Efficient Evaluation of Matrix Polynomials*

Niv Hoffman®, Oded Schwartz?, and Sivan Toledo!

! Tel-Aviv University
2 The Hebrew University of Jerusalem

Abstract. We revisit the problem of evaluating matrix polynomials
and introduce memory and communication efficient algorithms. Our al-
gorithms, based on that of Patterson and Stockmeyer, are more effi-
cient than previous ones, while being as memory-efficient as Van Loan’s
variant. We supplement our theoretical analysis of the algorithms, with
matching lower bounds and with experimental results showing that our
algorithms outperform existing ones.

Keywords: Polynomial evaluation, Matrix polynomials, Cache efficiency

1 Introduction

In the early 1970s, Patterson and Stockmeyer discovered a surprising, elegant,
and very efficient algorithm to evaluate a matrix polynomial [?]. Later in the
1970s, Van Loan showed how to reduce the memory consumption of their algo-
rithm [?]. There has not been any significant progress in this area since, in spite
of dramatic changes in computer architecture and in closely-related algorithmic
problems, and in spite of continued interest and applicability [?, Section 4.2].

This paper revisits the problem and applies to it both cache-miss reduction
methods and new algorithmic tools. Our main contributions are:

— We develop a new block variant of Van-Loan’s algorithm, which is usually
almost as memory-efficient as Van-Loan’s original variant, but much faster.

— We develop two algorithms that reduce the matrix to its Schur form, to speed
up the computation relative to both Patterson and Stockmeyer’s original
algorithm and Van Loan’s variants, including the new block variant. One
algorithm exploits the fact that multiplying triangular matrices is faster
(by up to a factor of 6) than multiplying dense square matrices. The other
algorithm partitions the problem into a collection of smaller ones using a
relatively recent algorithm due to Davies and Higham.

* This research is supported by grants 1878/14, 1901/14, 965/15 and 863/15 from the
Israel Science Foundation, grant 3-10891 from the Israeli Ministry of Science and
Technology, by the Einstein and Minerva Foundations, by the PetaCloud consortium,
by the Intel Collaborative Research Institute for Computational Intelligence, by a
grant from the US-Israel Bi-national Science Foundation, and by the HUJI Cyber
Security Research Center.

— We analyze the number of cache misses that the main variants generate,
thereby addressing a major cost on modern architecture. The analysis is
theoretical and it explains our experimental results, discussed below.

— We evaluate the performance of the direct algorithms (the ones that do
not reduce the matrix to Schur form), both existing and new, pinpointing
algorithms that are particularly effective.

— We predict the performance of algorithms that reduce the matrix to Schur
form using an empirically-based performance model of the performance of
their building blocks.

2 Building Blocks

This section presents existing algorithmic building blocks for evaluating polyno-
mials of a matrix. We denote the n-by-n real or complex input matrix by A, the
polynomial by ¢, and we assume that it is given by its coefficient cg, cq,...,cq.
That is, we wish to compute the matrix

q(A) = col + 1A+ A% + - 4 cqAL .

We assume that the polynomial is dense, in the sense that either no ¢;s are zero
or too few to be worth exploiting.

Matriz Multiplication. Many of the algorithms that we discuss in this paper call
matrix multiplication routines. Classical matrix multiplication performs about
2n3 arithmetic operations and highly optimized routines are available in Level 3
BLAS libraries [?] (DGEMM for double precision numbers).

If the matrix is triangular, classical matrix multiplication performs only
about n3/3 operations. We are not interested in polynomials of matrices with
special structures, but as we will see below, evaluation of a polynomial of a
general matrix can be reduced to evaluation of the same polynomial but of a
triangular matrix. Unfortunately, the Level 3 BLAS does not include a routine
for multiplying two triangular matrices.

