
Chapter 12

Combinatorial Preconditioners

Sivan Toledo and Haim Avron

Tel Aviv University

12.1 Introduction . 215
12.2 Symmetric Diagonally-Dominant Matrices and Graphs 216

12.2.1 Incidence Factorizations of Diagonally-Dominant Matrices 217
12.2.2 Graphs and Their Laplacian Matrices . 218

12.3 Support Theory . 219
12.3.1 From Generalized Eigenvalues to Singular Values 220
12.3.2 The Symmetric Support Lemma . 220
12.3.3 Norm bounds . 221
12.3.4 Support numbers . 222
12.3.5 Splitting . 223

12.4 Embeddings and Combinatorial Support Bounds . 224
12.4.1 Defining W using Path Embeddings . 225
12.4.2 Combinatorial Support Bounds . 230
12.4.3 Subset Preconditioners . 232
12.4.4 Combinatorial Trace Bounds . 232

12.5 Combinatorial Preconditioners . 234
Bibliography . 236

12.1 Introduction

The Conjugate Gradient (CG) method is an iterative algorithm for solv-
ing linear systems of equations Ax = b, where A is symmetric and posi-
tive definite. The convergence of the method depends on the spectrum of A;
when its eigenvalues are clustered, the method converges rapidly. In partic-
ular, CG converges to within a fixed tolerance in O(

√
κ) iterations, where

κ = κ(A) = λmax(A)/λmin(A) is the spectral condition number of A. This
upper bound is tight when eigenvalues are poorly distributed (i.e., they are
not clustered). For example, if there are only two distinct eigenvalues, CG
converges in two iterations.

When the spectrum of A is not clustered, a preconditioner can accelerate
convergence. The Preconditioned Conjugate Gradients (PCG) method implic-

0This research was supported in part by an IBM Faculty Partnership Award and by grant
1045/09 from the Israel Science Foundation (founded by the Israel Academy of Sciences and
Humanities).

215

stoledo
Typewritten Text
To appear in "Combinatorial Scientific Computing",
Uwe Naumann and Olaf Schenk, Editors. Page numbers
will change from this preprint.

216 Combinatorial Scientific Computing

itly applies the CG iteration to the linear system (B−1/2AB−1/2)(B1/2x) =
B−1/2b using a clever transformation that only requires applications of A and
B−1 in every iteration; B also needs to be symmetric positive definite. The
convergence of PCG is determined by the spectrum of (B−1/2AB−1/2), which
is the same as the spectrum of B−1A. If a representation of B−1 can be con-
structed quickly and applied quickly, and if B−1A has a clustered spectrum,
the method is very effective. There are also variants of PCG that require only
one of A and B to be positive definite [1], and variants that allow them to be
singular, under some technical conditions on their null spaces [2].

Combinatorial preconditioning is a technique that relies on graph algo-
rithms to construct effective preconditioners. The simplest applications of
combinatorial preconditioning targets symmetric diagonally-dominant matri-
ces with non-positive offdiagonals, a class of matrices that are isomorphic to
weighted undirected graphs. The coefficient matrix A is viewed as its isomor-
phic graph GA. A specialized graph algorithm constructs another graph GB

such that the isomorphic matrix B is a good preconditioner for A. The graph
algorithm aims to achieve the same two goals: the inverse of B should be easy
to apply, and the spectrum of B−1A should be clustered. It turns out that the
spectrum of B−1A can be bounded in terms of properties of the graphs GA

and GB; in particular, the quality of embeddings of GA in GB (and sometimes
vice versa) plays a fundamental role in these spectral bounds.

Combinatorial preconditioners can also be constructed for many other
classes of symmetric positive semidefinite matrices, including M-matrices (a
class that includes all symmetric diagonally-dominant matrices) and matrices
that arise from finite-elements discretizations of scalar elliptic partial differ-
ential equations. One important application area of combinatorial precondi-
tioners is max-flow problems; interior-point algorithms for max-flow problems
require the solution of many linear systems with coefficient matrices that are
symmetric diagonally-dominant or M matrices.

This chapter focuses on explaining the relationship between the spectrum
of B−1A and quantitative properties of embeddings of the two graphs. The
set of mathematical tools that are used in the analysis of this relationship is
called support theory [3]. The last section briefly surveys algorithms that con-
struct combinatorial preconditioners. The literature describes combinatorial
preconditioners that are practical to implement and are known to work well,
as well as algorithms that appear to be more theoretical (that is, they provide
strong theoretical performance guarantees but are complex and have not been
implemented yet).

We omit most proofs from this chapter; some are trivial, and the others
appear in the paper cited in the statement of the theorem or lemma. There
are two new results in this chapter. Lemma 12.4.10 is a variation of the Sym-
metric Support Lemma for bounding the trace. Theorem 12.4.11 is a com-
binatorial bound on the trace of the preconditioned matrix. Both generalize
results from [4].

Combinatorial Preconditioners 217

12.2 Symmetric Diagonally-Dominant Matrices and
Graphs

We begin by exploring the structure of diagonally-dominant matrices and
their relation to graphs.

12.2.1 Incidence Factorizations of Diagonally-Dominant Ma-
trices

Definition 12.2.1 A square matrix A ∈ Rn×n is called diagonally-dominant
if for every i = 1, 2, . . . n we have Aii ≥

∑
i
=j |Aij |.

Symmetric diagonally dominant matrices have symmetric factorizations A =
UUT such that each column of U has at most two nonzeros, and all nonzeros
in each column have the same absolute values [5]. We now establish a notation
for such columns.

Let 1 ≤ i, j ≤ n, i �= j. The length-n positive edge vector denoted 〈i,−j〉
and the negative edge vector 〈i, j〉 are defined by

〈i,−j〉k =

⎧⎨
⎩

+1 k = i
−1 k = j
0 otherwise,

and 〈i, j〉k =

⎧⎨
⎩

+1 k = i
+1 k = j
0 otherwise.

The reason for the assignment of signs to edge vectors will become apparent
later. A vertex vector 〈i〉 is the unit vector

〈i〉k =

{
+1 k = i
0 otherwise.

For example, for n = 4 we have

〈1,−3〉 =

⎡
⎢⎢⎣

1
0
−1
0

⎤
⎥⎥⎦ , 〈1, 4〉 =

⎡
⎢⎢⎣
1
0
0
1

⎤
⎥⎥⎦, and 〈4〉 =

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦.

A symmetric diagonally dominant matrix can always be expressed as a sum
of outer products of edge and vertex vectors, and therefore, as a symmetric
product of a matrix whose columns are edge and vertex vectors.

