ON THE COMPUTATION OF NULL SPACES OF SPARSE
RECTANGULAR MATRICES

CRAIG GOTSMAN AND SIVAN TOLEDO

ABSTRACT. Computing the null space of a sparse matrix, sometimes a rectan-
gular sparse matrix, is an important part of some computations, such as em-
beddings and parametrization of meshes. We propose an efficient and reliable
method to compute an orthonormal basis of the null space of a sparse square
or rectangular matrix (usually with more rows than columns). The main com-
putational component in our method is a sparse LU factorization with partial
pivoting of the input matrix; this factorization is significantly cheaper than
the QR factorization used in previous methods. The paper analyzes impor-
tant theoretical aspects of the new method and demonstrates experimentally
that it is efficient and reliable.

1. INTRODUCTION

We propose a new method for computing an orthonormal basis for the null space
of a rectangular m-by-n matrix A with m > n. The main computational component
of the new method is a conventional LU factorization with partial pivoting of A. For
many classes of sparse matrices, an appropriate preordering of the columns leads to
sparse factors, usually significantly sparser than the Q) R factors and than the factors
of any rank-revealing factorization [21, 23]. There are several recent high-quality
sparse LU codes that can perform partial pivoting [2, 17, 18, 19, 27, 28]. Experts on
sparse-matrix factorizations, including experts on sparse QR, believe that sparse
LU factorizations with partial pivoting is intrinsically cheaper than sparse QR'.
Therefore, the new method is particularly suitable for large sparse matrices with a
small-dimensional null space. (Because we compute an orthonormal basis, in the
computation of a high-dimensional null space, the cost of orthogonalizing the null
vectors dominates.)

We also revisit a somewhat more expensive method, which is based on a QR
factorization. This method is not new, but is not widely known either. Because
of this, and because it can be used to compute not only the null space, but also
additional singular triplets corresponding to small singular values, we mention it
here briefly too.

There are several applications to the computation of the null space, and more
generally, to the computation of singular vectors or singular subspaces associated
with small singular values. The first application that we describe involves compu-
tation with matrices derived from graphs. We start with a discussion of the square
and normal case, and then describe extensions of these applications to rectangular
matrices.

Iprivate discussions with John Gilbert, Pontus Matstoms, and Esmond Ng in April and June
2005.

ON THE COMPUTATION OF NULL SPACES OF SPARSE RECTANGULAR MATRICES 2

The spectrum of matrices related to the adjacency matrix of a graph is extremely
interesting. Typically the lowest eigenvalues and eigenvectors are the most useful,
as they characterize various properties of the graph. The most famous example
is the second smallest eigenvalue of the graph Laplacian, which characterizes how
strongly it is connected, hence its mixing rate [11]. The smallest eigenvalue is
zero, corresponding to a fixed-valued eigenvector. The eigenvector corresponding
to the second eigenvector (the so-called “Fiedler vector”) is also useful for ordering
the vertices of the graph (using the components of this vector) for embedding [29]
and partitioning [1] purposes. In general, the d eigenvectors corresponding to the
d smallest nonzero eigenvalues may be used to form partitions and embed in R?.
Singular vectors associated with the smallest singular values also play an important
role in techniques for embedding graphs in R?. For example, the null space of the
so-called Colin de Verdiere matrices [14, 25, 33] are used in convex embeddings of
closed manifold genus-0 graphs in R?, and the null space of stress matrices [16] is
used in unique (up to rigid transformations) embeddings of a graph with given edge
lengths. When the graphs arise from a 3D mesh structure, as frequently happens in
computer graphics applications, or from a k-nearest-neighbor graph, as in feature-
learning applications, the graphs tend to be very sparse, and the sparsity should
be exploited in the computation of the small singular subspace.

Another area where the null space of rectangular matrices arises is the parame-
terization of manifold 3D meshes of genus g > 0 [24, 26, 39]. In this application, a
graph is considered a discrete version of a vector field on a surface, and a discrete
version of the one-form is defined for it. Of particular interest are the so-called
harmonic one-forms, which satisfy certain balance conditions. The search for har-
monic one-forms on a given mesh graph results in the formulation of a set of linear
equations for unknowns corresponding to the edges of a graph. Some of the equa-
tions are derived for the edges incident on vertices, and some are derived from the
edges bounding faces. The size of the matrix is N by E, where E is the number
of edges in the graph, and N is typically close to F, but is also influenced by the
genus. These matrices are sparse, rectangular, and the nullity (the dimension of
the nullspace) is typically 2g.

Approximate null vectors are also used in at least two areas of numerical linear
algebra. One area is condition-number estimation. The spectral condition number
of a matrix A is the ratio of its extreme singular values omax/0min. Estimating
the largest singular value is relatively easy; the hard part is estimating oi,. This
is done almost invariably by trying to find a vector v with a unit norm such that
|[Av|| is small. When A is nearly singular, this problem is roughly equivalent to
finding an approximate null vector. Note that in condition-number estimation, the
estimate can be accurate enough even when v is not a good approximation of the
singular vector associated with the smallest singular value. Therefore, the methods
for finding such a v are not very similar to the methods that we describe here;
condition-number estimators usually favor speed over accuracy; many of them are
reliable in practice but may fail on some matrices. For further details, see [30,
Chapter 15] and the references therein.

Approximate null vectors are also used in algorithms that compute rank-revealing
factorizations and algorithms that solve rank-deficient least-squares problems with-
out a rank-revealing factorization [9, 10, 20, 35]. Here too, a relatively inaccurate

ON THE COMPUTATION OF NULL SPACES OF SPARSE RECTANGULAR MATRICES 3

approximate null vector is good enough. On the other hand, some of the rank-
revealing factorizations require approximate null vector of a sequence of nested
upper-triangular matrices (the incrementally-constructed factor of A); There are
specialized incremental condition-number estimators for these applications [6, 7];
our approach is not efficient enough for such applications.