So-called fast matrix multiplication algorithms reduce the asymptotic cost of
matrix multiplication to O(n'°827). We denote the exponent in fast methods by
wo; For the Strassen [?] and Strassen-Wingograd [?] methods wy = log, 7 ~ 2.81.
The constants of the leading coefficient of these algorithms are larger than those
of classical matrix multiplications, but some variants are faster than classical ma-
trix multiplication on matrices of moderate dimensions [?,?]. Fast algorithms are
not as stable as classical ones, and in particular cannot attain elementwise back-
ward stability, but they can attain normwise backward stability [?,7,?]. BLAS
libraries do not contain fast matrix multiplication routines, but such routines
have been implemented in a number of libraries |?,7].

One of the algorithms that we discuss multiplies square matrices by vec-
tors or by blocks of vectors. Multiplying a matrix by a vector requires about
2n? arithmetic operations and cannot benefit from Strassen-like fast algorithms.

Multiplying an n-by-n matrix by an n-by-k matrix requires about 2n2k oper-
ations classically, or O(n?k“°~2) if a fast method is used to multiply blocks of
dimension k.

Naive Polynomial Fvaluation. There are two naive ways to evaluate a polynomial
given its coefficients. One is to construct the explicit powers of A from A? up
to A? by repeatedly multiplying A*~! by A, and to accumulate the polynomial
along the way, starting from Q = ¢ol and adding Q = Q + ¢, A* for k =1 to d.
The other is Horner’s rule, which starts with Q = c4A + cq—11 and repeatedly
multiplies @) by A and adds a scaled identity Q <+ QA + ¢ I for k = d — 2 down
to 0.

Both methods perform d — 1 matrix multiplications. The explicit-powers
methods also needs to perform matrix scale-and-add operations, whereas Horner
only adds a constant to the diagonal of the current (). The explicit-powers
method stores two matrices in memory, in addition to A, whereas Horner only
needs to store one. Clearly, both of these methods can exploit any specialized
matrix-matrix multiplication routine, including fast methods.

Patterson-Stockmeyer Polynomial Evaluation. Patterson and Stockmeyer dis-
covered a method, which we denote by PS, for evaluating ¢(A) using only about
2v/d matrix-matrix multiplications, as opposed to d — 1 in naive methods [?].
The method splits the monomials in ¢ into s consecutive subsets of p monomials
each, and represents each subset as a polynomial of degree p — 1 (or less) in A
times a power of AP. Assuming that d + 1 = ps, we have

q(A):COI+01A+~~~+CP,1AP*1 0
+ AP (Cpl + Cp+1A 4+ 4 02p_1Ap_1) Tt
+ (4P)*! (c(s—1)pl + Cls—1ypr1 A+ + Cls—1yprp—1 AP 7T) .

In the general case in which p does not divide d + 1 the last subset has fewer
than p terms; if ¢ is sparse, other subsets might have fewer than p terms. In
other words, the method represents ¢ as a degree-(s — 1) polynomial in AP, in
which the coefficients are polynomials of degree p — 1.

The method computes and stores A2, ..., AP, and it also stores A. It then ap-
plies the explicit-powers method to compute each degree-(p — 1) coefficient poly-
nomial (without computing the powers of A again, of course) and uses Horner’s
rule to evaluate the polynomial in AP.

Assuming that p divides d + 1, the total number of matrix multiplications
that the method performs is (p — 1) 4+ (s — 1) = p + s — 2, the number of matrix
scale-and-add operations is (p — 1)s, and the number of matrices that are stored
is(p—1)4+14+141=p+2. Arithmetic is minimizes by minimizing p + s; this
happens near p ~ s ~ Vd.

Note that any matrix multiplication algorithm can be used here, and that if
A is triangular, so are all the intermediate matrices that the algorithm computes.

Van Loan proposed a variant of the PS method that requires less memory [?].
The algorithm, denoted PS-MV, exploits the fact that polynomials in A and pow-
ers of A commute to construct one column of g(A) at a time by applying (?7?) to

Algorithm 1 Van Loan’s memory-efficient version (PS-MV) of the Patterson-
Stockmeyer (PS) method.