Lemma 12.2.2 ([5]) Let A ∈ Rn×n be a diagonally dominant symmetric

218 Combinatorial Scientific Computing

matrix. We can decompose A as follows

A =
∑
i<j

Aij>0

|Aij | 〈i, j〉 〈i, j〉T

+
∑
i<j

Aij<0

|Aij | 〈i,−j〉 〈i,−j〉T

+

n∑
i=1

⎛
⎜⎜⎝Aii −

n∑
j=1
j
=i

|Aij |

⎞
⎟⎟⎠ 〈i〉 〈i〉T

For example,⎡
⎢⎢⎣

5 0 −2 3
0 0 0 0
−2 0 2 0
3 0 0 4

⎤
⎥⎥⎦ = 2

⎡
⎢⎢⎣

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

⎤
⎥⎥⎦

+3

⎡
⎢⎢⎣
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦

= 2 〈1,−3〉 〈1,−3〉T + 2 〈1, 4〉 〈1, 4〉T + 〈4〉 〈4〉T .

Matrix decompositions of this form play a prominent role in combinatorial
preconditioners, so we give them a name:

Definition 12.2.3 A matrix whose columns are scaled edge and vertex vectors
(that is, vectors of the forms c 〈i,−j〉, c 〈i, j〉, and c 〈i〉) is called an incidence
matrix. A factorization A = UUT where U is an incidence matrix is called
an incidence factorization. An incidence factorization with no zero columns,
with at most one vertex vector for each index i, with at most one edge vector
for each index pair i, j, and whose positive edge vectors are all of the form
c 〈min(i, j),−max(i, j)〉 is called a canonical incidence factorization.

Lemma 12.2.4 Let A ∈ Rn×n be a diagonally dominant symmetric matrix.
Then A has an incidence factorization A = UUT , and a unique canonical
incidence factorization.

12.2.2 Graphs and Their Laplacian Matrices

We now define the connection between undirected graphs and diagonally-
dominant symmetric matrices.

Combinatorial Preconditioners 219

Definition 12.2.5 Let G = ({1, 2, . . . n}, E, c, d) be a weighted undirected
graph on the vertex set {1, 2, . . . , n} with no self loops and no parallel edges
(i.e., at most one edge between two vertices), and with weight functions
c : E → R\{0} and d : {1, . . . , n} → R+∪{0}. That is, the edge set consists of
unordered pairs of unequal integers (i, j) such that 1 ≤ i, j ≤ n. The Laplacian
of G is the matrix A ∈ Rn×n such that

Aij =

⎧⎨
⎩

d(i) +
∑

(i,k)∈E |c(i, k)| i = j

−c(i, j) (i, j) ∈ E
0 otherwise.

A vertex i such that d(i) > 0 is called a strictly dominant vertex. If c = 1,
the graph is not considered weighted. If c > 0 and is not always 1, the graph
is weighted. If some weights are negative, the graph is signed.

Lemma 12.2.6 The Laplacians of the graphs defined in Definition 12.2.5 are
symmetric and diagonally dominant. Furthermore, these graphs are isomor-
phic to symmetric diagonally-dominant matrices under this Laplacian map-
ping.

In algorithms, given an explicit representation of a diagonally-dominant
matrix A, we can easily compute an explicit representation of an incidence
factor U (including the canonical incidence factor if desired). Sparse matrices
are often represented by a data structure that stores a compressed array of
nonzero entries for each row or each column of the matrix. Each entry in a row
(column) array stores the column index (row index) of the nonzero, and the
value of the nonzero. From such a representation of A we can easily construct
a sparse representation of U by columns. We traverse each row of A, creating
a column of U for each nonzero in the upper (or lower) part of A. During
the traversal, we can also compute all the d(i)’s. The conversion works even
if only the upper or lower part of A is represented explicitly.

We can use the explicit representation of A as an implicit representation
of U , with each off-diagonal nonzero of A representing an edge-vector column
of U . If A has no strictly-dominant rows, that is all. If A has strictly dominant
rows, we need to compute their weights using a one-pass traversal of A.

12.3 Support Theory

Support theory is a set of tools that aim to bound the generalized eigen-
values λ that satisfy Ax = λBx from above and below. If B is nonsingular,
these eigenvalues are also the eigenvalues of B−1A, but the generalized repre-
sentation allows us to derive bounds that also apply to singular matrices.

220 Combinatorial Scientific Computing

Definition 12.3.1 Let A and B be n-by-n complex matrices. We say that a
scalar λ is a finite generalized eigenvalue of the matrix pencil (pair) (A,B) if
there is a vector v �= 0 such that Av = λBv and Bv �= 0. We say that ∞ is
an infinite generalized eigenvalue of (A,B) if there exists a vector v �= 0 such
that Bv = 0 but Av �= 0. Note that ∞ is an eigenvalue of (A,B) if and only if
0 is an eigenvalue of (B,A). The finite and infinite eigenvalues of a pencil are
determined eigenvalues (the eigenvector uniquely determines the eigenvalue).
If both Av = Bv = 0 for a vector v �= 0, we say that v is an indeterminate
eigenvector, because Av = λBv for any scalar λ.

The tools of support theory rely on symmetric factorizations A = UUT and
B = V V T ; this is why incidence factorizations are useful. In fact, the algebraic
tools of support theory are particularly easy to apply when U and V are
incidence matrices.

12.3.1 From Generalized Eigenvalues to Singular Values

If A = UUT then Λ(A) = Σ2(UT), where Λ(A) is the set of eigenvalues
of A and Σ(UT) is the set of singular values of UT , and Σ2 is the set of the
squares of the singular values. The following lemma extends this trivial result
to generalized eigenvalues.

Lemma 12.3.2 ([6])Let A = UUT and B = V V T with null(B) = null(A) =
S. We have

Λ (A,B) = Σ2
(
V +U

)
and

Λ (A,B) = Σ−2
(
U+V

)
.

In these expressions, Σ(·) is the set of nonzero singular values of the matrix
within the parentheses, Σ� denotes the same singular values to the �th power,
and V + denotes the Moore-Penrose pseudoinverse of V .

The lemma characterizes all the generalized eigenvalues of the pair (A,B),
but for large matrices, it is not particularly useful. Even if U and V are highly
structured (e.g., they are incidence matrices), U+ and V + are usually not
structured and are expensive to compute. The next section shows that if we
lower our expectations a bit and only try to bound Λ from above and below,
then we do not need the pseudo-inverses.

12.3.2 The Symmetric Support Lemma

In the previous section we have seen that the singular values of V +U
provide complete information on the generalized eigenvalues of (A,B). This
product is important, so we give it a notation: Wopt = V +U . If null(V) ⊆
null(U), we have

VWopt = V V +U

= U .

Combinatorial Preconditioners 221

It turns out that any W such that VW = U provides some information on
the generalized eigenvalues of (A,B).

Lemma 12.3.3 ([3]) (Symmetric Support Lemma) Let A = UUT and
let B = V V T , and assume that null(B) ⊆ null(A). Then

max {λ | Ax = λBx,Bx �= 0} = min
{
‖W‖22 | U = VW

}
.

This lemma is fundamental to support theory and preconditioning, because
it is often possible to prove that W such that U = VW exists and to give
a-priori bounds on its norm.