We focus on the m > n matrices because the problems of computing a basis for
the null space when m > n and when m < n are fundamentally different. When
m < n the nullity is at least n—m. When n is much larger than m, the nullity is high,
and the space and time costs of computing an orthogonal basis for the null space
are dominated by the usually-dense basis vectors and by the cost of orthogonalizing
them. Thus, when m < n the standard approach is to compute a sparse but not
necessarily orthogonal basis. This topic has been researched extensively and is
outside the scope of this paper [5, 12, 13, 22]. When m > n or when m is only
slightly larger than n the nullity can be small and the orthogonal-basis algorithms
that we discuss are appropriate.

The rest of the paper is organized as follows. The next section introduces in-
verse iteration. Section 3 introduces normalized inverse iterations for non-normal
and for rectangular matrices, and in particular, normalized R iteration. Section 4
presents our main contribution, an LU-based normalized inverse iteration. Sec-
tion 5 describes the results of numerical experiments, and Section 6 compares our
work to previously-published work. Section 7 presents some conclusions and open
questions.

2. INVERSE ITERATION

Given a square matrix A, inverse iteration repeatedly solves the equation Az® =
2D /|2 | for). The starting vector (%) can be random, although there
are alternatives that often work a little better. When A is normal, the iteration
converges to an eigenvector associated with the smallest eigenvalue of A (in absolute
value). If the equation is solved using a backward stable factorization, such as QR
or LU with partial pivoting, the iteration converges even if A is singular. In fact, if
A is singular then the iteration converges very quickly, in most cases in one or two
iterations.

It is easy to see why the iteration converges even when A is singular. When
we compute an LU factorization with partial pivoting, say, of A, what we actu-
ally obtain is an exact factorization of a nearby matrix, A + E = PTLU, with
IE]/I|All = O(€émachine)- When we iterate, we converge to an approximation of
the smallest eigenvector of A + E. But since the eigenvalues and eigenvectors of
a normal matrix are relatively insensitive to perturbations, the resulting vector is
also an approximation to a null vector of A.

If the nullity of A is larger than one, we can start with an n-by-k matrix Y (©),
and in each iteration we solve AY®) = X (=1 for V() and then orthonormalize
the columns of Y® to produce X®). If k is at least as large as the dimension of
null(A), then the first n — rank(A) columns of X() converge to an orthonormal
basis of null(A4). This technique is essentially the inverse version of simultaneous
iteration or subspace iteration. The same idea applies to all the inverse iterations
that we describe in the rest of the paper.

When A is square but not normal, the method often works, but it may also
fail [31]. Fundamentally, the reason for the failure is that the eigenvectors and

ON THE COMPUTATION OF NULL SPACES OF SPARSE RECTANGULAR MATRICES 4

eigenvalues of a general matrix may be sensitive to small perturbation, so even
if the iterations converge to a small eigenvector of A 4+ F, it may be far from a
null vector of A. Although some techniques for utilizing inverse iteration in the
non-normal case do exist [31], the method is inherently unreliable.

When A is not even square, standard inverse iteration does not apply at all.

One issue that is outside the scope of this paper, but should be mentioned, is
overflows in inverse iteration. Suppose that we apply inverse iteration using a QR
factorization, such that the exact R factor of A is

0 1
0
1
0 1
0

=

and that due to rounding errors, the computed fact

or is

Consider solving Rz = T (the right hand-side is the vector of all ones). As e shrinks,
the solution converges to [e ™™ e~ ("~ ... ¢1]T_ If there are no overflows, this is
a good approximation of the exact null vector [1 0 --- 0]7, as expected. But
obviously, e~™ is extremely likely to overflow. There are techniques to mitigate this
danger [31], but they are difficult to apply in the case of subspace iteration. We
shall see examples of this behavior in the numerical results below.

3. NORMALIZED ITERATIONS AND NORMALIZED INVERSE R ITERATION

When A is not normal or not even square, a variant of inverse iteration can still
be applied reliably. This variant is not new, but not widely appreciated either. We
call this variant normalized inverse iteration.

Normalized power iteration repeatedly applies A*A to a starting vector, and
normalized inverse iteration repeatedly solves equations of the form A*Az®) =
2D /(|2 for . The Gram matrix A*A is normal, so inverse iteration
works on it reliably. Normalized iterations, both power and inverse, work without
ever computing A* A. The eigenvalues of A* A are the squares of the singular values
of A, so small singular values become a lot smaller: singular values near or below
| Al|\/€machine become eigenvalues near or below || All€machine. If we compute A*A
explicitly, rounding errors usually make these small but nonzero singular values
indistinguishable from the zero singular values of A, and inverse iteration will always
produce linear combinations of the corresponding singular vectors. In other words,
inverse iteration on an explicit A* A may be unstable and may produce vectors that
are far from null vectors of A.

ON THE COMPUTATION OF NULL SPACES OF SPARSE RECTANGULAR MATRICES 5

But iterating on A*A implicitly does not suffer from this instability. If A is
square, we solve A*Az(®) = z(t=1) /||z(t=D|| by factoring A using any backward-
stable factorization, say LU with partial pivoting, and solving

At = g e
Az = .

As far as we can tell, this idea is due to Stewart [38].

When A is not even square, we can still solve A*Az(") = (=1 /||z=D | if we
compute the reduced QR factorization of A. In this factorization, @ is m-by-n
(like A) with orthonormal columns, and R is n-by-n and upper triangular. Here
too, we need a backward-stable, but not rank-revealing, factorization. (So when
A is sparse, we can use an arbitrary row and column preorderings to minimize
fill and work.) Since A = QR, we have A*A = R*Q*QR = R*R. To solve
A*Az® = R*Ra® = (=1 /||z¢=D|| | we perform two triangular solves,

Rw = 2t
Rz® = w.

Bjorck [8, Page 109] credits Chan [10] with this technique, although Chan’s pa-
per is not explicit about how to carry out the inverse iteration. We refer to this
technique as normalized inverse R iteration. The simultaneous/subspace version
of this technique can be used to compute multiple singular vectors associated with
the smallest singular values of A.

Both the implicit normalization idea and the use of the R factor are not new,
but is also not widely appreciated. Virtually all the research on inverse iteration,
surveyed by Ipsen [31], ignores normalization and focuses instead on less reliable
and more complex methods to enhance inverse iteration for the non-normal case.
In that literature, there is essentially no discussion of rectangular matrices. So
although normalization and the use of the R factor are mentioned in the literature,
they are not widely known. For example, LAPACK [3] uses unnormalized inverse
iteration to compute eigenvalues of tridiagonal matrices [31].