Compute A” (log, p matrix-multiplications)
Forj«1,...,n
Compute Ae;, ..., AP7 e, (p — 2 matrix-vector multiplications)
Set Q; + Zf;g ca—pr11eA%e;j (vector operations)
For k < s—1,...,1,0 multiply and add Q; «+ APQ; + Zs;; Cdikp+£+1AZe]'
(s matrix-vector multiplications, ps vector operations)

one unit vector at a time. The algorithm first computes AP by repeated squaring.
Then for every j, it computes and stores Ae;, ... AP~te; and accumulates g(A). ;
using Horner’s rule. The algorithm is presented more formally in Algorithm ?7.
The number of artithmetic operations is a little higher than in PS, because of
the computation of AP by repeated squaring. The method stores three matrices,
A, AP and the accumulated polynomial, as well as p — 1 vectors.

Reduction to Triangular Matrices. Any square matrix A can be reduced to a
Schur form A = QTQ* where @ is unitary and T is upper triangular [?]. When
A is real, T may be complex, then one can use the so-called real Schur form
in which T is real block upper triangular with 1-by-1 blocks and 2-by-2 blocks.
The computation of the Schur form (or the real Schur form) costs ©(n?) arith-
metic operations with a fairly large hidden constant; we explore this constant in
Section ?7.

The Parlett-Higham-Davies Method for Triangular Matrices. Parlett [?] discov-
ered that any function f of a triangular matrix 7" can be computed by substi-
tution as long as its eigenvalues are simple (recall that the diagonal of a tri-
angular matrix contains its eigenvalues). If the eigenvalues are simple but clus-
tered, the method divides by small values and may become numerically unstable.
Higham [?]| generalized Parlett’s method to block matrices, in which substitu-
tion steps solve a Sylvester equation. These Sylvester equations have a unique
solution only if different diagonal blocks do not share eigenvalues, and nearby
diagonal values in two blocks cause instability.

Davies and Higham [?] developed an algorithm that partitions the eigenval-
ues of a triangular matrix T into well separated clusters. The algorithm then uses
a unitary similarity to transform 7" into a triangular matrix 7" in which the clus-
ters are consecutive, computes the function of diagonal blocks (using a different
algorithm), and then uses the block Parlett recurrence to solve for all the off-
diagonal blocks of f(T"). Because the clusters are well separated, the Sylvester
equations that define the off-diagonal blocks are well conditioned. Davies and
Higham proposed to use Padé approximations to compute the function of diag-
onal blocks, but other methods can be used as well (in our context, appropriate
methods include Horner’s rule, PS; etc.).

3 New Algorithms from Existing Building Blocks

Next, we show how building blocks described in Section ?? can be used to
construct new algorithms that are more efficient in some settings.

The Block Patterson-Stockmeyer-Van Loan Algorithm. In this variant, rather
than computing one column of g(A) at a time, we compute m columns at a time.
The expressions are a trivial generalization: we replace e; = I. ; in Algorithm 77
by I.j.j+m—1. This increases the memory requirements to three matrices and
m(p — 1) vectors. The number of arithmetic operations does not change, but the
memory access pattern does; we analyze this aspect below.

Utilizing Fast Matriz Multiplication. The naive methods and the PS method
are rich in matrix-matrix multiplications; one can replace the classical matrix-
multiplication routine with a fast Strassen-like method. Van Loan’s PS-MV
method cannot benefit from fast matrix multiplication, but the block version
can (with savings that are dependent on the block size m).

Simple Schur Methods. Given the Schur form of A, we can express ¢(A) as
q(4) = ¢(QTQ*) = Qq(T)Q*. Several methods can be used to evaluate ¢(T).
Because T is triangular, evaluating ¢ on it is generally cheaper than evaluating
q on A directly. Whether the savings are worth the cost of computing the Schur
form depends on d and the method that is used to evaluate q.

Because there are no restrictions on how ¢(7') is evaluated, this approach is
applicable to all representations of ¢, not only to representations by its coeffi-
cients. In particular, this approach can be applied to Newton and other interpo-
lating polynomials.

