bob is 2°t. Typically, the protocol is repeated a small number of times (e.g.
four times) to reduce the probability of error. Usihg= 10 and iterating the protocol
four times results in an error probability of %.

For the purpose of authentication one may implement Alice’s role in a tamper resistant
device. The device contains the secret information and is used by Alice to authenticate
herself to various parties. We show that using register faults one can extract the secret
(s1,...,%) from the device. We use register faults that occur while the device is waiting
for a challenge from the outside world.

Theorem 3.1. Let N be an n-bit modulus and let t be the predetermined security
parameter of the Fiat—Shamir protocdbiven t erroneous executions of the protocol
one can recover the secrédy, ..., ). The algorithm’s running time is dominated by
the time it takes to perform @t + t?logt) modular multiplications The faults are
collected over t separate runs of the protqaedch fault being d-bit register fault in

the variable r.

Proof. Suppose that due to a register fault, one of the bits of the register holding the
valuer is flipped while the device is waiting for Bob to send it the challengé&skt this



112 D. Boneh, R. A. DeMillo, and R. J. Lipton

case, Bob receives the correct valie r2 mod N, howevery is computed incorrectly
by the device. Due to the fault, the device outputs

g=0+E-[]s (mModN),
ieS
whereE is the value added to the register as a result of the fault. Since the fault is a
single bit flip we know thalE = +2° for someb = 0, ..., n — 1. Observe that Bob
knows the valug [;_s vi and he can therefore compute+ E)? using
92
(r+E)?= (mod N).
l_[i es Vi
Since there are onlg possible values foE, Bob can try all of them until the correct
one is found. Bob can recovewusingy, z, and the correct error value. Indeed,

F_ r+E)?—r2—E? _ [9°/[Ticsvil —2— E?
2E 2E

Bob’s ability to discover the secret random vaiuis the main observation that enables
him to attack the system. Using the value aind E Bob can compute

(mod N).

oy 2E.§
s = e = 5omont zr ez ™V @)

We now show that Bob can verify that a candidate vatuis correct. LetT be the
hypothesized value df[;_qs obtained from the above formula. To tesfifis correct
Bob can verify that the relatioi> = [];_sv modN holds. Usually only one of the
possible values foE will satisfy the relation. In such a case Bob correctly obtains the
value of[ [ sS.

Eveninthe unlikely eventthat two valugs E’ satisfy the relation, Bob can still attack
the system. Suppose two candidate valke&’ generate two values, T/, T # T/,
satisfying the relation. Clearly{,> = (T’)> mod N. If T # —T’ mod N, then Bob can
already factoiN by computing gcdN, T — T’). Supposé = —T’ mod N. Then since
one of T or T" must equa| [, .S (one of E, E’ is the correct fault value) it follows that
Bob now knowd ;¢S mod N up to sign. For our purposes this is good enough.

The testing method above enables Bob to check whether a certain vaiues dfie
correct one. By testing ati possible values oE until the correct one is found Bob
can determing [;_.sS. Computing[ [, _svi in (2) takesO(t) modular multiplications.
Evaluating (2) for alh possible values dt takes timeO(n+t) modular multiplications
(and inversions). This is the time to determinfg_gs for a single seS. Fort sets we
needO(nt + t2) modular multiplications.

So far we showed that Bob is able to obth[j. s s for arbitrary set$Sof his choice. We
briefly show that this enables him to recovsr, . . ., &) quickly. The simplest approach
is for Bob to obtain[ [; s for singleton sets, i.e. se8containing a single element.
If S = {k}, then[],.sS = s« and hence thg’s are immediately found. However, it
is possible that Alice may refuse to accept singleton Sets this case Bob can still
find thes’s as follows. We represent a s&tC {1, ..., t} by its characteristic vector
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Ue{01,ie U =1ifi e SandU; = 0 otherwise. Bob picks se§,, ..., §

such that the corresponding set of characteristic veddgrs. ., U; form at x t full

rank matrix ovetZ,. Bob then uses the method described above to construct the values
T = ]_[ies s for each of the set§,, ..., S. To determines; Bob constructs elements
ai,...,a € {0, 1} such that

aU+---+aU=(1,00,...,00 (mod 2.

These elements can be efficiently constructed since the végtors. , U; are linearly
independent ovef.,. When all computations are done over the integers we obtain that

ayU;+ -+ aUy = 2by + 1, 2by, 2bs, ..., 2hby)

for some known integens,, .. ., b in the range [1t]. Bob can now computs; using
the formula
T ... T
= 1bl—:)[ (mod N).
'Ul DY Ut

Recall that the valueg = 32 (mod N) are publicly available. The valuss, . . ., s can
be constructed using the same procedure. This phase of the algorithm r&yifrkegy t)
modular multiplications.