12.3.3 Norm bounds

The Symmetric Product Support Lemma bounds generalized eigenvalues
in terms of the 2-norm of some matrix W such that U = VW . Even if we
have a simple way to construct such a W , we still cannot easily derive a
corresponding bound on the spectrum from the Symmetric Support Lemma.
The difficulty is that there is no simple closed form expression for the 2-norm
of a matrix, since it is not related to the entries of W in a simple way. It is
equivalent to the largest singular value, but this must usually be computed
numerically.

Fortunately, there are simple (and also some not-so-simple) functions of the
elements of the matrix that yield useful bounds on its 2-norm. The following
bounds are standard and are well known and widely used (see [7, Fact 9.8.10.ix]
and [7, Fact 9.8.15]).

Lemma 12.3.4 The 2-norm of W ∈ Ck×m is bounded by

‖W‖22 ≤ ‖W‖2F =

k∑
i=1

m∑
i=1

W 2
ij , (12.1)

‖W‖22 ≤ ‖W‖1‖W‖∞ =

(
m

max
j=1

k∑
i=1

|Wij |
)⎛
⎝ k
max
i=1

m∑
j=1

|Wij |

⎞
⎠ . (12.2)

The next two bounds are standard and well known; they follow directly from
‖WWT ‖2 = ‖W‖22 and from the fact that ‖S‖1 = ‖S‖∞ for a symmetric S.

Lemma 12.3.5 The 2-norm of W ∈ Ck×m is bounded by

‖W‖22 ≤ ‖WWT ‖1 = ‖WWT ‖∞ , (12.3)

‖W‖22 ≤ ‖WTW‖1 = ‖WTW‖∞ . (12.4)

The following bounds are more specialized. They all exploit the sparsity of W
to obtain bounds that are usually tighter than the bounds given so far.

222 Combinatorial Scientific Computing

Lemma 12.3.6 ([8]) The 2-norm of W ∈ Ck×m is bounded by

‖W‖22 ≤ max
j

∑
i:Wi,j
=0

‖Wi, : ‖22 = max
j

∑
i:Wi,j
=0

m∑
c=1

W 2
i,c , (12.5)

‖W‖22 ≤ max
i

∑
j:Wi,j
=0

‖W : ,j‖22 = max
i

∑
j:Wi,j
=0

k∑
r=1

W 2
r,j . (12.6)

The bounds in this lemma are a refinement of the bound ‖W‖22 ≤ ‖W‖2F .
The Frobenius norm, which bounds the 2-norm, sums the squares of all the
elements of W . The bounds (12.5) and (12.6) sum only the squares in some
of the rows or some of the columns, unless the matrix has a row or a column
with no zeros.

There are similar refinements of the bound ‖W‖22 ≤ ‖W‖1‖W‖∞.

Lemma 12.3.7 ([8]) The 2-norm of W ∈ Ck×m is bounded by

‖W‖22 ≤ max
j

∑
i:Wi,j
=0

|Wi,j | ·
(

m∑
c=1

|Wi,c|
)

, (12.7)

‖W‖22 ≤ max
i

∑
j:Wi,j
=0

|Wi,j | ·
(

k∑
r=1

|Wr,j |
)

. (12.8)

12.3.4 Support numbers

Support numbers generalize the notion of the maximal eigenvalue of a
matrix pencil.

Definition 12.3.8 A matrix B dominates a matrix A if for any vector x we
have xT (B −A)x ≥ 0. We denote domination by B # A.

Definition 12.3.9 The support number for a matrix pencil (A,B) is

σ(A,B) = min {t | τB # A, for all τ ≥ t} .

If B is symmetric positive definite and A is symmetric, then the support
number is always finite, because xTBx/xTx is bounded from below by
minΛ(B) > 0 and xTAx/xTx is bounded from above by maxΛ(A), which
is finite. In other cases, there may not be any t satisfying the formula; in such
cases, we say that σ(A,B) =∞.

Example 18 Suppose that x ∈ null(B) and that A is positive definite. Then
for any τ > 0 we have xT (τB−A)x = −xTAx < 0. Therefore, σ(A,B) =∞.

Combinatorial Preconditioners 223

Example 19 If B is not positive semidefinite, then there is some x for which
xTBx < 0. This implies that for any A and for any large enough τ , xT (τB −
A)x < 0. Therefore, σ(A,B) =∞.

The next result, like the Symmetric Support Lemma, bounds generalized
eigenvalues.

Theorem 12.3.10 ([3]) Let A and B be symmetric, let B also be positive
semidefinite. If null(B) ⊆ null(A), then

σ(A,B) = max {λ|Ax = λBx,Bx �= 0} .

A primary motivation for support numbers is to bound (spectral) condi-
tion numbers. For symmetric matrices, the relation κ(A) = λmax(A)/λmin(A)
holds. Let κ(A,B) denote the condition number of the matrix pencil (A,B),
that is, κ(B−1A) when B is non-singular.

Theorem 12.3.11 ([3]) When A and B are symmetric positive definite, then
κ(A,B) = σ(A,B)σ(B,A).

A common strategy in support theory is to bound condition numbers by
bounding both σ(A,B) and σ(B,A). Typically, bounding one of them is easy
while bounding the other is hard.

Applications usually do not solve singular systems. Nonetheless, it is often
convenient to analyze preconditioners in the singular context. For example,
finite element systems are often singular until boundary conditions are im-
posed, so we can build B from the singular part of A and then impose the
same boundary constraints on both matrices.

12.3.5 Splitting

Support numbers are convenient for algebraic manipulation. One of their
most powerful properties is that they allow us to split complicated matrices
into simpler pieces (matrices) and analyze these separately. Let A = A1+A2+
· · ·Aq, and similarly, B = B1 + B2 + · · · + Bq. We can then match up pairs
(Ai, Bi) and consider the support number for each such pencil separately.

Lemma 12.3.12 ([9]) Let A = A1 + A2 + · · ·Aq,and similarly, B = B1 +
B2 + · · · + Bq, where all Ai and Bi are symmetric and positive semidefinite.
Then

σ(A,B) ≤ max
i

σ(Ai, Bi)

Proof 1 Let σ = σ(A,B), let σi = σ(Ai, Bi), and let σmax = maxi σi. Then

224 Combinatorial Scientific Computing

for any x

xT (σmaxB −A)x = xT

(
σmax

∑
i

Bi −
∑
i

Ai

)
x

=
∑
i

xT (σmaxBi −Ai)x

≥
∑
i

xT (σiBi −Ai)x

≥ 0 .

Therefore, σ ≤ σmax.

The splitting lemma is quite general, and can be used in many ways. In practice
we want to break both A and B into simpler matrices that we know how to
analyze. The term “simpler” can mean sparser, or lower rank, and so on.
Upper bound obtained from the splitting lemma might be loose. In order
to get a good upper bound on the support number, the splitting must be
chosen carefully. Poor splittings give poor bounds. In the following example,
the splitting bound is not tight, but is also not particularly loose.