Parlett-Davies-Higham Hybrids. If the eigenvalues of A are well separated and
the original Schur-Parlett method can be applied, the total arithmetic cost is
O(n? 4 dn), where the dn term represents the cost of evaluating ¢ on the eigen-
values of A (on the diagonal of the Schur factor) and the n3 term represents the
cost of the reduction to Schur form and the cost of Parlett’s recurrence for the
offdiagonal elements of T'. For large values of d, this cost may be significantly
smaller than in alternative methods in which d or v/d multiply a non-linear term
(e.g., smaller than O(v/dn*°) for PS using fast matrix multiplication).

If the eigenvalues of A are not well separated, we can still apply the Parlett-
Davies-Higham method to compute off-diagonal blocks of ¢(T"); any non-Parlett
method can be used to compute the diagonal blocks, including PS and its vari-
ants. In particular, in this case the diagonal blocks are triangular and so will be
all the intermediate matrices in PS.

Remainder Methods. We note that if we ignore the subtleties of floating-point
arithmetic, there is never a need to evaluate ¢(A) for d > n. To see why, suppose
that d > n and let x(A) be its characteristic polynomial. We can divide ¢ by x,

q(A) = x(A)d(A) + p(A) = p(A), where p is the remainder polynomial of degree
at most n — 1. The second equality holds because x(A4) = 0.

However, it is not clear whether there exist a numerically-stable method to
find and evaluate the remainder polynomial p. We leave this question for future
research.

4 Theoretical Performance Analyses

We now present a summary of the theoretical performance metrics of the different
algorithms.

Analysis of Post-Reduction FEvaluations. Table 77 summarizes the main per-
formance metrics associated with explicit and PS methods. The table shows
the number of matrix multiplications that the methods perform, the amount of
memory that they use, and the asymptotic number of cache misses that they
generate in a two-level memory model with a cache of size M. We elaborate on
the model below.

The number of matrix multiplications performed by most of the methods,
with the exception of PS-MV variants, require no explanation. Van Loan’s orig-
inal variant performs log, p matrix-matrix multiplications to produce AP, and
it also performs matrix-vector multiplications that constitute together p + s+ 1
matrix-matrix multiplications; the latter are denoted in the table as 2\/3(;01“,,
under the assumption that p ~ v/d. In the block PS-MV variant, the same
matrix-matrix multiplications appear as matrix-matrix multiplications involv-
ing an n-by-n matrix and an n-by-b matrix. The memory requirements need no
further explanation.

Table 1. The main performance metrics associated with explicit and PS methods.
The expressions in the cache-misses column assume a relatively small cache size M
and classical (non-Strassen) matrix multiplications. The subscripts conv and conv(b)
signify that the methods use repeated matrix-vector multiplications or matrix-matrix
multiplication with one small dimension, so the choice of matrix multiplication method
is not free.

Algorithm Work (# MMs) Memory (# words) Cache Misses

Explicit Powers d — 1 3n? Ol\d- &L—i + dn?

Horner’s Rule d—1 2n? O|(d- f + dn?

PS p+s—1 (p+1)n? O(p+s—1)- \/——+dn2)
PS for prvVd =~ 2Vd ~ Vdn? o (Vd- \/_+dn)

PS MV log, Vd + 2Vdeony 3n* + Vdn O (Vd- 3)

Block PS/MV 1085 Vd + 2V/deone(s) 312 + Vdbn 0 (\/E 2 4dn)

b~ \/M/3

We now analyze the number of cache misses generated by each method.
Our analysis assumes a two-level memory hierarchy with a cache (fast memory)
consisting of M words that are used optimally by a scheduler, and it assumes
that every cache miss transfers one word into the cache. It has been widely
accepted that this model captures reasonably well actual caches as long as the
mapping of addresses to cache lines has high associativity and as long as cache
lines are reasonably small (the so-called tall-cache assumption [?]).