To summarize, the entire algorithm above makes usdailts. The running time is
dominated by the time it takes to compu@ént + t2 logt) modular multiplications.C]

We emphasize that the faults occur while Alice’s device is waiting for a challenge from
the outside world. Consequently, there is no need to time the induced fault carefully. The
adversary knows to induce a fault on Alice’s device while it is waiting for a challenge
from the outside world.

We described the algorithm above for the case where a register fault casisgsea
bit flip. More generally, the algorithm can be made to handle a small number of bit
flips per register fault. However, finding the correct fault valtulbecomes harder. When
a single register fault causedits in the register to flip then the algorithm’s running
time become® (n°t + t?logt) modular multiplications. Essentially, one has to test all
possible values foE in (2). The number of candidaté’s is O(n®). The rest of the
algorithm remains unchanged.

3.2. A Modification of the Fiat—Shamir Scheme

One may suspect that our attack on the Fiat—Shamir scheme is successful due to the fact
that the scheme is based on squaring. Recall that Bob was able to compute the random
valuer chosen by the device since he was givérand(r + E)? whereE is the fault

value. One may try to modify the scheme and use higher powers. We show that our
techniques can be used to attack this modified scheme as well.

The modified scheme uses some publicly known expoaémdtead of squaring. As
before, Alice’s secret key is a set of invertible elemesits .., s mod N. Her public
keyisasetof numbers = s, ..., v, = sF mod N. To authenticate herself to Bob they
engage in the following protocol:
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1. Commitment: Alice picks a random and sendg = r® mod N to Bob.
2. Challenge:Bob picks a random subs& C {1, ...,t} and sends the subset to
Alice.

3. ResponseAlice computesy =r - [[;.sS mod N and sendy to Bob.
4. Verify: Bob verifies Alice’s response by checking tlae Z} and thaty® =
ré [licsvi (modN).

Whene = 2 this protocol reduces to the original Fiat—-Shamir protocol. Using the
methods described in the previous section Bob can obtain the viajuesr® mod N
andL, = (r + E)® mod N. As before we may assume that Bob guessed the valke of
correctly. Given these two values Bob can recavéy observing that is a common
root of the two polynomials

x® =1Ly (modN) and (X+E)®¥=Ly (modN).

Furthermorey is very likely to be the only common root of the two polynomials.
Consequently, when the exponeris polynomial inn Bob can recover by computing

the GCD of the two polynomials. Once Bob has a method for computihg can
recoverthe secress, .. ., & as discussed in the previous section. Note that this approach
only works for smalle and hence does not directly apply to the Guillou—Quisquater
authentication scheme [11].

3.3. Schnorr’s Identification Scheme

The security of Schnorr’s identification scheme [22] is based on the hardness of comput-
ing discrete log modulo a prime. Alice and Bob first agree on a ppraad an element

g € Zy of orderq (clearlyq divides p — 1). For efficiency reason one typically chooses

g to be much smaller thap. For instancep may be 1024 bits long ang only 160

bits long. Alice then chooses her secret accreditation information by choosing a random
elements € Zq. Her public accreditation information is= g*> mod p. To authenticate
herself to Bob, Alice engages in the following protocol:

1. Commitment: Alice picks a random integer € Zy and sendg = ¢g" mod p to
Bob.

2. Challenge:Bob picks a random integdr € [0, T] and sends to Alice. Here
T < g is some upper bound chosen ahead of time.

3. ResponseAlice sendu =r 4+t -smodq to Bob.

4. Verify: Bob verifies thag¥ = z- y* mod p. The protocol completes successfully
if the response verifies, and fails otherwise.

For the purpose of authentication one may implement Alice’s role in a tamper-resistant
device. The device contains the secret information and is used by Alice to authenticate
herself to various parties. We show that using register faults one can extract the secret
s from the device. We use register faults that occur while the device is waiting for a
challenge from the outside world. Throughout the sectiorxldgnotes logarithm of
to the base wheree is the base of the natural logarithez 2.718.

