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Abstract

Jengas a popularblock gameplayedby two players.Each
playerin herturnhasto removeablockfrom astackwithout
toppling the stack,andthenaddit the top of the stack. We
analyzethe gamemathematicallyand describethe optimal
strat@iesof bothplayers.We shav that'physics’,thatseems
to play a dominantrole in this game,doesnot really add
much to the complexity of the (idealized)game,and that
Jengais, in fact, a Nim-like game. In particular we show
thata gamethat startswith n full layersof blocksis a win
for thefirst playerif andonly if n = 2, 0orn = 1,2 (mod 3)
andn > 4. We alsosuggessomeseveral naturalextensions
of thegame.

1 Introduction

Jenga,seeFigure 1, is a popular block game played by
playersof all agesaroundtheworld. We analyzeanidealized
versionof this gameandshaw thatit is equivalentto avery
simpleNim-like game.(SeeBerlekampet al. [BCG82 for
information on Nim and similar games.) We then give a
completesolutionof this simplecombinatorialgame giving
theoptimalstratgiesof bothplayers.We alsoconsideisome
naturalphysical,andnon-physicalgeneralizationsf Jenga.

2 Rulesof thegame

Thegameis playedusing3n woodenblockseachof dimen-
sionsl x 1 x 1. In thecommerciallyavailablegamen = 18.
Theinitial positionof thegamein ann-level towerof dimen-
sions1 x 1 x n. Eachlevel is composedf threeadjacent
blocksthatareatright angleso theblocksof thelevel belon
them. Thetwo playersthentake turnsalternately The offi-
cial instructionsattachedo the gamesay that eachplayer,
in herturn, hasto remove a block from anywherebelowthe
highesttompletedevel, andthenstackit ontop of thetower,
atright anglesto the blocksjustbelow it. The staclkedblock
shouldnot starta new level, unlessthe highestlevel is full.
Theplayerthattopplesthetower losesthegame.

~*JengaR) is aMilton Bradley Game.
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Figurel: A typical positionin thegameof Jenga.

In arealgameof Jengawhenaplayertriesto removeablock

from the stack, sheinevitably changespy small amounts,
the position of someof the otherblocks. We consideran

idealizedversionof the gamein which eachplayersimply

choosesheblockto beremoved. Thisblockis thencarefully
removed by a robot, without changingthe positionsof the
otherblocks. The resultingtower then either continuesto

stand,or it collapses.The sameholdsfor the placemenbf

theremovedblock onthetop of thetower.

3 Stability of towers

A stackof blocks of height & is representedy a k-tuple
(al, as,..., ak), wherea; = a;1 a2 a3 € {0, 1}3 - {000},
for 1 <1 < k. We assumehatthe dimension®of eachblock

arel x 1 x i. If a;; = 1, thenthereis a block in the j-
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th slot of the i-th level, i.e., at [73=, 2] x [0,1] x (51, 4],
if 4 is odd, andat [0,1] x [£55, 4] x [552, &), if i is even.
We referto sucha stackasan alternating tower, or just a
tower, for short. For example,the tower shovn in Figurel

is (111,011,111,011,101,111,...).



DEFINITION 3.1. (STABILITY) Atower(a,as,...,ax) iS

saidto bestableif andonlyif a physicalrealizationof it does
not collapse evenif blodks are very slightly displacedfrom
their intendedpositions.A tower s saidto be semi-stablef

andonly if an exactphysicalrealizationof it mightstand,at
leasttempoarily, but aninfinitesimaldisplacemenof oneof
its blockswould collapseit.

DEFINITION 3.2. (VALIDITY) A tower (a1, as,...,ax) iS
said to be valid, if and only if a; # 100 and a; # 001,
for everyl < i < k, andif k > 3 then(ag—2,ax—1,ax) is
not oneof (010,010, 100), (010,010, 001), (011,010, 100)
and(110,010,001).

