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ABSTRACT
High performance for numerical linear algebra often comes at the
expense of stability. Computing the LU decomposition of a matrix
via Gaussian Elimination can be organized so that the computation
involves regular and efficient data access. However, maintaining
numerical stability via partial pivoting involves row interchanges
that lead to inefficient data access patterns. To optimize commu-
nication efficiency throughout the memory hierarchy we confront
two seemingly contradictory requirements: partial pivoting is effi-
cient with column-major layout, whereas a block-recursive layout
is optimal for the rest of the computation. We resolve this by intro-
ducing a shape morphing procedure that dynamically matches the
layout to the computation throughout the algorithm, and show that
Gaussian Elimination with partial pivoting can be performed in a
communication efficient and cache-oblivious way. Our technique
extends to QR decomposition, where computing Householder vec-
tors prefers a different data layout than the rest of the computation.
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1. INTRODUCTION
Do we need to trade off numerical stability for high performance?

This has been the most important question in numerical linear alge-
bra for at least 20 years. It has motivated an enormous body of deep
research. In this paper we show that for one very famous computa-
tion in numerical linear algebra, the answer is no: Gaussian Elim-
ination with partial pivoting can be performed in a communication
avoiding way.

High performance computers do not resemble simple computa-
tional models like the RAM model. They rely on parallelism and
complex memory hierarchies to deliver high performance. In the
past, such architectures were confined to supercomputers, but to-
day they are ubiquitous. To run fast, an algorithm must be able to
utilize many processors concurrently and to avoid communication
as much as possible.

Out of all the effective algorithms for a given problem, only a
subset exhibits high levels of parallelism and requires little commu-
nication between processors and/or between levels of the memory
hierarchy. Does this subset always contain algorithms that are as
stable as the best performing ones for the problem, or do we need
to trade off stability for high performance? Consider Csanky’s al-
gorithm for matrix inversion: it has long been a classic example
of a highly parallel but highly unstable algorithm; no known stable
algorithm is as parallel. Twenty years ago, one of the authors sug-
gested in an influential paper that even in practice, we must trade
off stability in return for useful amounts of parallelism [6]. That
paper has motivated a huge amount of research, with two main fo-
cal points. One has been the stability of so-called fast (Strassen-
like) algorithms; this research has so far culminated in algorithms
that are stable and fast in theory, but it remains to be seen whether
they are also fast in practice [7]. The other focal point has been in
algorithms that perform as little communication as possible, culmi-
nating in the definition of communication avoidance [5] and in a
class of algorithms with that property.

An algorithm is called communication avoiding if it performs
asymptotically as little communication as possible in two metrics:
the total amount of data measured in words transferred between
processors or levels of the memory hierarchy (the bandwidth it con-
sumes), and the number of messages or block-transfers that carry
this data (and therefore the number of times the message or cache-
miss latency impacts the execution). To show that an algorithm is
communication avoiding, one must exhibit a communication lower
bound. For many matrix algorithms, lower bounds of the form
Ω(f/M1/2) have been established on the number of words and
Ω(f/(LM1/2)) on the number of messages, where f is the num-
ber of arithmetic operations performed by the algorithm, L is the

232



maximum block-transfer size, andM is the size of the fast memory
in a hierarchy or the local memory in a distributed memory parallel
computer [5, 16, 17].

Minimizing the number of words communicated while preserv-
ing numerical stability has proved relatively easy for many prob-
lems. For Gaussian Elimination with partial pivoting (using the
largest-magnitude element in a column to eliminate the rest of the
column), a 1997 algorithm with a recursive schedule did the trick [14,
21] for the sequential (memory-hierarchy) case; this algorithm is
also cache oblivious, in the sense that its schedule does not depend
on M .

Minimizing the number of block-transfers while maintaining sta-
bility has proved much harder. The first communication avoiding
algorithm for Gaussian Elimination [13] used a pivoting rule called
tournament pivoting that was both more complicated and theoret-
ically less stable than partial pivoting. A second-generation com-
munication avoiding Gaussian Elimination algorithm [18] was even
more complicated, but also more stable. The fundamental chal-
lenge that required the new pivoting rules is that partial pivoting
steps works well when the matrix is stored by column, whereas
updating the reduced matrix works well when the matrix is stored
with contiguous blocks. The question of whether the simple, ele-
gant, and stable partial pivoting rule can be used in a communica-
tion avoiding algorithm remained open.

In this paper we answer this question in the affirmative for the
sequential case using a technique we call shape morphing: switch-
ing the data layout of parts of the matrix back and forth between
column-major layout and recursive block-contiguous layout. Do-
ing so allows Gaussian Elimination to access contiguous memory
locations both when searching for a pivot down a column and ap-
plying row interchanges, and when computing the U factor and
updating the reduced matrix (Schur complement). The shape mor-
phing steps add data movement overhead to the algorithm, but we
show that the overall algorithm remains asymptotically optimal.
The algorithm is recursive and also cache-oblivious.