Example 20 Let

A =

[
3 −2
−2 2

]
=

[
2 −2
−2 2

]
+

[
1 0
0 0

]
= A1 +A2 ,

and

B =

[
2 −1
−1 2

]
=

[
1 −1
−1 1

]
+

[
1 0
0 1

]
= B1 +B2 .

Then the Splitting Lemma says σ(A,B) ≤ max {σ(A1, B1), σ(A2, B2)}. It is
easy to verify that σ(A1, B1) = 2 and that σ(A2, B2) = 1; hence σ(A,B) ≤ 2.
Note that B1 can not support A2, so correct pairing of the terms in A and B
is essential. The exact support number is σ(A,B) = λmax(A,B) = 1.557.

12.4 Embeddings and Combinatorial Support Bounds

To bound σ(A,B) using the Symmetric Support Lemma, we need to factor
A and B into A = UUT and B = V V T , and we need to find a W such that
U = VW . We have seen that if A and B are diagonally dominant, then there
is an almost trivial way to factor A and B such that U and V are about
as sparse as A and B. But how do we find a W such that U = VW? In this
section, we show that when A and B are weighted (but not signed) Laplacians,

Combinatorial Preconditioners 225

we can construct such a W using an embedding of the edges of GA into paths
in GB . Furthermore, when W is constructed from an embedding, the bounds
on ‖W‖2 can be interpreted as combinatorial bounds on the quality of the
embedding.

12.4.1 Defining W using Path Embeddings

We start with the construction of a matrix W such that U = VW .

Lemma 12.4.1 Let (i1, i2, . . . , i�) be a sequence of integers between 1 and n,
such that ij �= ij+1 for j = 1, . . . � − 1.Then

〈i1,−i�〉 =
�−1∑
j=1

〈ij ,−ij+1〉 ,

where all the edge vectors are length n.

To see why this lemma is important, consider the role of a column of W .
Suppose that the columns of U and V are all positive edge vectors. Denote
column c of U by

U : ,c = 〈min(i1, i�),−max(i1, i�)〉 = (−1)i1>i� 〈i1,−i�〉 ,

where the (−1)i1>i� evaluates to −1 if i1 > i� and to 1 otherwise. This column
corresponds to the edge (i1, i�) in GUUT . Now let (i1, i2, . . . , i�) be a simple
path in GV V T (a simple path is a sequence of vertices (i1, i2, . . . , i�) such that
(ij , ij+1) is an edge in the graph for 1 ≤ j < � and such that any vertex
appears at most once on the path).

Let r1, r2, . . . , r�−1 be the columns of V that corresponds to the edges of
the path (i1, i2, . . . , i�), in order. That is, V : ,r1 = 〈min(i1, i2),−max(i1, i2)〉,
V : ,r2 = 〈min(i2, i3),−max(i2, i3)〉, and so on. By the lemma,

U : ,c = (−1)i1>i� 〈i1,−i�〉

= (−1)i1>i�

�−1∑
j=1

〈ij ,−ij+1〉

= (−1)i1>i�

�−1∑
j=1

(−1)ij>ij+1V : ,rj .

It follows that if we define W : ,c to be

Wr,c =

{
(−1)i1>i�(−1)ij>ij+1 r = rj for some 1 ≤ j < �

0 otherwise,

then we have

U : ,c = VW : ,c =
k∑

r=1

V : ,rWr,c .

226 Combinatorial Scientific Computing

We can construct all the columns of W in this way, so that W satisfies U =
VW .

A path of edge vectors that ends in a vertex vector supports the vertex
vector associated with the first vertex of the path.

Lemma 12.4.2 Let (i1, i2, . . . , i�) be a sequence of integers between 1 and n,
such that ij �= ij+1 for j = 1, . . . � − 1.Then

〈i1〉 = 〈i�〉+
�−1∑
j=1

〈ij ,−ij+1〉 ,

where all the edge and vertex vectors are length n.

The following theorem generalizes these ideas to scaled positive edge vectors
and to scaled vertex vectors. The theorem also states how to construct all the
columns of W . The theorem summarizes results in [3, 10].

Theorem 12.4.3 Let A and B be weighted (unsigned) Laplacians and let U
and V be their canonical incidence factors. Let π be a path embedding of the
edges and strictly-dominant vertices of GA into GB, such that for an edge
(i1, i�) in GA, i1 < i�, we have

π(i1, i�) = (i1, i2, . . . , i�)

for some simple path (i1, i2, . . . , i�) in GB , and such that for a strictly-
dominant i1 in GA,

π(i1) = (i1, i2, . . . , i�)

for some simple path (i1, i2, . . . , i�) in GB that ends in a strictly-dominant
vertex i� in GB . Denote by cV (ij , ij+1) the index of the column of V that is a
scaling of 〈ij ,−ij+1〉. That is,

V : ,cV (ij ,ij+1) =
√
−Bij ,ij+1 〈min(ij , ij+1),−max(ij , ij+1)〉 .

Similarly, denote by cV (ij) the index of the column of V that is a scaling of
〈ij〉,

V : ,cV (ij) =

√√√√√Bij ,ij −
n∑

ik=1
ik
=ij

∣∣Bik,ij

∣∣ 〈ij〉 ,

and similarly for U .
We define a matrix W as follows. For a column index cU (i1, i�) with i1 < i�

we define

Wr,cU (i1,i�) =

⎧⎨
⎩

(−1)ij>ij+1
√
Ai1,i�/Bij ,ij+1 if r = cV (ij , ij+1) for

some edge (ij , ij+1) in π(i1, i�)
0 otherwise.

Combinatorial Preconditioners 227

For a column index cU (i1), we define

Wr,cU (i1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
Ai1,i1−

∑
j �=i1
|Ai1,j|

Bi�,i�
−∑

j �=i�
|Bi�,j|

if r = cV (i�)

(−1)ij>ij+1

√
Ai1,i1−

∑
k �=i1

|Ai1,k|
|Bij ,ij+1 |

if r = cV (ij, ij+1) for

some edge (ij, ij+1) in π(i1)
0 otherwise.

Then U = VW .

Proof 2 For scaled edge-vector columns in U we have

VW : ,cU (i1,i�) =
∑
r

V : ,rWr,cU (i1,i�)

=
∑

r=cV (ij ,ij+1)
for some edge

(ij ,ij+1) in π(i1,i�)

V : ,rWr,cU (i1,i�)

=
�−1∑
j=1

√∣∣Bij ,ij+1

∣∣ 〈min(ij, ij+1),−max(ij , ij+1)〉 (−1)ij>ij+1

√
Ai1,i�

Bij ,ij+1

=
√
|Ai1,i� |

�−1∑
j=1

〈ij,−ij+1〉

= U : ,cU (i1,i�) .