LEMMA 3.1. (STABILITY LEMMA) Atoweris stableif and
onlyif it is valid.

Proof: By elementaryphysics,atower of heightk is stable
if andonly if, for every1 < ¢ < k, the centerof gravity of

levelsi + 1 upto k lies abovetheinterior of thecorvex hull

of the area of contactbetweenevelsi andi + 1. A tower
is semi-stablef for somei, the centerof gravity liesabovea
boundarypointof the corvex hull of the contactarea.

Let cent(aq,as, ..., ar) be the projectionof the centerof
gravity of thetower (ay,as,...,ax) onthe z-y plane. Let
conv(ay,as) be the projection,againon the z-y plane, of
theareaof contactbetweerthefirst andsecondevels of the
tower (a1, ay). If x = (z1, z2) € R?, weletx? = (zq,z).
More formally then,atower (a1, as, - - ., ax) is stableif and
only if cent(aiy1,ait2,-..,ar)® € int(conv(a;,ait1)),
for 1 < i < k, whereint(A) denotegheinterior of asetA.
The reverseoperationis neededhere as the orientationof
the layersalternates.(A tower is semi-stablef andonly if
cent(aH_l, iy, .. ,ak)R S conv(a,-, a,'+1), for 1 <i<k,
andfor atleastonesuchi, cent(a;1,aiya,...,ax) ison
theboundaryof conv(a;, a;y1).)

It is easyto check, by inspection, that a 2-layer tower
(a1,as) is stableif andonly if it is valid. The only towers
that are non-stableand non-\alid have a; € {100,001}.
Thesetowersarenot even semi-stable(Recallthatthe even
numberedevelsarerotatedby 90°.)

It is also easyto checkthat a 3-level tower (a1, as,as)
is stableif and only if it is valid. Here the situationis
a little bit more interesting. The towers (010, 010, 100),
(010,010,001), (011,010,100) and (110,010,001) are
semi-stableandarethereforedefinednotto bevalid.

To prove the claim for highertowers,we needthefollowing
claims:

CLaim 3.1. If (ay,as,.- .,

ay) is avalid tower andk > 3,
thencent(ay, as,...,ax) € (%,

3 x (3:3)-

CLAIM 3.2, If a1,a2 ¢ {100,001}, thenconv(as,az) 2
531 %[5, 3]-

The proofs of theseclaimsare givenbelon. We shaw first
thatthey imply the validity of thelemma.

We show first, by inductionon k, thatif (a1, as,...,ax)
is valid, thenit is stable. We alreadyknow that the claim
holds for £ = 1,2,3. Supposethereforethat & > 4.
It is easyto seethat if (a1,as,...,a;) is valid, then

(az,...,ax) is alsovalid. By the induction hypothesis,
(az, - - .,ay) is stable.We only have to shaw, therefore that
cent(az,as,...,a;)® € int(conv(ai,as)). This follows

immediatelyfrom thetwo claims.

We next shav, again by induction on k, that if
(a1,as,...,ag) is not valid, then it is not stable. If
(az2,as,...,ar) is not valid, then by the induction hy-
pothesis,it is not stable,and (a1, az, .. .,ax) is not sta-
ble either Suppose,therefore, that (as,as,-..,ax) is
valid, but a; = 100. (The casea; = 001 is identi-
cal.) But thenclearly conv(a;,as) C [0, 1] x [0, 1], while

[0, 3
cent((az, as,...,ar)f € (4, 2) x (% 2) andtheclaim fol-
lows.