The same technique also produces communication avoiding al-
gorithms for the related problem of QR factorization. In addition,
we present a communication efficient algorithm for solving a trian-
gular system where the right sides form a rectangular matrix. This
subroutine is necessary inside SMLU but is also useful in several
other contexts [2].

In the next section, we describe our communication cost model,
and in Section 3 we describe the relevant matrix data layouts. We
present the original recursive algorithms for LU and QR factoriza-
tions in Section 4 and discuss the new algorithms associated with
shape-morphing and their analysis in Section 5. In Section 6 we
discuss our main conclusions and the implications of the shape-
morphing technique.

Algorithm 1 SMLU, in words. See Figure 3 and Algorithm 8 for
further details.

if one column then
solve the problem for a column

end if
recursively factor the left half
forward permute
reshape everything to recursive format
update right half with triangular solve and Schur update
reshape everything back to column format
recursively factor the right half
back permute
combine pivots

Algorithm 2 SMQR, in words. See Figure 4 for further details.
if one column then

solve the problem for a column
end if
recursively factor the left half
reshape everything to recursive format
update right half with triangular and general matrix multiplies
reshape right half back to column format
recursively factor the right half
reshape right half to recursive format
compute auxiliary triangular matrix T with triangular and gen-
eral matrix multiplies
reshape everything back to column format

2. MACHINE MODEL
We model a sequential computer as having an infinite slow mem-

ory and a finite fast memory of sizeM . All computation takes place
in the fast memory, and we consider communication between the
fast and slow memory. We count both the number of words of data
W (or bandwidth cost) and the number of messages S (latency
cost) transferred, and model the communication time as

α · S + β ·W,

where α and β are machine-dependent parameters. There is one
more parameter, L, which is the size in words of the maximum
allowed message (or block-transfer size). We make no assumptions
on the size of L beyond the trivial requirements 1 ≤ L ≤M .

It is instructive to contrast our model to the ideal-cache model of
[12]. There, the authors make a “tall cache” assumption that M =
Ω(L2). We do not make this assumption, so latency optimality is
a stricter requirement in our model. Additionally, their model only
allows messages of size L, which is equivalent to setting β = 0 in
our model.

One may also consider models where there is a hierarchy of
memories, each faster and smaller than the previous one, where
the largest/slowest memory is infinite and the computation occurs
only in the smallest/fastest memory, and one wishes to minimize
the communication costs across every level of the hierarchy. A
cache-oblivious algorithm is one that requires no tuning based on
the machine parameters M and L. An algorithm that is cache-
oblivious and communication-optimal in the two-level model, such
as the SMLU algorithm that is the subject of this paper, is also
communication-optimal with respect to every level of any hierar-
chical model.

3. DATA LAYOUTS
We consider two main data layouts: column-major and rectangular-

recursive. The column-major layout is the layout used by standard
libraries like LAPACK and stores each column contiguously with
elements in a column ordered from top to bottom and columns
themselves ordered from left to right. The rectangular-recursive
layout is a generalization of block-recursive or Morton ordering
[19], which is well-defined for square matrices with dimension a
power of two. We also briefly mention block-contiguous layout, a
cache-aware data layout in which blocks of the matrix are stored
contiguously, in column-major order. The block-contiguous layout
is used, for example, by the CALU algorithm [13].

The main motivation for recursive layouts like rectangular-recursive
is that they map well to recursive algorithms: at every node in
the recursion tree, the computation involves submatrices which are
stored contiguously in memory. The rectangular-recursive layout,
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illustrated in Figure 2, corresponds to recursively splitting the largest
dimension of the matrix and storing each of the two submatrices
contiguously in memory. Choosing how to break ties for a square
matrix (choosing whether to split horizontally or vertically) and de-
ciding how to split odd dimensions leads to several variations of the
rectangular-recursive layout. Here, we choose to split square matri-
ces into left and right halves because that corresponds most closely
to the column-major layout, and for odd dimensions, we choose
to assign the extra row to top halves and the extra column to left
halves. The latter decision is arbitrary but the same choice must be
made throughout the algorithm. When applied to square power-of-
two matrices, our choices lead to a standard

N
-Morton ordering.

There are several alternatives for generalizing Morton ordering
[9, 10, 11, 15]. The simplest approach is to pad both rows and
columns with zeros to obtain a square power-of-two matrix. How-
ever this can increase the number of matrix elements by a factor of
4 times the ratio of large dimension to small dimension. This ap-
proach is explored in [11], where the authors avoid the extra space
and computation on padded rows and columns using “decorations”
which denote full, partial, and zero submatrices. Hybrid layouts are
also often used, storing small blocks in column or row-major layout
and ordering the blocks using a Morton ordering. One can view our
rectangular-recursive layout as the “recursive block column layout”
from [9] with 1× 1 block sizes.