228 Combinatorial Scientific Computing

For scaled vertex-vector columns in U we have

VW : ,cU (i1) =
∑
r

V : ,rWr,cU (i1)

= V : ,cV (i�)WcV (i�),cU (i1,i�) +
∑

r=cV (ij ,ij+1)
for some edge

(ij ,ij+1) in π(i1)

V : ,rWr,cU (i1)

=

√
Bi�,i� −

∑
j
=i�

|Bik,i� | 〈i�〉
√

Ai1,i1 −
∑

j
=i1
|Ai1,j |

Bi�,i� −
∑

j
=i�
|Bi�,j |

+
�−1∑
j=1

√∣∣Bij ,ij+1

∣∣ 〈min(ij , ij+1),−max(ij , ij+1)〉

·(−1)ij>ij+1

√
Ai1,i1 −

∑
j
=i1

|Ai1,j|∣∣Bij ,ij+1

∣∣
=

√
Ai1,i1 −

∑
j
=i1

|Ai1,j | 〈i�〉+
√
Ai1,i1 −

∑
j
=i1

|Ai1,j|
�−1∑
j=1

〈ij ,−ij+1〉

=

√
Ai1,i1 −

∑
j
=i1

|Ai1,j | 〈i1〉

= U : ,cU (i1) .

The generalization of this theorem to signed Laplacians is more complex,
because a path from i1 to i� supports an edge (i1, i�) only if the parity of
positive edges in the path and in the edge is the same. In addition, a cycle
with an odd number of positive edges spans all the vertex vectors of the path.
For details, see [5].

Theorem 12.4.3 plays a fundamental role in many applications of support
theory. A path embedding π that can be used to construct W exists if and
only if the graphs of A and B are related in a specific way, which the next
lemma specifies.

Lemma 12.4.4 Let A = UUT and B = V V T be weighted (but not signed)
Laplacians with arbitrary symmetric-product factorizations. The following
conditions are necessary for the equation U = VW to hold for some matrix
W (by Theorem 12.4.3, these conditions are also sufficient).

1. For each edge (i, j) in GA, either i and j are in the same connected
component in GB , or the two components of GB that contain i and j
both include a strictly-dominant vertex.

2. For each strictly-dominant vertex i in GA, the component of GB that
contains i includes a strictly-dominant vertex.

Combinatorial Preconditioners 229

Proof 3 Suppose for contradiction that one of the conditions is not satisfied,
but that there is a W that satisfies U = VW . Without loss of generality,
we assume that the vertices are ordered such that vertices that belong to a
connected component in GB are consecutive. Under that assumption,

V =

⎡
⎢⎢⎢⎣

V1

V2

. . .

Vk

⎤
⎥⎥⎥⎦ ,

and

B =

⎡
⎢⎢⎢⎣

B1

B2

. . .

Bk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

V1V
T
1

V2V
T
2

. . .

VkV
T
k

⎤
⎥⎥⎥⎦ .

The blocks of V are possibly rectangular, whereas the nonzero blocks of B are
all diagonal and square.

We now prove the necessity of the first condition. Suppose for some edge
(i, j) in GA, i and j belong to different connected components of GB (without
loss of generality, to the first two components), and that one of the compo-
nents (w.l.o.g. the first) does not have a strictly-dominant vertex. Because this
component does not have a strictly-dominant vertex, the row sums in V1V

T
1

are exactly zero. Therefore, V1V
T
1
�1 = �0, so V1 must be rank deficient.

Since (i, j) is in GA, the vector 〈i,−j〉 is in the column space of the canon-
ical incidence factor of A, and therefore in the column space of any U such
that A = UUT . If U = VW , then the vector 〈i,−j〉 must also be in the column
space of V , so for some x

〈i,−j〉 = V x =

⎡
⎢⎢⎢⎣

V1

V2

. . .

Vk

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

...
xk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

V1x1

V2x2

...
Vkxk

⎤
⎥⎥⎥⎦ .

Therefore, V1x1 is a vertex vector. By Lemma 12.4.2, if V1 spans a vertex vec-
tor, it spans all the vertex vectors associated with the vertices of the connected
component. This implies that V1 is full rank, a contradiction.

The necessity of the second condition follows from a similar argument.
Suppose that vertex i is strictly dominant in GA and that it belongs to a
connected component in GB (w.l.o.g. the first) that does not have a vertex
that is strictly dominant in GB. This implies that for some y

〈i〉 = V y =

⎡
⎢⎢⎢⎣

V1

V2

. . .

Vk

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

y1
y2
...
yk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

V1y1
V2y2
...

Vkyk

⎤
⎥⎥⎥⎦ .

230 Combinatorial Scientific Computing

Again V1y1 is a vertex vector, so V1 must be full rank, but it cannot be full
rank because V1V

T
1 has zero row sums.

Not every W such that U = VW corresponds to a path embedding, even if U
and V are the canonical incidence factors of A and B. In particular, a column
ofW can correspond to a linear combination of multiple paths. Also, even ifW
does correspond to a path embedding, the paths are not necessarily simple. A
linear combination of scaled positive edge vectors that correspond to a simple
cycle can be identically zero, so the coefficients of such linear combinations
can be added to W without affecting the product VW . However, it seems that
adding cycles to a path embedding cannot reduce the 2-norm of W , so cycles
are unlikely to improve support bounds.

12.4.2 Combinatorial Support Bounds

To bound σ(A,B) using the Symmetric Support Lemma, we factor A into
A = UUT , B into B = V V T , find a matrix W such that U = VW , and bound
the 2-norm of W from above. We have seen how to factor A and B (if they
are weighted Laplacians) and how to construct an appropriate W from an
embedding of GB in GA. We now show how to use combinatorial metrics of
the path embeddings to bound ‖W‖2.

Bounding the 2-norm directly is hard, because the 2-norm is not related
in a simple way to the entries of W . But the 2-norm can be bounded using
simpler norms, such as the Frobenius norm, the∞-norm, and the 1-norm (see
section 12.3.3). These simpler norms have natural and useful combinatorial
interpretations when W represents a path embedding.

To keep the notation and the definition simple, we now assume that A and
B are weighted Laplacians with zero row sums. We will show later how to
deal with positive row sums. We also assume that W corresponds to a path
embedding π. The following definitions provide a combinatorial interpretation
of these bounds.

Definition 12.4.5 The weighted dilation of an edge (i1, i2) of GA in an path
embedding π of GA into GB is

dilationπ(i1, i2) =
∑

(j1,,j2)

(j1,,j2)∈π(i1 ,i2)

√
Ai1,i2

Bj1,j2

.

The weighted congestion of an edge (j1, j2) of GB is

congestionπ(j1, j2) =
∑

(i1,,i2)

(j1, ,j2)∈π(i1,i2)

√
Ai1,i2

Bj1,j2

.

Combinatorial Preconditioners 231

The weighted stretch of an edge of GA is

stretchπ(i1, i2) =
∑

(j1,,j2)

(j1,,j2)∈π(i1 ,i2)

Ai1,i2

Bj1,j2

.

The weighted crowding of an edge in GB is

crowdingπ(j1, j2) =
∑

(i1,,i2)

(j1,,j2)∈π(i1 ,i2)

Ai1,i2

Bj1,j2

.