4. LU-BASED NORMALIZED INVERSE ITERATIONS

This section presents the main contribution of the paper, normalized inverse
iterations with the triangular factors computed by LU with partial pivoting. The
algorithms start with a factorization

/
where P is an m-by-m permutation matrix, L is an m-by-n upper trapezoidal
matrix, and U is an n-by-n upper triangular matrix. Thanks to partial pivoting, L
has ones on the diagonal and the magnitude of all of its elements is bounded by 1.
We partition L into pivot and non-pivot rows: L’ is the square n-by-n triangular
part of L, containing the pivot rows, and L” is the subdiagonal block containing
the remaining m — n rows.

In exact arithmetic, A, U, and L'U all have exactly the same null space. There-
fore, we can try to compute the null space of A by performing normalized inverse
iteration on U or on L'U, both of which are square. The matrix U is upper triangu-
lar, and once we compute the factorization (4.1), we have a triangular factorization

ON THE COMPUTATION OF NULL SPACES OF SPARSE RECTANGULAR MATRICES 6

of L'U. This allows us to perform normalized inverse iteration with either L'U or
with U without any additional pre-processing. The following trivial lemma proves
that A, U, and L'U all have the same null space. Once we prove it, we analyze the
effect of rounding errors on this process.

Lemma 4.1. Let
L/I

be an exact LU factorization of A such that L' has a nonzero diagonal (this covers
the case of partial pivoting). Then null(A) = null(L'U) = null(U).

/!
PA=LU = [L}U

Proof. The row permutation P is irrelevant for null vectors, so without loss of
generality we assume that P = I. Because L’ is nonsingular, null(Z'U) = null(U).
Therefore, all we need to show is that null(A) = null(L'U). If Uz = 0, then we also
have L"Ux = 0,80 Az = LUx = 0. This shows that null(4) C null(U) = null(L'U).
On the other hand, if Ax = LUz = 0 then in particular L'Uxz = 0. This shows that
null(A) D null(L'U) = null(U), which concludes the proof. O

Next, we analyze the effects of rounding errors on approximate null vectors of
L'U.
Lemma 4.2. Let

/
A—i—E:PLU:PHJ,,]U

be an LU factorization with partial pivoting of A such that
[Ell2 <€
for some small €. Let x be an approzimate null vector of L'U, such that
lz|]l2 =1 and |L'Uz||e0 < &
for some small §. Then x is also an approximate null vector of A,
|AZ]|co < €+2"0 .
(The choice of norms is fairly arbitrary up to multiplicative factors of order \/m in
the bounds.)
Proof. We again assume without loss of generality that P = I.
We begin by bounding the size of elements of y = Uz. We have
Ly =[1-p] <46
Next we have
|Loyy1 + Logya| < 6.
Because the magnitude of elements of L is bounded by 1, we have |L5;y1| < |y1] < 4.
Therefore,
y2| = [Logya| < 0+ [Loyyi| <6+ =20.
Similarly, we have
| Li3ys|
0+ |Lgyy1| + | Laoye|
S+ [y1] + [y2]
0+d+26
44 .

|y3|

IA A CIA

ON THE COMPUTATION OF NULL SPACES OF SPARSE RECTANGULAR MATRICES 7

In general, for k < n we have |y;| < 2+~14.

From
min(k,n)
(LUx), = (Ly), Z Ly,
and the triangle inequality we obtain
min(k,n) min(k,n)
(LU2) | < Y0 |Lgysl < Yyl <2mnmg
Jj=1 Jj=1

Therefore,
(Az),| = [(LUz), + (Ex),| < [(LUx),| + |(Bx),| < 2m"*M5 4 ¢ .
U

The exponential factor in the bound is, of course, bad. It means that the lemma
does not really guarantee that an approximate null vector of L'U is also an ap-
proximate null vector of A. However, achieving the bound depends on a precise
alignment of signs, which is unlikely to occur in practice. (Similarly, the element
growth in Gaussian elimination with partial pivoting may be exponential, but it
rarely high in practice.)

On the positive side, a null vector of A is always an approximate null vector of
L'U. Suppose that Az = 0. Since Ex = (A + E)xz = PTLUx, all the elements
of LUz must be small, and in particular, the elements of L'Uz. But this is not
enough. Suppose that A has rank n — 1 but the numerical rank of L'U is n — 2.
When we apply subspace normalized inverse iteration to L'U, we will get a basis
of the two-dimensional numerical null space of L'U. In general, neither of these
vectors is an approximate null vector of A. Therefore, this output does not allow
us to determine the numerical rank of A at all.

We summarize this discussion. Suppose that we compute approximate null vec-
tors of L'U using an iteration of the form

Uy = /)00
w o=y

Liz = w

vz = 2.

(Or a subspace version of it, to compute multiple independent null vectors.) Then
the vectors that are computed are not necessarily null vectors of A, but they span
a subspace that approximately contains the null space of A.

Normalized inverse iteration with U has slightly different behavior. It always
produces good approximations to null vectors of A, but it may fail to detect some
of the null vectors of A (that is, it may return a basis for a proper subspace of the
null space, a subspace with a dimension strictly smaller than the nullity of A).

Lemma 4.3. Let
A+FE=PLU

be an LU factorization with partial pivoting of A such that
[Ellz < e

ON THE COMPUTATION OF NULL SPACES OF SPARSE RECTANGULAR MATRICES 8

for some small €. Let x be an approxzimate null vector of U, such that
lell2 = 1 and |Uslloo < 6
for some small §. Then x is also an approximate null vector of A,
[|Az]|oo < €4 nd .

Proof. We again assume without loss of generality that P = I. Denoting again
y = Uz, we have |yi| < § for all k. Because the magnitude of elements of L is at
most 1,

min(k,n) min(k,n)
(LUz) | < > Lyl < lysl < min(k,n)d
j=1 j=1

Therefore,
(A2}, | = [(LU), + (Ew),| < [(LUD)| + [(Ee),| < nd +e.
O

The nd + € bound is acceptable and much better than the exponential bound we
obtained for L'U. Here too, achieving the worst-case bound depends on a precise
alignment of signs, and we can expect a much smaller residual in many cases.