Theorem 3.2. Suppose g used in Schnorr’s protocol is an n-bit numbeen given
k = nlog4n erroneous executions of the protocol one can recover the secret s with
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probability at Ieast%. The algorithm’s running time is dominated by the time to perform
O(n?logn) modular multiplications The faults are collected over k separate runs of
the protoco] each fault being d-bit register fault in the variable r

Proof. Bob wishing to extract the secret information stored in Alice’s device first picks
a random challengein [0, T]. The same challenge will be used in all invocations of
the protocol. Since the device cannot possibly store all challenges given to it thus far, it
cannot possibly know that Bob is always providing the same challengefact, Bob
could hide the attack queries within a sequence of regular interactions.

The attack enables Bob to determine the valhgemod q from which the secret value
s can be easily found. For simplicity we set= ts modq and assume thaf mod p is
known to Bob.

Suppose that due to a register fault, one of the bits of the register holding the V&lue
flipped while Alice’s device is waiting for Bob to send it the challeng€hen, when the
third phase of the protocol is executed the device fingsr +2' in the register holding
r. Consequently, the device will outpiit= f + x modq. Supposé =r + 2'. Bob can
determine the value df(the fault position) by trying all possible values= 0, ..., n—1
until ani satisfying _

9" =g?g'g" (mod p) ®3)
is found. Assuming a single bit flip, there is exactly one sudthe above identity proves
to Bob thatf = r 4 2' showing that théth bit of r flipped fram a 0 to a 1Consequently,
Bob deduces that thigh bit of r before the error must have been a “0”. Similar logic
applies wherd =r — 2'. In this case Bob deduces that iltie bit of r must have been a
“1". Observe that once the error locatiois known, Bob can undo the error and obtain
the correct value ofi, namelyu = r + x modqg.

More abstractly, Bob is given; = x +r®, ..., ux = x +r® modq for random
valuesr @, ..., r® (recallk = nlog 4n). Furthermore, Bob knows the value of one bit
ineach of @, ... r® Bob’s goal is to recovex. Note that obtaining this information

requiresO(n? logn) modular multiplications since for each of tkéaults one must test

allnpossible values af Each test requires a constant number of modular multiplications.
We claim that using this information Bob can recoxén time O(n?). We assume the

k faults occur at uniformly and independently chosen locations in the regishkéwte

that this uniformity assumption may or may not be true depending on the cause for these

faults. Our attack relies on the randomness of the faults. Assuming the faults occur at

random bits ofr the probability that at least one fault occurs in every bit position of

the register is at least - n(1—1/n)* > 1 —n.e~'99% = 3_|n other words, with

probability at leasg, for every 0< i < n there exists an® amongr @, ..., r® such

that thei th bit of r @ is known to Bob (we regard the first bit as the LSB).

To recoverx Bob first guesses the log8nost significant bits ok. Later we show
that Bob can verify whether his guess is correct. Bob tries all possiblenlbg 8trings
until the correct one is found. L& be the integer that matchg®n the most significant
log 8n bits and is zero on all other bits. For now we assume that Bob correctly guessed
the value ofX. Bob recovers the rest of starting with the LSB. Inductively suppose
Bob already knows bits;_1 - - - X1Xp Of x (initially i = 0). We show how Bob computes
theith bit of x. LetY = Y "¢ 2/x.
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Bob determines; usingr . He knows théth bit ofr  and the value af-+r © modg.
Letb be theith bit of r ). We viewx, X, Y, andr ©) as integers in the range,[§). Then
assuming < x +r® —Y — X < q we have that

X =b & [(x+r®) =Y — X modq];, 4

where for any integen we use {v]; to denote théth bit in the binary representation of
Equation (4) follows from two facts. First observe that the conditien0+r® —Y —

X < gimplies that the modulq has no effect. Second, observe that[Y — X]; = [X];
and thatk — Y — X]; = Oforall j < i. Therefore, théth bit of (x — Y — X) +r®

is [x]i @ [r ©]; which is simply K]; @ b. Equation (4) immediately follows. Therefore,
assuming 0< x +r® — X — Y < g Bob can easily obtair;, theith bit of x.

By construction we know that & x — X — Y < /8n. Hence, the condition &
x4+r1r® —Y — X < qwill fail only if r® > (1—1/8n)q. Sincer © is uniformly chosen
in the range [0q) the probability that the condition is not satisfied j&8a. Since the
r’'s are independent of each other, the probability that the condition is satisfied for all
i=1....nis(1—1/8n" > 2,