Note that stretch is a summation of the squares of the quantities that constitute
dilation, and similarly for crowding and congestion. Papers in the support-
preconditioning literature are not consistent in their definition of these terms,
so check the definitions carefully when you consult a paper that deals with
congestion, dilation, and similar terms.

Lemma 12.4.6 ([3, 11]) Let A and B be weighted Laplacians with zero row
sums, and let π be a path embedding of GA into GB . Then

σ(A,B) ≤
∑

(i1,i2)∈GA

stretchπ(i1, i2)

σ(A,B) ≤
∑

(j1,j2)∈GB

crowdingπ(j1, j2)

σ(A,B) ≤
(

max
(i1,i2)∈GA

dilationπ(i1, i2)

)

·
(

max
(j1,j2)∈GB

congestionπ(j1, j2)

)
.

We now describe one way to deal with matrices with some positive row sums.
In many applications, the preconditioner B is not given, but rather con-
structed. One simple way to deal with positive row sums in A is to define
π(i1) = (i1). That is, vertex vectors in the canonical incidence factor of A are
mapped into the same vertex vectors in the incidence factor of B. In other
words, we construct B to have exactly the same row sums as A. With such
a construction, the rows of W that correspond to vertex vectors in U are
columns of the identity. The same idea is also used in other families of precon-
ditioners, like those based on incomplete Cholesky factorizations. The next
lemma gives bounds based on this strategy (it is essentially a special case of
Lemma 2.5 in [10]).

Lemma 12.4.7 Let A and B be weighted Laplacians with the same row sums,
let π be a path embedding of GA into GB , and let � be the number of rows with

232 Combinatorial Scientific Computing

positive row sums in A and B. Then

σ(A,B) ≤ �+
∑

(i1,i2)∈GA

stretchπ(i1, i2)

σ(A,B) ≤
(
max

{
1, max

(i1,i2)∈GA

dilationπ(i1, i2)

})

·
(
max

{
1, max

(j1,j2)∈GB

congestionπ(j1, j2)

})
.

Proof 4 Under the hypothesis of the lemma, the rows and columns of W can
be permuted into a block matrix

W =

(
WZ 0
0 I�×�

)
,

where WZ represents the path embedding of the edges of GA into paths in GB.
The bounds follow from the structure of W and from the proof of the previous
lemma.

The sparse bounds on the 2-norm of a matrix lead to tighter combinatorial
bounds.

Lemma 12.4.8 Let A and B be weighted Laplacians with zero row sums, and
let π be a path embedding of GA into GB . Then

σ(A,B) ≤ max
(j1,j2)∈GB

∑
(i1,i2)∈GA

(j1,j2)∈π(i1,i2)

stretchπ(i1, i2) ,

σ(A,B) ≤ max
(i1,i2)∈GA

∑
(j1,j2)∈GA

(j1,j2)∈π(i1,i2)

crowdingπ(j1, j2) .

We can derive similar bounds for the other sparse 2-norm bounds.

12.4.3 Subset Preconditioners

To obtain a bound on κ(A,B), we need a bound on both σ(A,B) and
σ(B,A). But in one common case, bounding σ(B,A) is trivial. Many support
preconditioners construct GB to be a subgraph of GA, with the same weights.
That is, V is constructed to have a subset of the columns in U . If we denote
by V̄ the set of columns of U that are not in V , we have

B = V V T

A = UUT

= V V T + V̄ V̄ T

= B + V̄ V̄ T .

This immediately implies xTAx ≥ xTBx for any x, so λmin(A,B) ≥ 1.

Combinatorial Preconditioners 233

12.4.4 Combinatorial Trace Bounds

The Preconditioned Conjugate Gradients (PCG) algorithm requires
Θ(
√
κ(A,B)) iterations only when the generalized eigenvalues are distributed

poorly between λmin(A,B) and λmax(A,B). It turns out that a bound on
trace(A,B) =

∑
λi(A,B) also yields a bound on the number of iterations,

and in some cases this bound is sharper than the O(
√

κ(A,B)) bound.

Lemma 12.4.9 ([4]) The Preconditioned Conjugate Algorithm converges to
within a fixed tolerance in

O

(
3

√
trace(A,B)

λmin(A,B)

)

iterations.

A variation of the Symmetric Support Lemma bounds the trace, and this leads
to a combinatorial support bound.

Lemma 12.4.10 Let A = UUT ∈ Rn×n and let B = V V T ∈ Rn×n, and
assume that null(B) = null(A). Then

trace(A,B) = min
{
‖W‖2F | U = VW

}
.

Proof 5 Let W be a matrix such that U = VW . For every x /∈ null(B) we
can write

xTAx

xTBx
=

xTVWWTV Tx

xTV V Tx

=
yTWWT y

yT y
,

where y = V Tx. Let S ⊆ Rn be a subspace orthogonal to null(B) of
dimension k, and define TS =

{
V Tx | x ∈ S

}
. Because S is orthogonal

to null(B) we have dim(TS) = k. The sets
{
xTAx/xTBx | x ∈ S

}
and{

yTWWT y | y ∈ TS

}
are identical so their minima are equal as well. The

group of subspaces {TS | dim(S) = k, S ⊥ null(B)} is a subset of all subspaces
of dimension k, therefore

max
dim(S) = k
S ⊥ null(B)

min
x ∈ S
x �= 0

xTUUTx

xTV V Tx
= max

dim(S) = k
S ⊥ null(B)

min
y ∈ TS

y �= 0

yTWWT y

yT y

≤ max
dim(T)=k

min
y ∈ T
y �= 0

yTWWT y

yT y
.

234 Combinatorial Scientific Computing

According to the Courant-Fischer Minimax Theorem,

λn−k+1(WWT) = max
dim(T)=k

min
y ∈ T
y �= 0

yTWWT y

yT y

and by the generalization of Courant-Fischer in [12],

λn−k+1(UUT , V V T) = max
dim(S) = k
V ⊥ null(B)

min
x∈S

xTUUTx

xTV V Tx
.

Therefore, for k = 1, . . . , rank(B) we have λn−k+1(A,B) ≤ λn−k+1(WWT)

so trace(A,B) ≤ trace(WWT) = ‖W‖2F . This shows that trace(A,B) ≤
min

{
‖W‖2F | U = VW

}
.

According to Lemma 12.3.2 the minimum is attainable at W = V +U .

To the best of our knowledge, Lemma 12.4.10 is new. It was inspired by
a specialized bound on the trace from [4]. The next theorem generalizes the
result form [4]. The proof is trivial given Definition 12.4.5 and Lemma 12.4.10.

Theorem 12.4.11 Let A and B be weighted Laplacians with the same row
sums, let π be a path embedding of GA into GB. Then

trace(A,B) ≤
∑

(i1,i2)∈GA

stretchπ(i1, i2) ,

trace(A,B) ≤
∑

(j1,j2)∈GB

crowdingπ(j1, j2) .