Can inverse iteration on U fail to find a null vector of a singular A? This may
happen, but it is extremely unlikely. Suppose that for some unit vector z, the
product Az has a tiny norm, so the product P(A + E)x = LU is also small, but
the norm of y = Uz is large. That means that L is ill conditioned, because Ly is
small for some not-so-small y, and the norm of L is at least 1. Experience with LU
with partial pivoting has shown that L is usually well conditioned, and that any
ill-conditioning in A tends to be reflected in U, not in L. There are pathological
cases where L is ill conditioned, but they are rare in practice (we show one such
case later in the paper).

Better yet, we can easily check whether L is ill conditioned. First, note that if
L is ill conditioned, then L’ must be ill conditioned. Now apply normalized inverse
iteration to L’. If the iteration finds an approximate null vector of L, then L’ is ill
conditioned. Otherwise, it almost certainly is not.

We now summarize the entire algorithm.

(1) Compute an LU factorization with partial pivoting PA = LU = [LL,,,} U.

(2) Perform normalized inverse iteration with U. The resulting vectors are
approximate null vectors of A, but there may be more.

(3) Perform normalized inverse iteration with L’ to determine whether it is ill
conditioned. If it is, go to Step 5, otherwise, continue.

(4) L’ is not ill conditioned: the vectors that we computed in Step 2 should be
a basis for the null space of A. Report the numerical rank of A and the
basis for the null space, and return.

(5) L' is ill conditioned, so inverse iteration with U may have failed to find
some null vectors of A. Run normalized inverse iteration on L'U.

(6) If the iteration in Step 5 produced approximate null vectors of L'U, their
number is an upper bound on the numerical rank deficiency of A (this
number is possibly larger than the number of vectors found in Step 2).

ON THE COMPUTATION OF NULL SPACES OF SPARSE RECTANGULAR MATRICES 9

(7) Determine which of the vectors produced in Step 5 is also an approximate
null vector of A and linearly independent of the vectors produced in Step 2.
Return these vectors, along with the vectors produced in Step 2. Also
report the upper bound computed in Step 6.

As pointed out above, because L is usually well conditioned, we expect that the
algorithm will usually perform steps 1-4 and stop there. If the algorithm does
continue to steps 5-7, then the approximate null vectors that it returns may or
may not constitute a basis for the null space of A. More specifically, if their number
is smaller than the upper bound on the nullity, the vectors may span only a proper
subspace of null(A), or they constitute a basis but the upper bound is loose.

5. NUMERICAL EXPERIMENTS

In this section we provide a few illustrative examples to demonstrate the behavior
of the LU and @ R-based algorithms, including pathological behaviors.

We carried out the experiments using MATLAB version 7.0 on a 3 GHz Pentium 4
computer with 1 GB of main memory running Linux. The LU factorization was
performed using the function call [L,U,P,Q]=1u(A,1.0), which calls UMFPACK ver-
sion 4.3 (P and Q are row and column permutations). This syntax enforces partial
pivoting and allows the sparse factorization code to reorder rows and columns for
sparsity (under the partial pivoting constraint). We also ran a normalized inverse
R iteration, to compare the runtimes. We computed the R factor using the func-
tion call R=qr (A(:,colamd(A)),0), which avoids the expensive computation of an
explicit @. The reordering of the columns tends to reduce fill and work, and is
generally similar to the column ordering that UMFPACK uses.

The codes implement the algorithms from Sections 3 and 4. They apply the
iterations first to 1 vector, then 2, then 4, and so on, until the dimension of the
computed null space stops growing. The codes always run 3 iterations of the appro-
priate strategy, starting from a matrix consisting of uniformly-distributed random
numbers between 0 and 1.2

5.1. Accuracy. We created random matrices with singular values 1,...,1,02,0
for oo = 107%6,10715,...,10°. The matrices are all 200-by-100, and they were
computed by generating random orthonormal singular vectors and multiplying the
singular vectors and singular values appropriately. We generated 100 random ma-
trices for each o5. For each matrix, we used our algorithm to compute its null
vector. We also used MATLAB’s singular value decomposition (svd) on both A and
AT A. On all of these matrices, our algorithm computed the null space of A by
iterating on U; L was never ill conditioned. The results of the experiment, shown
in Figure 5.1, show that our algorithm is less accurate than a full SVD computa-
tion, but not significantly so. In particular, the results show that the qualitative
behavior of our algorithm is similar to that of a full SVvD: the accuracy degrades
smoothly as o approaches €machine||4]-

We also ran experiments on matrices whose U factors have tiny diagonal values
near the upper left corner. We did this by generating two independent columns,
then a column that depends on the first two, and then another column that almost
depends on the first two, but not exactly. We then completed the matrices with 96
additional linearly independent columns. This yielded matrices with norm around

2The main code, nulls.m, is publicly availalble at http://www.tau.ac.il/ stoledo/research.html.

ON THE COMPUTATION OF NULL SPACES OF SPARSE RECTANGULAR MATRICES 10

Accuracy of the Computed Null Vector
T T T T T

Thp 1)1

o
T

_;: L
S

™ { oo |

Iogm of Norm of Forward Error

+ nulls(A)
+ svd(A)
S161 1 svd(a™A) T
| | | | | | | | |
-16 -14 -12 -10 -8 -6 -4 -2 0

log, 4(0,)

FiGURE 5.1. The results of the accuracy experiments. The bars
show the range of accuracies for each o5 in 100 experiments; the
mark along each range is the mean log accuracy. For each value
of o9, the graph shows the accuracy of our algorithm (denoted
nulls), of MATLAB’s SVD implementation, and of the svD applied
to AT A. The three bars for each oy are slightly offset so that they
don’t overlap, but they all represent experiments with exactly the
same oa.

1, one zero singular value, and one singular value near 10~%. On the diagonal
of U we have Usz close t0 €machine and Uyy is small. We have also conducted
experiments in which the dependent and almost-dependent columns, to swap the
small and numerically-zero elements on the diagonal of U. The accuracy in these
experiments was similar to the accuracy achieved in the previous experiments. From
this experiment it appears that the position of small elements on the diagonal of U
does not have a significant influence on the accuracy of the algorithm.