All thatremainsthereforejs to prove thetwo claims:

Proof: (of Claim 3.1) Theinspectiorusedto verify theclaim
of the lemmafor k¥ = 2 alsoshaws that for every valid
tower (a1, az) we have cent(ay,az) € (3,3) x [3,2]. (It
is easyto check,for example,thatthe tower that minimizes
they coordinateof cent(a;,as) is (010, 100), andthatthe
y coordinateis then%. Now, it is alsoeasyto checkthatif

a1 # 100anda; # 001, thencent(a1) € (4, 2)x(3,2). As

cent(ay,as,.-..,a) is aweightedaverageof cent(a;) and
cent(az,as ..., a), the claim follows easily by induction.
O

The proof of Claim 3.2 is immediate. This completesthe
proof of the stability lemma. O

4 Combinatorial formulation

Eachpositionin the gameis, therefore,characterizedy a
valid tower (a1, as, . .., ax), for somek > 1. In theinitial

position,a; = as = ... = a; = 111. Therulesof the
gameinstructeachplayerto “removeablock from anywhere
below the highestcompletedstory. Then stackit on top
of the tower, at right anglesto the blocks just below it.”

If follows easily by induction, thatin any tower obtained
during a valid gameof Jenga,we have a;,_; = 111 or
ar = 111. (Note,in particular thatthis meanshatno semi-
stabletowerscanbeencountereduringthegame.ls thisthe
rationalbehindthe requirementshat blocks shouldonly be
removedfrom storiesbelow the highestcompletedstory, and
not, for example,from anywherebelow the top story?)



The configurationof blocksat eachof the levels of a valid
tower, exceptpossiblythe highestlevel, is, up to symmetry
of oneof thesetypes:lll, II-, I-I, -I-, wherel denotesblock,
and- denotesan empty position. Levels of type |-l and-I-
areinactive in the sensehatary block removedfrom them
wouldtopplethetower. Thereare thereforepnly threetypes
of movesthata playercanmake withouttopplingatower:

I-l  Remaoethemiddleblock from astoryof typelil.

-  Remaoeasideblockfrom astoryof typelll.

-I-  Remorethesideblock from a storyof typell-.
Thenamegivento eachtype of moveis the configurationin
whichthecorrespondindevelis left afterthis move. In each
case,the removed block is placedat the top level, at right
anglesto the blocks belaw it. (Actually, the rules do not
specifywhele at the top level this block shouldbe placed.
But, asit is placedon top of afull story; it follows from the
stabilitylemmathatif theremoval of theblock did nottopple
thetower, placingthatblock at any positionon thetop level
would nottoppleit eithet

As a further consequencef the stability lemma, note that
if there are several levels at which a given type of move
may be applied,thenit doesnot matterwhich one of these
levelsis chosen.In otherwords, a positionin the gameis
characterized;ombinatorially by atriplet (z,y, z), where:

z — numberof lll levels,below highestfull level.
y —numberof II- levels,below highestfull level.

z —numberof blocksontop of the highestfull level

Here z,y are non-n@ative integers,while z € {0,1,2}.
Note that the numberand type of the inactive levels is
not recorded,asit hasno influenceon the continuationof
the game. The three possiblemoves, in this notation, are
therefore:

-l (z,9,2) = (x — 1,y,2+ 1) (valdif z > 0),
- (z,y,2) > (x—1,y+1,2+1) (validif z>0),
- (z,y,2) = (z,y— 1,2+ 1)  (valdif y > 0),

where position (z,y,3), when it occurs, is immediately
corvertedto (z + 1,y, 0).

A tower of n full levelscorrespondso position(n — 1,0, 0),
asonly full levelsbelow the highestfull level are counted.
Thepositions(0, 0, z), wherez{0, 1, 2}, arelosingpositions,
asthe playerwhoseturnis to move hasno legal moves.

5 Analysis

Let V(z,y, z) bethe value of position (z, y, z), wherethe
valueof apositionis 1 if thefirst playercanforceawin from
this position,and0 otherwise.Clearly, for z € {0, 1,2} we
have:

Viz,y,2) =
( V(w_]-ay:z"’_]')
1-min<V(z—-1,y+1,2+1) ifx>0,y>0,
V(w7y_laz+1)
{ . V(z—-1,0,z+1) : _
1 mm{ Vie—1.1,2+1) ifz>0,y=0,
1-V(0,y—1,z+1) if 2 =0,y >0,
L 0 ifx=y=0,

while
V(z,y,3) = V(z +1,9,0) .