12.5 Combinatorial Preconditioners

Early research on combinatorial preconditioners focused on symmetric
diagonally-dominant matrices. The earliest graph algorithm to construct a
preconditioner was proposed by Vaidya [13] (see also [10]). He proposed to
use a so-called augmented maximum spanning tree of a weighted Laplacian as
a preconditioner. This is a subset preconditioner that drops some of the edges
in GA while maintaining the weights of the remaining edges. When B−1 is ap-
plied using a sparse Cholesky factorization, this construction leads to a total
solution time of O(n7/4) for Laplacians with a bounded degree and O(n6/5)
when the graph is planar. For regular unweighted meshes in 2 and 3 dimen-
sions, special constructions are even more effective [14]. Vaidya also proposed

Combinatorial Preconditioners 235

to use recursion to apply B−1, but without a rigorous analysis; in this scheme,
sparse Gaussian elimination steps are performed on B as long as the reduced
matrix has a row with only two nonzeros. At that point, the reduced system
is solved by constructing a graph preconditioner. Vaidya’s preconditioners are
quite effective in practice [15]. A generalization to complex matrices proved
effective in handling a certain kind of ill conditioning [16].

Vaidya’s bounds used a congestion-dilation product. The research on sub-
set graph preconditioners continued with an observation that the sum of the
stretch can also yield a spectral bound, and that so-called low-stretch trees
would give better worst-case bounds than the maximum-spanning trees that
Vaidya used [17]. Constructing low-stretch trees is more complicated than
constructing maximum spanning trees. When the utility of low-stretch trees
was discovered, one algorithm for constructing them was known [18]; bet-
ter algorithms were discovered later [19]. Low-stretch trees can be used to
build preconditioners that can solve any Laplacian system with m nonzeros in
O(m4/3), up to some additional polylogarithmic factors [20, 4]. By employing
recursion, the theoretical running time can be reduced to close to linear in
m [21]. An experimental comparison of simplified versions of these sophisti-
cated algorithms to Vaidya’s algorithm did not yield a conclusive result [22].
Heuristic subset graph preconditioners have also been proposed [23].

Gremban and Miller proposed a class of combinatorial precondition-
ers called support-tree preconditioners [24, 9]. Their algorithms construct a
weighted tree whose leaves are the vertices of GA. Therefore, the graph GT

of the preconditioner T has additional vertices. They show that applying T−1

to extensions of residuals is equivalent to using a preconditioner B that is the
Schur complement of T with respect to the original vertices. Bounding the
condition number κ(A,B) is more difficult than bounding the condition num-
ber of subset preconditioners, because the Schur complement is dense. More
effective versions of this strategy have been proposed later [25, 26, 27].

Efforts to generalize these constructions to matrices that are not weighted
Laplacians followed several paths. Gremban showed how to transform a linear
system whose coefficient matrix is a signed Laplacian to a linear system of
twice the size whose matrix is a weighted Laplacian. The coefficient matrix is a
2-by-2 block matrix with diagonal blocks with the same sparsity pattern as the
original matrix A and with identity off-diagonal blocks. A different approach
is to extend Vaidya’s construction to signed graphs [5]. The class of symmetric
matrices with a symmetric factorization A = UUT where columns of U have at
most 2 nonzeros contains not only signed graphs, but also gain graphs, which
are not diagonally dominant [28]. In paricular, this class contains symmetric
positive semidefinite M matrices. It turns out that matrices in this class can
be scaled to diagonal dominance, which allows graph preconditioners to be
applied to them [29] (this reduction requires not only that a factorization
A = UUT with at most 2 nonzeros exists, but that it be known).

Linear systems of equations with symmetric positive semidefinite M matri-
ces and symmetric diagonally-dominant matrices arise in interior-point solvers

236 Combinatorial Scientific Computing

for max-flow problems. Combinatorial preconditioners are very effective in this
application, both theoretically [29] and in practice [23].

The matrices that arise in finite-element discretizations of elliptic partial
differential equations (PDEs) are positive semi-definite, but in general they
are not diagonally dominant. However, when the PDE is scalar (e.g., describes
a problem in electrostatics), the matrices can sometimes be approximated by
diagonally dominant matrices. In this scheme, the coefficient matrix A is first
approximated by a diagonally-dominantmatrixD, and thenGD is used to con-
struct the graph GB of the preconditioner B. For large matrices of this class,
the first step is expensive, but because finite-element matrices have a natu-
ral representation as a sum of very sparse matrices, the diagonally-dominant
approximation can be constructed for each term in the sum separately. There
are at least three ways to construct these approximations: during the finite-
element discretization process [30], algebraically [6], and geometrically [31]. A
slightly modified construction that can accommodate terms that do not have
a close diagonally-dominant approximation works well in practice [6].

Another approach for constructing combinatorial preconditioners to finite
element problems is to rely on a graph that describes the relations between
neighboring elements. This graph is the dual of the finite-element mesh; ele-
ments in the mesh are the vertices of the graph. Once the graph is constructed,
it can be sparsified much like subset preconditioners. This approach, which is
applicable to vector problems like linear elasticity, was proposed in [32]; this
paper also showed how to construct the dual graph algebraically and how to
construct the finite-element problem that corresponds to the sparsified dual
graph. The first effective preconditioner of this class was proposed in [33]. It
is not yet known how to weigh the edges of the dual graph effectively, which
limits the applicability of this method. However, in applications where there
is no need to weigh the edges, the method is effective [34].

Bibliography

[1] Ashby, S. F., Manteuffel, T. A., and Saylor, P. E., “A taxonomy for
conjugate gradient methods,” SIAM J. Numer. Anal., Vol. 27, No. 6,
1990, pp. 1542–1568.

[2] Chen, D. and Toledo, S., “Combinatorial characterization of the null
spaces of symmetric H-matrices,” Linear Algebra and its Applications ,
Vol. 392, 2004, pp. 71–90.

[3] Boman, E. G. and Hendrickson, B., “Support Theory for Precondition-
ing,” SIAM J. Matrix Anal. Appl., Vol. 25, No. 3, 2003, pp. 694–717.

Combinatorial Preconditioners 237

[4] Spielman, D. A. and Woo, J., “A Note on Preconditioning by Low-Stretch
Spanning Trees,” .

[5] Boman, E. G., Chen, D., Hendrickson, B., and Toledo, S., “Maximum-
weight-basis Preconditioners,” Numerical Linear Algebra with Applica-
tions , Vol. 11, 2004, pp. 695–721.

[6] Avron, H., Chen, D., Shklarski, G., and Toledo, S., “Combinatorial Pre-
conditioners for Scalar Elliptic Finite-Element Problems,” SIAM Journal
on Matrix Analysis and Applications , Vol. 31, No. 2, 2009, pp. 694–720.

[7] Bernstein, D. S., Matrix Mathematics: Theory, Facts, and Formulas with
Applications to Linear Systems Theory, Princeton University Press, 2005.