5.2. Large Matrices. We conduced experiments on a few of large sparse matrices
from Davis’s sparse matrix collection®. More precisely, we took matrices from
this collection and modified them slightly to make them rectangular and singular.
This experiment serves three purposes. First, it shows that the algorithm runs

reasonably quickly even on large matrices. Second, it shows that our LU-based

3http ://wuw.cise.ufl.edu/research/sparse/matrices/

ON THE COMPUTATION OF NULL SPACES OF SPARSE RECTANGULAR MATRICES 11

TABLE 1. Our test matrices and the sizes of the computed null
spaces. The columns denoted d displays the dimensions of the
computed null spaces, and the NN columns shows whether any
overflows or NaN’s were detected during the iterations. The QR
factorization ran out of memory on three matrices.

LU QR
Base Matrix n ‘ d N;N d N;N
FPGA_TRANS_02 1220 2 2
SHYY41 4720 4 0 Y
UTM5940 5940 2 2
POISSON3DA 13514 2 2
MULT_DCOP_01 25187 1 —
MULT_DCOP_02 25187 2 —
MULT_DCOP_03 25187 0 Y —
WANG4 26068 2 2
ONETONE]1 36057 2 2
TWOTONE 120758 2 2

algorithm is much faster than normalized inverse R iteration. Third, it shows that
the algorithm can fail; the failures are not specific to the LU-based algorithm but
to inverse iteration in general. We believe that the failures are mostly due to scaling
and overflow problems, similar to the ones discussed in Section 2. In principle, these
problems can be addressed by exploiting the capabilities of floating-point hardware
better, but we have not implemented such measures.

We constructed the matrices as follows. All the matrices were initially square.
From each matrix we dropped the first and last row, and then duplicated rows 11
to 20 at the bottom of the matrix. This created (n 4 8)-by-n rectangular matrices
with rank at most n — 2.

The results of the experiments are summarized in Tables 1 and 2. Table 1 lists
the matrices and the dimensions of the computed null spaces. Since the matrices
were constructed to have null spaces of dimension at least 2, any dimension less than
2 indicates failure. Dimensions larger than 2 reflect matrices that were originally
singular. One group of matrices, MULT_DCOP, caused difficulties to the LU-based
algorithm, resulting in two failures. One of the failures led to overflows, but the
other was silent. (The QR factorization of these matrices ran out of memory).
Two of these matrices, MULT_DCOP_02 and 03, have highly skewed row scaling,
which may contribute to the difficulty: the ratio between the extreme oo-norms of
rows is 10'? for MULT_DCOP_03, and even large for 02. Another matrix, SHYY41,
which was originally singular, caused similar difficulties to the @ R-based algorithm.
This shows that this class of numerical difficulties is not associated with our new
LU-based algorithm, but with inverse iteration in general.

Table 2 shows the performance of the two algorithms. On all the matrices, the
LU-based algorithms ran in less than 30 seconds. On several large matrices it ran in
less than 10 seconds. We argue that these are acceptable running times. The table
also shows that in all the experiments the @ R-based algorithm was slower, in most
cases substantially slower. This is probably due both to the fact that MATLAB 7
uses a state-of-the-art sparse LU factorization but a much older sparse QR, and

ON THE COMPUTATION OF NULL SPACES OF SPARSE RECTANGULAR MATRICES 12

TABLE 2. Runtimes and the size of the factors. The columns de-
noted T displays the total running times, and the columns denoted
Ty show the running time of the factorization alone. The columns
nL, Mu, and nr show the number of nonzeros in the computed
factors. The QR factorization ran out of memory on three matri-

ces.
LU QR
Base Matrix n T Ty NL nu T Ty MR
FPGA_TRANS_02 1220 0.09 0.03 5.7e3 6.1e3 0.14 0.05 2.8¢4
SHYY41 4720 0.76 0.13 5.9e4 T7.1led 5.24 0.34 1.8ed
UTM5940 5940 1.87 0.50 3.8¢5 4.9e5 5.04 3.27 8.8eH
POISSON3DA 13514 23.84 7.27 5.9e6 6.0e6 290.67 255.85 1.7e7

MULT_DCOP_01 25187 2.18 1.06 1.4eb5 3.5ed — — —
MULT_DCOP_02 25187 2.82 0.96 1.0e5 3.2ed5 — — —
MULT_DCOP_03 25187 3.56 1.26 1.2e5 3.4ebd — — —

WANG4 26068 47.94 1548 1.1e7 1.le7 478.16 431.35 2.3e7
ONETONEL 36057 14.94 5.03 1.8e6 2.5e6 45.62 36.42 4.3e6
TWOTONE 120758 29.77 12.75 3.2¢6 4.8e6 132.66 98.60 1.6e7

to the intrinsic differences in the costs of sparse LU and QR factorizations. A
comparison of the fill in the LU factors and the fill in the QR factor shows that
the R factor is denser, but not significantly more than L and U combined.

5.3. Extreme Examples. We now describe matrices that cause extreme behav-
iors in inverse-iteration algorithms. Experiments with these matrices constitute a
partial coverage test of our implementation, because they exercise parts of the code
that are rarely reached on real-world matrices.

We start with a particularly pathological matrix, suggested to us as an example
by G. W. Stewart. This matrix has the form

1
-1 1
AS: : E
-1 1
-1 -1 - =1 1
1 0.5 0.5 05 0.5 0.5 |

The matrix A is (n + 1)-by-n, has 1’s on the diagonal, —1 below the diagonal in
rows 1 through n, and all the entries in row n + 1 are 0.5. The LU factorization
with partial pivoting of Ag is Ag = Agl, because Ag is already lower trapezoidal
and its subdiagonal entries are bounded by 1 in absolute value. This matrix is well
conditioned, so normalized inverse iterations should not find any approximate null
vectors. Indeed, if we perform normalized inverse iteration with the upper triangu-
lar factor, we find no approximate null vectors. However, L’, consisting of the first
n rows of Ag, is very ill conditioned, since L'(124 ... 2")T = (111 ... 1)T. This
implies that the condition number of L’ is exponential in n. When we run normal-
ized inverse iteration on either L’ or L'U, we find an approximation of the small
singular vector of L’. In this particular case, the large condition number of L’ will
cause our algorithm to iterate on L’I. This will return a single candidate vector,