The cache-miss analysis of the explicit powers, Horner’s rule and PS is sim-
ple: they perform d — 1 or p + s — 1 matrix-matrix multiplications and d matrix
scale-and-add operations. Clearly, the scale-and-add operations generate at most
O(dn?) cache misses. If the cache is smaller than the memory requirement of the
algorithm by a factor of 2 or more, the scale-and-add will generate this many
misses. Similarly, if matrix multiplications are performed using a classical al-
gorithm, the number of cache misses in each multiplication can be reduced to
O(n?/v/M) |?], which implies the correctness of the bounds in the table. The
lower bound for classical matrix multiplication is £2(n®/v/M) [2,?,?]. We can
apply the same lower bounds to an entire polynomial evaluation algorithm, by
employing the imposed-reads/writes technique in [?]. Thus, if the polynomial
evaluation algorithm involves ¢ applications of dense n-by-n matrix multiplica-
tions, then the cost of cache misses is bounded below by 2(tn?/v/M). If we use
a matrix multiplication that performs ©(n*°) operations, the matrix multiplica-
tion cache miss bound reduces to O(n“° /M“°/2=1) per matrix multiplication [?]
and ¢ times that for an entire polynomial evaluation algorithm that invokes fast
matrix multiplication ¢ times.

Van-Loan’s original PS-MV generates a very large number of cache misses,
except for one scenario in which it is very efficient. If M > 3n2 4+ V/dn, then all
the data structures of the algorithm fit into the cache and it combines a minimal
number of operations (among known algorithms) with only O(n?) compulsory
cache misses. If M is small, say M < n?, this variant has essentially no reuse
of data in the cache, with @(v/dn?) misses, more than in PS, and with terrible
performance in practice.

The memory requirements and cache-miss behavior of our block PS-MV de-
pend on the block size b. If we set b ~ /M/3, the small dimension in ma-
trix multiplication operations is b which guarantees an asymptotically optimal
number of cache misses in matrix multiplications (the multiplications can be
performed in blocks with dimension @(v/M)). This leads to the same overall
asymptotic number of cache misses as the original Patterson-Stockmeyer algo-
rithm, but requires much less memory. This is an outcome of the fact that when
we multiply an n-by-n matrix by an n-by-b matrix, the data reuse rate improves
as b grows from 1 to about y/M/3 but stays the same afterwards. If classical
matrix multiplication is used, this variant is theoretically the most promising:
it pays with log, v/d matrix multiplications (insignificant relative to v/d) to re-
duce the storage requirements dramatically while attaining a minimal number of
cache misses. One can apply a fast matrix multiplication algorithm in this case

too, reducing both the arithmetic costs and the cache misses; we omit details
due to lack of space.

Algorithms that Reduce to Schur Form. In principle, reduction to Schur form is
worth its cost for d larger than some constant, but the constant is large because
the reduction performs ©(n?) operations with a large multiplier of n3. If d is
large enough, it should pay off to reduce the matrix to Schur form and to apply ¢
to the triangular factor using a PS variant; the cost of each matrix multiplication
is then reduced by a factor of 6, assuming classical matrix multiplication. If we
multiply triangular matrices recursively and use Strassen to multiply full blocks
within this recursion, the savings is by a factor of 15/4 = 3.75. There is a cache-
miss efficient algorithm to carry out the reduction .

The decision whether to apply a Parlett-based recurrence to the Schur factor
is more complex. It is always worth sorting the eigenvalues and running the
Davies-Higham algorithm that clusters the eigenvalues. If they are separated well
enough that there are n singleton clusters, Parlett’s algorithm can be applied
directly at a cost of O(dn + n3); the algorithm can be applied recursively as
in [?]. If the eigenvalues are clustered, we need to weigh the cost of the Schur
reordering versus the savings from applying the polynomial to diagonal blocks
of the Schur form (rather than to the entire Schur factor); solving the Sylvester
equations will cost an additional O(n?) and will achieve good cache efficiency [?].
The cost of the Schur reordering is O(n?) but can be much smaller in special
cases; see [?] for details.