This gives a simple recursve procedurefor computing
V(z,y,z) for ary (z,y,z). Would this recursve procedure
always halt? Yes, as, for example,eachrecursve call de-

creases + 1y + %z by atleast, while the‘normalization’

rule (z,y,3) — (z + 1,y,0) doesnotincreaseat. (Theex-

istenceof someweightfunctionthatcould be usedto shav

thattherecursionis well definedis not surprising.We know

thateachJengagamemustendaseachmove raisesthe cen-
ter of gravity of thetower.)

Let
1 1 1 01 1 0 0 1
v=1]1 0 1 1 1 1 1 1 0
010 01 1 1 1 1
We let v(z,y, 2), wherez,y,z € {0,1,2} bethe (z,y)-th

elementof the z-th matrix definingwv. Thus, for example
v(0,1,2) = 0 whilev(2,1,0) = 1. We alsolet

vo=1[010].
We claim:
THEOREM 5.1.

Viz,y,2) =
v(zmod3,ymod3,z) if z>00rz>0,
vo(y mod 3) if z=2=0.

Proof: By simpleinduction. O

In particulay we getthatV (z,0,0) = 1, if andonlyif z = 1,
orz = 0,1 (mod 3) andz > 3. (Consultthefirst columnof



thefirst matrix in the definition of v.) It follows, therefore,
thata gamethat startswith a tower of heightn is awin for
thefirst playerif andonlyif n = 2,0rn = 1,2 (mod 3) and
n > 4.

The optimalmovesfrom ary positionaregivenby:

and

-l o].

More specifically the optimal move(s) from position
(z,y,2), wherez > 0 or z > 0, aregivenby m(z mod 3,
ymod 3, z), while the optimal move(s) from position
(0,y,0), are given by mg(y mod 3). From some posi-
tions, thereare several optimal moves. In particular from
positionsof the form (z,y,1), wherez 1(mod3) and
y = 0(mod 3), all threemaovesarewinning moves! Entries
in m andmg containingo correspondo loosingpositions,
so all movesfrom thesepositionsare loosingmoves. The
claim thattheseareindeedthe optimal movescanagainbe
verifiedby induction.

mOZ[O

Theredoesnotseemo beamorecompactwvay of character
izing thewinning positionsin Jengaandthe optimalmoves
from eachposition. Note,however, thatthe characterization
givenis very compact.Giventheconstant-sizarraysm and
mg, we canfind anoptimal move from ary positionin con-
stanttime.

6 Generalization

We suggestthe following natural generalizationof Jenga,
calledJenkg. This gameis playedby blocksof dimension
+ x 3 x 1, andeachlayerin theinitial toweris composeaf
k suchblocks. Therulesof thegameremainunchangedAs
pointedout by oneof the reviewers,the startingposition of
Jenka, for evenk, is a win for the secondplayer, asthe
secondplayer can always play a move that is the mirror
image of the move playedby the first player Analyzing
Jenka, for £ > 3, k odd, seemdo be a more challenging
task. Our analysisof Jenkga relied heavily on the stability
lemmathat implied, amongother things, that two towers
that contain the samenumber of layers of eachtype are
equialent. Unfortunately this claim doesnot hold when
k > 4. Thus,atleastpotentially theremaybeanexponential
numberof non-equvalenttowers with a given numberof
blocks.

Open problem 1: For which valuesof n canthefirst player
forceawin in agameof Jenkg thatstartswith n-full levels,
wherek > 3 is anodd number?

Open problem 2: Whatis the compleity of determining
whethera given positionin Jenka, for £ > 3, is awin for
thefirst player?

7 Concluding remarks

We presenteda completeanalysisof Jenka. Analyzing
Jenka, for £k > 3, k odd, remainsa challengingopen
problem.
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