ON THE COMPUTATION OF NULL SPACES OF SPARSE RECTANGULAR MATRICES 13

and an upper bound of 1 on the rank deficiency. In this particular case, since the
upper bound is 1, there is only one candidate vector = that is easy to rule out by
observing that || Agz|| is large. But this example shows that the exponential bound
shown in Lemma 4.2 can be attained, and it shows that L’ can be ill conditioned.
The exponential bound implies that the dimension of the null space computed by
iterating on L'U is only an upper bound, and the ill conditioning of L’ shows that
the dimension of the null space computed by iterating on U is only a lower bound.
Put together, this means that the method may fail to reliably estimate the rank
deficiency (but it will report this failure explicitly, because it will detect the ill
conditioning of L’).
We also ran the algorithms on a block matrix of the form

As 0

a
Where Ag is the matrix describe above, and Ag is a random matrix with given
singular values: all 1 except for four, which are three 0’s and one 1078, On this
matrix the @ R-based algorithm correctly computes the rank deficiency, 3, and null
space correctly, which is essentially the null space of Ag. The LU-based algorithm
performs all the steps in the algorithm (that is, it does not stop in step 4 because it
correctly detects that L’ is ill conditioned). It finds three null vectors using inverse
iteration on U, but since L'U has four approximate null vectors, the algorithm
returns the three null vectors but reports that the rank deficiency might be 4. In
this particular case it is possible to determine the null space correctly, of course,
but the example shows that the algorithm may need to resort to reporting a too-lax
upper bound on the deficiency.

The next example shows that normalization may be necessary. The following

class of square matrices,

AI: L B ’
on
1

where 7 > 1 is a parameter, were used by Ipsen [31] to show that without normal-
ization, inverse iteration may fail. Their inverses are

B 1 'r] 7’]2 7’]”_1 7]

-1 _))
A7 = S 2

n
1

The norm of the matrices is O(1 + 1) but the norm of the inverses is O(1 + 7"~ 1).

Therefore, the matrices are highly ill conditioned, so inverse iteration methods
should find a vector x such that A;z has a small norm. However, without normal-
ization, inverse iteration fails. With normalization, inverse iteration works. (Since
Ay is upper triangular, iterating with A; or with its R factor or with its U factor
are exactly equivalent methods.)

ON THE COMPUTATION OF NULL SPACES OF SPARSE RECTANGULAR MATRICES 14

5.4. Embeddings Graphs on Surfaces. We have also performed experiments
on the following class of matrices. We describe the application where they arise,
but we do not provide detailed results, since we detected surprising or interesting
behaviors on these matrices.

An instance of a non-normal matrix whose null space is of interest is derived
from a graph G = (V, E, F') which has been embedded on a closed manifold surface
of genus g > 0 in R3 (e.g., a torus). The graph G has |V| vertices, |E| edges and |F|
faces. A value xj, may be attached to each half-edge h of G, such that x, = —z,(),
where ¢(h) is the (opposite) twin half-edge of h. Given an orientation for each
edge, the vector z of the values corresponding to the half-edges in this orientation
is known as a discrete one-form, or just one-form for short, of G [26]. A harmonic
one-form is one which satisfies some balance conditions, derived from each vertex
and face of G. For a set of symmetric weights wy, = wy), each vertex v induces
the following co-closedness linear equation on x,

thxhzo,

hedv

where dv is the set of half-edges emanating from v. Each face f induces the following
closedness linear equation,
S o

ecdf
where Of is the set of half-edges bounding f.

In total, there are |V| + |F| equations in |E| unknowns, whose rank turns out
to be |V|+ |F| — 2. The Euler-Poincare formula for manifold graphs asserts that
V| + |F| — |E| = 2 — 2g, so this rank is |E| — 2¢. Thus, solving for a basis for
the subspace of harmonic one-forms involves computation of the 2g-dimensional
nullspace of a non-normal matrix of size |E| + 2 — 2¢g by |E|.

By integrating harmonic one-forms, it is possible to parameterize manifold mesh
data very efficiently. This has many applications in computer graphics and geom-
etry processing [24, 26, 39].

6. RELATED WORK

Unnormalized inverse iteration for square matrices is a well researched area.
The method was invented by Wielandt in 1944 and was studied by Wilkinson, who
published his findings in several papers and books over a period of almost 30 years.
For a comprehensive survey of these results, along with many newer results, see
Ipsen’s survey [31].

Normalized inverse iteration for square matrices seems to have been first pro-
posed by Stewart [38]. Normalized inverse R iteration is due to Chan [10] (see
also [8, Page 109]).

Normalized inverse iteration with U or with L'U is, to the best of our knowledge,
new. It is remotely related to an idea by Saunders [36] to use U to precondition
an iterative least-squares solver. There are additional least-squares preconditioners
that are based on an LU factorization, but they all use the L” block as well, so
they are not really related to our proposed method (see [8, Section 7.5.3] and the
references cited there). Our algorithm is also related to the Peters-Wilkinson family
of methods for solving least squares problems using an LU factorization [34], in that
both rely on the fact that L is usually well conditioned.

ON THE COMPUTATION OF NULL SPACES OF SPARSE RECTANGULAR MATRICES 15

For square matrices, Schwetlick and Schnabel [37] proposed a bordering iteration
as an alternative to inverse iteration. The advantage of their method is that the
linear systems that their method solves in each iteration is nonsingular, so they can
potentially be solved by an iterative linear solver, such as GMRES. However, the
method is limited to square matrices that are numerically rank deficient by only
one.