5 Experimental Evaluation

We performed numerical experiments to validate our theoretical results and to
provide a quantitative context for them. The experiments were all conducted
on a computer running Linux (Kernel version 4.6.3) with an Intel i7-4770 quad-
core processor running at 3.4 GHz. The processor has an 8 MB shared L3 cache
and four 256 KB L2 caches and four and 32 KB L1 caches (one per core). The
computer had 16 GB of RAM and it did not use any swap space or paging
area. Our codes are all implemented in C. They were compiled using the Intel
C compiler version 17.0.1 and were linked with the Intel Math Kernel Library
(MKL) version 2017 update 1. Our code is sequential, but unless otherwise noted,
MKL used all four cores.

The input matrices that we used were all random and orthonormal. We used
orthonormal matrices to avoid overflow in high-degree polynomials. The code
treats the matrices as general and does not exploit their orthonormality.

Figure ?? (top row) presents the performance of Horner and Patterson-Stock-
meyer for a range of matrix sizes and for polynomials of a fixed degree d = 100.
The results show that PS is up to 4 times faster than Horner’s rule, but that
PS-MV is very slow (by factors of up to about 28). The computational rate
(floating-point operations per second) of Horner is the highest, because the vast
majority of the operations that it performs are matrix-matrix multiplications;

10 200 /__/_
102! L,’150
3
D L.c__>100
v O
‘I L
£ e 50
A= PS—MV b=100
001 .)) ~&-PS—-MM 0 . \?—Q—Q
’ & 1600 3200 6400 & 1600 3200 6400
o matrix dimension S matrix dimension
1 OO =4=Horner 60 =4=Horner
== PS MV b=1 =&=PS MV b=1
80 =he=PS MV b=25 50 —A-PS MV b=25
=¥=PS MV b=100 -¥-PS MV b=100
— PS MV b=250 40 PS MV b=250
v 60 ==PS MV b=1000 “\ -o-PS MM
[} =8=PS MM
£ g%
* + 20
0 o=
0 1k 2k 3k 4k 5k 0 1tk 2k 3k 4k 5k
polynomial degree polynomial degree

Fig. 1. The running times of PS methods. The degree of the polynomial in the top row
is d = 100. On the bottom row, the dimensions of the matrices are 2000 on the left
and 750 on the right.

its performance is close to the performance of DGEMM on a given machine. The
computational rate of matrix-matrix PS is lower and it increases significantly as
the dimension grows from 400 to 6400. The increase is due to the increasing frac-
tion of operations that are performed within the matrix-matrix multiplication
routine (the fraction performed within the matrix addition routine decreases).
Even on matrices of dimension 6400 (and 12000 in Figure ??), the computational
rate of PS is significantly lower than that of Horner.

The performance of matrix-vector PS is not only low, it gets worse as matrix
dimension grows. On small matrices (n = 400 and n = 800) the method still
enjoys some data reuse in the cache, but on matrices of dimension n > 1600
that do not fit within the L3 cache performance is uniformly slow; performance
is limited by main memory bandwidth.

However, the performance of the block version of the matrix-vector PS is
good, close to the performance of matrix-matrix PS. Figure ??(bottom row)
explores this in more detail. We can see that on a large matrices, the matrix-
vector variant is very slow; the matrix-matrix variant is much faster. However,
the block matrix-vector algorithm is even faster when an effective block size is

240

5 3
220 355 \
200 5
» c 2
5180 2
2160 215
O o
140 g 1//'/.___.—4.
120 505 = hoi000
-e- n=1000
1000 2k 4k 6k 8k 10k 12k g 0o 1k 25k 5k 75k 10k

matrix dimension polynomial degree

Fig. 2. The performance of PS as a function of the dimension for polynomials of degree
d = 10 (left). The graph on the right shows predictions of performance gains (or losses)
due to reducing A to Schur form. See text for details.

chosen. In this experiment, the best block size is b = 100; other block sizes did
not perform as well, but we can also see that performance is not very sensitive
to the block size. The memory savings relative to the matrix-matrix variant are
large (a factor of about n/b).