To summarize, we see that for the algorithm to run correctly two events must simul-
taneously occur. First, all bits ofmust be “covered” by faults. Second, all tHe must
be less thaiil — 1/8n)g. Since each event occurs with probability at Ie%shoth events
happen simultaneously with probability at Ie%stConsequently, with probability at
Ieast%, onceX is guessed correctly the algorithm requif@é) modular additions and
outputs the correct value of Of course, once a candidates found it can be easily
verified using the public data, by testing thét= g* mod p (recall thatx was defined
asx = st). Computingg® mod p takesO(n) modular multiplications. There a®(n)
possible values foX and hence the running time of this stefign?) modular multipli-
cations. Since the first part of the algorithm taka@? logn) modular multiplications
it dominates in the overall running time. O

We note that the attack also works when a register fault induces multiple bit flips
in the register (i.e.f =r + chzl 211). When an error results ia bits being flipped
the location of these errors can be found in ti@é°). To do so one tries all possible
error vectors until one satisfying (3) is found. Once all error vectors are found, the same
algorithm as in the proof of Theorem 3.2 can be used to recaver

We also note that the faults we use occur while Alice’s device is waiting for a challenge
from the outside world. Consequently, the adversary knows to induce the fault just before
giving the challenge.

4. Defending Against Attacks Based on Hardware Faults

There are several methods for defending against the attacks discussed in this paper. The
simplest method is for the device to check the output of every computation before releas-
ing it. Though this extra verification step may reduce system performance, our attack
suggests that it is crucial for security reasons. In some systems verifying a computation
can be done efficiently (e.g. verifying an RSA signature when the public exponent is 3).

In other systems verification appears to be costly (e.g. DSS).



On the Importance of Eliminating Errors in Cryptographic Computations 117

Dueto the extreme vulnerability of RSA-CRT checking should be required whenever it
is used. Thisis especially true fora CAwhere a single transient fault could leak the private
key. Shamir [23] presented a clever technique for verifying signatures generated by the
RSA-CRT method. When the public exponergsmall (e.g. 3) standard verification (i.e.
raising the signature to the power)fs still the best way to go. However, for larger values
of e, Shamir’s trick is a clear win. For completeness we describe Shamir's approach.
Recall that in RSA—-CRT one signs a messafidy computingS, = MY mod p and
S = MY modq. The results are then combined with CRT to buldShamir suggests
picking a small random number(e.g. 32 bits) and computing = MY mod pr and
S = MY modqr. The overhead in performance is negligible. One then checks that
S modr = S, modr. If the test fails, an error occurred in one of the exponentiations. If
the test succeeds the signat@e constructed frong, mod p andS, modg. Overall,
the performance cost is negligible. The check done moddiefends against a random
error during the exponentiation. Other methods should be used to defend against errors
in the CRT step.

Our attack on authentication protocols such as the Fiat—Shamir scheme uses a register
fault which occurs while the device is waiting for a response from the outside world.
One cannot protect against this type of a fault by simply verifying the computation. As
far as the device is concerned, it computed the correct output given the input stored in its
memory. Therefore, to protect multi-round authentication schemes one must ensure that
the internal state of the device cannot be affected. Consequently, our attack suggests that
for security reasondevices must protect internal memory by using error detection bits.

Another way to prevent our attack on RSA signatures is to introduce randomness into
the signature process. See for instance the system suggested by Bellare and Rogaway
[4]. In such schemes RSA is applied (M, r) whereF is some formatting function
andr is a random string. The randomness ensures that the signer never signs the same
message twice. Furthermore, given an erroneous signature the verifier does not know the
full plain-text F (M, r) that was signed (is not a part of the messadt). Consequently,
the attack of Section 2.2 cannot be applied to such a system.

5. Summary and Open Problems

We described general attack techniques based on hardware and software errors. The
attack applies to several cryptosystems. We showed that signature schemes using CRT,
e.g. RSA and Rabin signatures, are especially vulnerable to this kind of attack. Other
implementations of RSA are also vulnerable though many more faults are necessary.
Fault attacks also apply to authentication schemes. For instance, we showed how to
attack the Fiat—Shamir and Schnorr identification protocols.

Verifying the computation and protecting internal storage using error detection bits
defeats attacks based on hardware faults. We hope that this paper demonstrates that
these measures are necessarysggurity reasonsMethods of program checking [6]
may come in useful when verifying computations in cryptographic protocols. A result
of Frankel et al. [10] could prove useful in this context.

An obvious open problem is whether the attacks described in this paper can be im-
proved. That is, can one mount a successful attack using fewer faults? For instance,
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can a general implementation of RSA be attacked using significantly fewer faults than
n, say./n (heren is the size of the modulus)? Such a result would significantly im-
prove Theorem 2.1. Another interesting question is whether an implementation of the
Bellare—Rogaway signature scheme [4] based on RSA-CRT can be attacked using a
single erroneous signature.
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