The standard way to compute a basis for the null space of a rectangular matrix
is using a rank-revealing factorization, such as a rank-revealing LU or QR factor-
izations. For dense matrices, sophisticated rank-revealing factorizations are only
slightly more expensive than backward-stable but non-rank-revealing ones. How-
ever, for sparse matrices, such factorizations can be significantly more expensive
to compute than LU with partial pivoting or QR, because rank-revealing factor-
izations require column pivoting. In sparse QR and LU with partial pivoting,
the column ordering is chosen so as to minimize fill and computation, so pivot-
ing to reveal the rank typically leads to more fill and more work. Furthermore,
sparse rank-revealing factorizations have not been implemented much, and those
that have are not widely available. (The state-of-the-art in this area is an algorithm
by Lewis and Pierce [35], but the code is not publicly available; an earlier method
proposed by Foster [20] uses similar techniques to detect dependent columns and to
re-triangularize R; see also [4].) In contrast, several recent and high-quality sparse
LU with partial pivoting codes, which lie at the heart of our method, are publicly
available [2, 17, 18, 19, 27, 28]. Some of these can exploit parallel computers and/or
clusters. Even general-purpose interactive numerical engines, such as MATLAB, now
contain excellent sparse LU codes (MATLAB 7 uses UMFPACK 4.3 [17]).

One method that might seem relevant but is not is inverse iteration on an aug-

mented matrix
0 A*
= [0 0].

The augmented matrix is normal, its eigenvalues are the singular values of A with
both signs and additional m — n zero eigenvalues. The eigenvectors of H associated
with nonzero eigenvalues are concatenations of left and right singular vectors of A.
The difficulty is that the dimension of null(H) is larger by m —n than the dimension
of null(A4). There is no straightforward way to compute a basis from null(A4) from
a basis for null(H). Also, if m is significantly larger than n, then H has a high-
dimensional null space that is expensive to compute. This method is appropriate
for computing bases for singular subspaces of A associated with a singular value
o > 0, by inverse iteration on H — oI (for o close to zero, the null space of H
causes inaccuracies in the computed singular vectors). MATLAB, for example, uses
the augmentation idea in its sparse SVD routine svds (which fails when applied to
the computation of the null space).

Finally, we mention that our ideas also apply to iterative Arnoldi/Lanczos-type
algorithms. When these algorithms are used to find the smallest eigenpairs, they
usually iterate on a representation of the inverse. This is the case, for example, in
ARPACK [32], an Arnoldi-based package (ARPACK is the code that MATLAB’s eigs
calls). Therefore, as in other forms of inverse iteration, the cost of these algorithms
is likely to be dominated by the cost of factoring A. MATLAB’s eigs, for example,
calls exactly the same sparse LU factorization routine that our code calls. Also,
if the inversion scheme is unnormalized, these methods can suffer from the same

ON THE COMPUTATION OF NULL SPACES OF SPARSE RECTANGULAR MATRICES 16

problems that simple inverse iteration suffers from. This implies that applying
Lanczos to the implicitly normalized inverse is likely to be more reliable than ap-
plying Arnoldi to an unnormalized inverse (this is possible when the application
can use singular triplets rather than eigenpairs, which is the case when computing
the null space).

We summarize the discussion of Arnoldi/Lanczos algorithms as follows. First,
when applied to an unnormalized inverse, they can be unreliable. We recommend
that a normalized inverse be used when using these algorithms to compute the null
space. Second, our analysis in Section 4 is also applicable when the null spaces of
U, L', and possibly L'U are computed using a normalized Lanczos procedure rather
than simultaneous inverse iteration.

7. CONCLUSIONS

We have shown how to utilize an LU factorization with partial pivoting of a non-
normal and possibly rectangular matrix to compute its null space. The algorithm is
usually reliable and accurate. Furthermore, if the case of failure is ill conditioning in
L', then it reports that it failed (rather than fail silently) and it provides a reliable
upper bound on the nullity, possibly along with a basis for a subspace of the null
space.

Our new algorithm can also fail due to overflows or scaling problems, but this is a
property of inverse iterations in general, not of this particular variant. These prob-
lems can be addressed by exploiting the capabilities of floating-point hardware, but
our implementation does not take these measures. This makes the algorithm some-
what less reliable than rank-revealing factorizations, but it is also much cheaper.

Because our algorithm uses an LU factorization, it can be easily applied to large
sparse matrices, using one of several available factorization codes. Relying on an
LU rather than a QR factorization reduces the total cost, especially in the sparse
case, where a QR factorization can be substantially more expensive to compute.

Our method can use a Lanzcos iteration, rather than simple inverse iteration (to
compute the null spaces of U, L', and possibly L'U). The issue that our algorithm
addresses is not the iteration itself, but the representation of the inverse, and the
representations that we proposed are also applicable to Lanczos iterations.

Acknowledgements. Thanks to Pete Stewart and to Chen Greif for extensive
comments on early drafts of this paper.

Sivan Toledo was partially supported by an IBM Faculty Partnership Award, by
grant 848/04 from the Israel Science Foundation (founded by the Israel Academy
of Sciences and Humanities), and by grant 2002261 from the United-States-Israel
Binational Science Foundation.

REFERENCES

[1] C. J. ALPERT AND S.-Z. YAO, Spectral partitioning: the more eigenvectors, the better, in
DAC ’95: Proceedings of the 32nd ACM/IEEE conference on Design automation, ACM
Press, 1995, pp. 195-200.

[2] P. R. AMEsTOY AND C. PucLisi, An unsymmetrized multifrontal LU factorization, STAM
Journal on Matrix Analysis and Applications, 24 (2002), pp. 553-569.

[3] E. ANDERSON, Z. Bal, C. BiscHor, J. DEMMEL, J. DONGARRA, J. D. CrROz, A. GREEN-
BAUM, S. HAMMARLING, A. MCKENNEY, S. OSTROUCHOV, AND D. SORENSEN, LAPACK
User’s Guide, SIAM, 2nd ed., 1994. Also available online from http://www.netlib.org.

[4]
[5]

(10]
(11]
(12]
13]

(14]

[15]

[16]
(17)

(18]

(19]

20]

(21]

(22]

23]

(24]

[25]
[26]
27]
(28]

[29]

ON THE COMPUTATION OF NULL SPACES OF SPARSE RECTANGULAR MATRICES 17

J. BARLOW AND U. VEMULAPATI, Rank detection methods for sparse matrices, SIAM Journal
on Matrix Analysis and Applications, 13 (1992), pp. 1279-1297.

M. W. BERRY, M. T. HEATH, I. KANEKO, M. LAwo, R. J. PLEMMONS, AND R. C. WARD, An
algorithm to compute a sparse basis of the null space, Numerische Mathematik, 47 (1985),
pp. 483-504.