On a matrix that fits into the level-3 cache (n = 750), the matrix-vector
algorithms are all significantly faster than the matrix-matrix variant, but the
performance is again insensitive to the specific block size.

Cost of Triangular Matrix Multiplication

Cost qf Schur Decomposition

7 ~-DTRVMM
é 2 —#-Recursive 1 2 200
L —A-Recursive 2
8 15’ -V-Recursive3 E
8 8- Recursive 4 8 ‘ISO
g 1 e
'(_% g 100
] ©
20.5¢ o
aé y 50
= E

0 0

0 2k 4k 6k 8k 0 2k 4k 6k 8k
matrix dimension matrix dimension

Fig. 3. The running times of building blocks of polynomial evaluation methods that
reduce the matrix to Schur form. The graphs on the left show the running times of
functions that multiply two triangular matrices relative to those of the general matrix
multiplication routine DGEMM. The graph on the right shows the running tims of the
Schur decomposition routines in LAPACK (DGEHRD, DORGHR, and DHSEQR),
again relative to that of DGEMM. The triangular multipliers that we evaluate are
DTRMM, a BLAS3 routine that multiplies a triangular matrix by a square one, and
four recursive routines that we wrote. Our routines perform between 1 and 4 levels of
recursion and then call DTRMM.

The performance of methods that reduce A to a Schur form depend on the
cost of the Schur reduction relative to the savings that the Schur form can
generate. Figure 7?7 show that the time to compute Schur decomposition of large
matrices is about 23 times higher than the time it takes to multiply matrices
(the ratio is higher for small matrices). The figure also shows that multiplying
large triangular matrices using a specialized routine takes a factor of 3.8 less
time than calling DGEMM; this does not match the operation count (a factor
of 6), but it still represents a significant saving.

Figure ?7? (right) combines the measurements that we used to plot the graphs
in Figure ?? into a performance model that predicts the savings (or losses) gen-
erated by reducing A to a Schur form for various values of n and d. Specifically,
we estimated the performance of square PS as 2\/ETDGEMM, where TpaeMmMm 1S
the empirical time used in Figure 7?7, and we estimated the performance of the
Schur reduction and triangular PS as Tscyur + 2\/ETREC(4) + 2TpgEMM Where
Tscuur is the empirical time of the Schur reduction (the values that were used
in Figure 77, left graph) and Trgc(4) is the empirical running time of our trian-
gular multiplier with a 4-level recursion. We added two matrix multiplications
to the cost of the Schur approach to model the post multiplication of ¢(T) by
the two unitary Schur factors. Clearly, the gains are limited to about a factor
of 6, which is the best gain we can hope for in triangular matrix multiplication;
the actual ratio is smaller both because the empirical performance of triangular
matrix multiplication is not 6 times better than that of DGEMM, and because
the Schur reduction itself is expensive.

6 Conclusions and Open Problems

Our theoretical and experimental analyses lead to three main conclusions:

1. Our new block variant of the PS method is essentially always faster than
both the original PS method and Van Loan’s PS-MV. It also uses much less
memory than PS and not much more than PS-MV. This variant is also much
faster than Horner’s rule and similar naive methods.

2. On large matrices and moderate degrees, the performance of fast PS variants
is determined mostly by the performance of the matrix-multiplication routine
that they use. Therefore, using fast matrix multiplication is likely to be
effective on such problems.

3. On large matrices and high degrees, it is worth reducing the matrix to its
Schur form. This is true even if the polynomial of the Schur factor is evalu-
ated without first partitioning it using the Davies-Higham method. Although
we have not implemented the partitioning method, it is likely to achieve ad-
ditional savings.