[8] Chen, D., Gilbert, J. R., and Toledo, S., “Obtaining bounds on the two
norm of a matrix from the splitting lemma,” Electronic Transactions on
Numerical Analysis , Vol. 21, 2005, pp. 28–46.

[9] Gremban, K. D., Combinatorial Preconditioners for Sparse, Symmetric,
Diagonally Dominant Linear Systems , Ph.D. thesis, School of Computer
Science, Carnegie Mellon University, Oct. 1996, Available as Technical
Report CMU-CS-96-123.

[10] Bern, M., Gilbert, J. R., Hendrickson, B., Nguyen, N., and Toledo, S.,
“Support-Graph Preconditioners,” SIAM Journal on Matrix Analysis
and Applications , Vol. 27, 2006, pp. 930–951.

[11] Spielman, D. A. and Teng, S.-H., “Nearly-Linear Time Algo-
rithms for Preconditioning and Solving Symmetric, Diagonally Dom-
inant Linear Systems,” Unpublished manuscript available online at
http://arxiv.org/abs/cs/0607105.

[12] Avron, H., Ng, E., and Toledo, S., “Using Perturbed QR Factorizations to
Solve Linear Least-Squares Problems,” SIAM Journal on Matrix Analysis
and Applications , Vol. 31, No. 2, 2009, pp. 674–693.

[13] Vaidya, P. M., “Solving linear equations with symmetric diagonally
dominant matrices by constructing good preconditioners,” Unpublished
manuscript. A talk based on this manuscript was presented at the IMA
Workshop on Graph Theory and Sparse Matrix Computations, Min-
neapolis, October 1991.

[14] Joshi, A., Topics in Optimization and Sparse Linear Systems , Ph.D. the-
sis, Department of Computer Science, University of Illinois at Urbana-
Champaign, 1997.

[15] Chen, D. and Toledo, S., “Vaidya’s preconditioners: Implementation and
Experimental Study,” Electronic Transactions on Numerical Analysis ,
Vol. 16, 2003, pp. 30–49.

238 Combinatorial Scientific Computing

[16] Howle, V. E. and Vavasis, S. A., “An Iterative Method for Solving
Complex-Symmetric Systems Arising in Electrical Power Modeling,”
SIAM Journal on Matrix Analysis and Applications , Vol. 26, No. 4, 2005,
pp. 1150–1178.

[17] Boman, E. G. and Hendrickson, B., “On spanning Tree Preconditioners,”
Unpublished manuscript, Sandia National Laboratories.

[18] Alon, N., Karp, R. M., Peleg, D., and West, D., “A Graph-Theoretic
Game and its Application to the k-Server Problem,” SIAM Journal on
Computing, Vol. 24, 1995, pp. 78–100.

[19] Elkin, M., Emek, Y., Spielman, D. A., and Teng, S.-H., “Lower-stretch
spanning trees,” Proceedings of the 37th annual ACM symposium on The-
ory of computing (STOC), ACM Press, Baltimore, MD, 2005, pp. 494–
503.

[20] Spielman, D. A. and Teng, S.-H., “Solving Sparse, Symmetric,
Diagonally-Dominant Linear Systems in Time 0(m1.31),” Proceedings of
the 44th Annual IEEE Symposium on Foundations of Computer Science,
Oct. 2003, pp. 416–427.

[21] Spielman, D. A. and Teng, S.-H., “Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems,” STOC ’04:
Proceedings of the thirty-sixth annual ACM symposium on Theory of com-
puting, ACM Press, New York, NY, USA, 2004, pp. 81–90.

[22] Unger, U., An Experimental Evaluation of Combinatorial Precondition-
ers , Master’s thesis, Tel-Aviv University, July 2007.

[23] Frangioni, A. and Gentile, C., “New Preconditioners for KKT systems of
network flow problems,” SIAM Journal on Optimization, Vol. 14, 2004,
pp. 894–913.

[24] Gremban, K. D., Miller, G. L., and Zagha, M., “Performance evaluation
of a new parallel preconditioner,” Proceedings of the 9th International
Parallel Processing Symposium, IEEE Computer Society, 1995, pp. 65–
69, A longer version is available as Technical Report CMU-CS-94-205,
Carnegie-Mellon University.

[25] Maggs, B. M., Miller, G. L., Parekh, O., Ravi, R., and Woo, S. L. M.,
“Finding effective support-tree preconditioners,” SPAA ’05: Proceedings
of the seventeenth annual ACM symposium on Parallelism in algorithms
and architectures , ACM Pres, 2005, pp. 176–185.

[26] Koutis, I. and Miller, G. L., “A linear work, O(n1/6) time, parallel al-
gorithm for solving planar Laplacians,” Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007,
New Orleans, Louisiana, USA, January 7-9, 2007 , edited by N. Bansal,
K. Pruhs, and C. Stein, SIAM, 2007, pp. 1002–1011.

Combinatorial Preconditioners 239

[27] Koutis, I. and Miller, G. L., “Graph partitioning into isolated, high con-
ductance clusters: theory, computation and applications to precondition-
ing,” SPAA ’08: Proceedings of the twentieth annual Symposium on Par-
allelism in Algorithms and Architectures , ACM, New York, NY, USA,
2008, pp. 137–145.

[28] Boman, E. G., Chen, D., Parekh, O., and Toledo, S., “On the factor-width
and symmetric H-matrices,” Numerical Linear Algebra with Applications ,
Vol. 405, 2005, pp. 239–248.

[29] Daitch, S. I. and Spielman, D. A., “Faster approximate lossy generalized
flow via interior point algorithms,” STOC ’08: Proceedings of the 40th
annual ACM Symposium on Theory of Computing, ACM, New York,
NY, USA, 2008, pp. 451–460.

[30] Boman, E. G., Hendrickson, B., and Vavasis, S., “Solving Elliptic Finite
Element Systems in Near-Linear Time with Support Preconditioners,”
SIAM Journal on Numerical Analysis , Vol. 46, No. 6, 2008, pp. 3264–
3284.

[31] Wang, M. and Sarin, V., “Parallel Support Graph Preconditioners,” High
Performance Computing - HiPC 2006 , edited by Y. Robert, M. Parashar,
R. Badrinath, and V. K. Prasanna, Vol. 4297, chap. 39, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006, pp. 387–398.

[32] Shklarski, G. and Toledo, S., “Rigidity in Finite-Element Matrices: Suffi-
cient Conditions for the Rigidity of Structures and Substructures,” SIAM
Journal on Matrix Analysis and Applications , Vol. 30, No. 1, 2008, pp. 7–
40.

[33] Daitch, S. I. and Spielman, D. A., “Support-Graph Preconditioners for
2-Dimensional Trusses,” .

[34] Shklarski, G. and Toledo, S., “Computing the null space of finite element
problems,” Computer Methods in Applied Mechanics and Engineering,
Vol. 198, No. 37-40, August 2009, pp. 3084–3095.