C. H. BiscHOF, Incremental condition estimation, STAM Journal on Matrix Analysis and
Applications, 11 (1990), pp. 312-322.

C. H. BiscHor, J. G. LEwis, AND D. J. PIERCE, Incremental condition estimation for sparse
matrices, SIAM Journal on Matrix Analysis and Applications, 11 (1990), pp. 644-659.

A. BJORCK, Numerical Methods for Least Squares Problems, SIAM, 1996.

T. F. CHAN, Deflated decomposition of solutions of nearly singular systems, SIAM Journal
on Numerical Analysis, 21 (1984), pp. 738-754.

, Rank revealing QR factorizations, Linear Algebra and its Applications, 88/89 (1987),
pp. 67-82.

F. R. K. CHUNG, Spectral Graph Theory, CBMS Regional Conference Series on Mathematics,
AMS, 1997.

T. F. COLEMAN AND A. POTHEN, The null space problem i. complexity, SIAM Journal Alge-
braic Discrete Methods, 7 (1986), pp. 527-537.

, The null space problem ii. algorithms, SIAM Journal Algebraic Discrete Methods, 8
(1987), pp. 544-563.

Y. COLIN DE VERDIERE, Sur un nouvel invariant des graphes et un critére de planarité,
Journal of Combinatorial Theory Series B, 50 (1990), pp. 11-21. An English translation is
available as [15].

Y. COLIN DE VERDIERE, On a new graph invariant and a criterion for planarity, in Graph
Structure Theory, N. Robertson and P. D. Seymour, eds., vol. 147 of Contemporary Mathe-
matics, AMS, 1993, pp. 137-148. English translation of [14].

R. CONNELLY, Ridigity and energy, Inventiones Mathematicae, 66 (1982), pp. 11-33.

T. A. Davis, A column pre-ordering strategy for the unsymmetric-pattern multifrontal
method, ACM Transactions on Mathematical Software, 30 (2004), pp. 165-195.

J. W. DEMMEL, S. C. EISENSTAT, J. R. GILBERT, X. S. L1, AND J. W. H. Liu, A supernodal
approach to sparse partial pivoting, STAM Journal on Matrix Analysis and Applications, 20
(1999), pp. 720-755.

J. W. DEMMEL, J. R. GILBERT, AND X. S. L1, An asynchronous parallel supernodal algorithm
for sparse Gaussian elimination, SIAM Journal on Matrix Analysis and Applications, 20
(1999), pp. 915-952.

L. V. FOSTER, Rank and null space calculations using matrixz decompositions without column
interchanges, Linear Algebra and its Applications, 74 (1986), pp. 47-71.

A. GEORGE AND E. NG, On the complexity of sparse QR and LU factorization on finite-
element matrices, SIAM Journal on Scientific and Statistical Computation, 9 (1988), pp. 849—
861.

J. GILBERT AND M. HEATH, Computing a sparse basis for the null space, STAM Journal
Algebraic Discrete Methods, 8 (1987), pp. 446-459.

J. R. GILBERT AND E. NG, Predicting structure in nonsymmetric sparse matriz factorizations,
in Graph Theory and Sparse Matrix Computation, A. George, J. R. Gilbert, and J. W. H.
Liu, eds., Springer-Verlag, 1993.

S. J. GORTLER, C. GOTSMAN, AND D. THURSTON, One-forms on meshes and applications to
3D mesh parameterization, Tech. Report CS TR-12-04, Harvard University, June 2004. To
appear in Computer Aided Geometric Design, 2005.

C. GorsMAN, X. Gu, AND A. SHEFFER, Fundamentals of spherical parameterization for 3d
meshes, ACM Transactions on Graphphics, 22 (2003), pp. 358-363.

X. Gu AND S.-T. YAu, Computing conformal structures of surfaces, Communications in
Information and Systems, 2 (2002), pp. 121-146.

A. GupTA, Improved symbolic and numerical factorization algorithms for unsymmetric sparse
matrices, SIAM Journal on Matrix Analysis and Applications, 24 (2002), pp. 529-552.

, Recent advances in direct methods for solving unsymmetric sparse systems of linear
equations, ACM Transactions on Mathematical Software, 28 (2002), pp. 301-324.

K. M. HALL, An r-dimensional quadratic placement algorithm, Management Science, 17
(1970), pp. 219-229.

ON THE COMPUTATION OF NULL SPACES OF SPARSE RECTANGULAR MATRICES 18

[30] N. J. HiGHAM, Accuracy and Stability of Numerical Algorithms, SIAM, 2nd ed., 2002.

[31] I. C. F. IPsEN, Computing an eigenvector with inverse iteration, SIAM Review, 39 (1997),
pp. 254-291.

[32] R. B. LEHOUCQ, D. C. SORENSEN, AND C. YANG, ARPACK User’s Guide: Solution of Large-
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, STAM, 1998.

[33] L. LovAsz AND A. SCHRIJVER, On the null space of a Colin de Verdiére matriz, Annales de
linstitut Fourier, 49 (1999), pp. 1017-1026.

[34] G. PETERS AND J. H. WILKINSON, The least-squares problem and pseudo-inverses, Computer
Journal, 13 (1970), pp. 309-316.

[35] D. J. PIERCE AND J. G. LEWIS, Sparse multifrontal rank revealing QR factorization, SIAM
Journal on Matrix Analysis and Applications, 18 (1997), pp. 159-180.

[36] M. A. SAUNDERS, Sparse least squares by conjugate gradients: A comparison of precondition-
ing methods, in Proceedings of Computer Science and Statistics: 12th Annual Symposium
on the Interface, J. F. Gentleman, ed., University of Waterloo, Waterloo, Ontario, Canada,
May 1979, pp. 15-20. Cited by [8].

[37] H. SCHWETLICK AND U. SCHNABEL, [terative computation of the smallest singular value and
the corresponding singular vectors of a matriz, Linear Algebra and its Applications, 371
(2003), pp. 1-30.

[38] G. STEWART, Rank degeneracy, SIAM Journal on Scientific and Statistical Computing, 5
(1981).

[39] G. TEWARI, C. GOTSMAN, AND S. GORTLER, Meshing point clouds with genus I using discrete
one-forms. Preprint, 2005.