References

1. G. Ballard, A. R. Benson, A. Druinsky, B. Lipshitz, and O. Schwartz. Improving
the numerical stability of fast matrix multiplication. STAM J. Matrixz Anal. Appl.,
37:1382-1418, 2016.

10.

11.
12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

G. Ballard, J. Demmel, O. Holtz, , and O. Schwartz. Minimizing communication
in linear algebra. SIAM J. Matriz Anal. Appl., 32:866-901, 2011.

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Graph expansion and commu-
nication costs of fast matrix multiplication. J. of the ACM, 59:32, 2012.

A. R. Benson and G. Ballard. A framework for practical parallel fast matrix
multiplication. ACM SIGPLAN Notices, 50:42-53, 2015.

D. Bini and G. Lotti. Stability of fast algorithms for matrix multiplication. Nu-
merische Mathematik, 36:63-72, 1980.

P. I. Davies and N. J. Higham. A Schur—Parlett algorithm for computing matrix
functions. SIAM J. Matrixz Anal. Appl., 25:464—485, 2003.

E. Deadman, N. J. Higham, and R. Ralha. Blocked schur algorithms for computing
the matrix square root. In P. Manninen and P. Oster, editors, Proc. of the 11th
Int. Conf. on Applied Parallel and Sci. Comput. (PARA), pages 171-182, 2013.
J. Demmel, I. Dumitriu, O. Holtz, and R. Kleinberg. Fast matrix multiplication is
stable. Numerische Mathematik, 106:199-224, 2007.

J. J. Dongarra, J. D. Cruz, S. Hammarling, and I. Duff. A set of level 3 basic linear
algebra subprograms. ACM Transactions on Mathematical Software, 16:1-17, 1990.
M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In Proceedings of the 40th IEEE Annual Symposium on Foundations
of Computer Science (FOCS), pages 285-297, 1999.

G. Golub and C. V. Loan. Matrixz Computations. Johns Hopkins, 4th edition, 2013.
N. J. Higham. Functions of Matrices: Theory and Algorithm. SIAM, 2008.

J. Huang, T. M. Smith, G. M. Henry, and R. A. van de Geijn. Implementing
Strassen’s algorithm with BLIS. arXiv preprint arXiv:1605.01078, 2016.

J. Huang, T. M. Smith, G. M. Henry, and R. A. van de Geijn. Strassen’s algorithm
reloaded. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC), pages 690-701. IEEE, 2016.
D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for distributed-
memory matrix multiplication. J. of Par. and Dist. Comput., 64:1017-1026, 2004.
H. Jia-Wei and H. T. Kung. I/o complexity: The red-blue pebble game. In Proceed-
ings of the Thirteenth Annual ACM Symposium on Theory of Computing (STOC),
pages 326-333, New York, NY, USA, 1981. ACM.

I. Jonsson and B. Kagstrom. Recursive blocked algorithms for solving triangu-
lar systems: Part II: Two-sided and generalized Sylvester and Lyapunov matrix
equations. ACM Transactions on Mathematical Software, 28:416-435, 2002.

D. Kressner. Block algorithms for reordering standard and generalized schur forms.
ACM Transactions on Mathematical Software, 32:521-532, 2006.

C. F. V. Loan. A note on the evaluation of matrix polynomials. IEEE Trans.
Automat. Control, AC-24:320-321, 1979.

B. N. Parlett. Computation of functions of triangular matrices. Memorandum
ERL-M481, Electronics Research Laboratory, UC Berkeley, Nov. 1974.

M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications
necessary to evaluate polynomials. SIAM J. Comput., 2:60—-66, 1973.

V. Strassen. Gaussian elimination is not optimal. Num. Math., 13:354-356, 1969.
S. Toledo. A survey of out-of-core algorithms in numerical linear algebra. In
J. M. Abello and J. S. Vitter, editors, External Memory Algorithms, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pages 161-179.
American Mathematical Society, 1999.

S. Winograd. On multiplication of 2-by-2 matrices. Linear Algebra and Appl.,
4:381-388, 1971.