We consider another alternative for generalizing Morton order-
ing to a specific class of rectangular matrices. If the smaller di-
mension of a rectangular matrix is a power of two and the larger
dimension is a multiple of the smaller dimension, then the matrix
can be divided up into several square power-of-two matrices. In
this case, the elements within the square submatrices can be stored
in standard Morton ordering, and the squares themselves can be
ordered from top to bottom or left to right. This layout is illus-
trated in Figure 1. For the purposes of LU and QR factorizations,
if the original matrix is square with power of two dimension, then
all submatrices encountered can be stored in this layout. To pre-
serve generality and avoid padding the original matrix, we describe
our algorithms with the rectangular-recursive layout instead of this
“stack of squares” layout.

4. RECTANGULAR RECURSIVE
ALGORITHMS FOR LU AND QR

Many recursive algorithms for linear algebra computations are
cache-oblivious, but in order to minimize latency costs the data
layout must be chosen carefully. Morton ordering works very well
for the recursive matrix multiplication algorithm, where the eight
recursive subproblems involve matrix quadrants. The natural ex-
tension of Morton ordering to symmetric matrices also maps nicely
to the square recursive algorithm for Cholesky decomposition [1,
3, 14]. In this algorithm, subroutines and recursive subproblems
involve matrix quadrants (which may be symmetric, triangular, or
dense).

For LU decomposition, the analogous square recursive algorithm
(and standard Morton ordering) is not sufficient: in order to main-
tain numerical stability, row (and possibly column) interchanges
are necessary. Partial pivoting, the most common scheme, involves
at each step of the algorithm selecting the maximum element in ab-
solute value in a column and interchanging the corresponding row
with the diagonal element’s row. For this reason, the square recur-
sive algorithm for Cholesky does not generalize to nonsymmetric
matrices: the top left quadrant of the matrix cannot be factored
without accessing (and possibly interchanging) rows from the bot-
tom left quadrant of the matrix.

Figure 1: Stacks of squares layout for a 12 × 4 matrix. The
3 square 4 × 4 blocks are stored contiguously, each in Morton
order.

In order to respect the column-access requirement of partial piv-
oting, Toledo [21] and Gustavson [14] developed a “rectangular re-
cursive” algorithm (RLU) which recursively splits the matrix into
left and right halves instead of quadrants. The steps of the computa-
tion are shown in Figure 3. Given an m×n input matrix, recursive
subproblems are of size m× n

2
and

(
m− n

2

)
× n

2
, and algorithms

for triangular solve with multiple right hand sides (TRSM) and ma-
trix multiplication are used as subroutines. Because the recursion
splits the matrix into left and right halves, the base of the recursion
consists of factoring single columns with partial pivoting: finding
the maximum element, swapping it with the diagonal, and scaling
the column with its reciprocal.

A similar algorithm for QR decomposition was developed by
Elmroth and Gustavson [8]. The standard Householder QR algo-
rithm works column-by-column, computing a Householder vector
that annihilates all subdiagonal entries in the column and applying
the orthogonal transformation to the trailing matrix. In order to
compute one Householder vector per column, a rectangular recur-
sive algorithm is necessary so that the base of the recursion consists
of computing a single Householder vector to annihilate the entire
column below the diagonal. The basic steps of the computation are
shown in Figure 4. In the rectangular recursive QR algorithm, an
auxiliary triangular matrix T is computed so that the update of the
trailing matrix can be done with matrix multiplication.

Abandoning the requirement that the orthogonal factorQ be com-
puted with one Householder vector per column allows for a square
recursive algorithm for QR [11]. The square recursive algorithm
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Figure 2: Rectangular-recursive order for a 11 × 5 matrix. At
the first level, the top 6 rows are split from the bottom 5. At the
second level, the top 6 × 5 block is split into two 3 × 5 blocks,
whereas the bottom 5× 5 block is split into a 5× 3 block and a
5× 2 block.

Figure 3: Cartoon of rectangular recursive algorithm for LU
[14, 21]. Shaded areas correspond to computation. In SMLU,
the first and fourth steps assume column-major ordering, and
the second and third steps assume rectangular recursive order-
ing.

maps nicely onto standard Morton ordering, as each computation
involves matrix quadrants. However, because the orthogonaliza-
tion is based on many Givens rotations per column instead of one
Householder vector per column, the standard trailing matrix update
techniques do not apply. The approach from [11] is to explicitly
construct the orthogonal factor Q, using matrix multiplication to
update the trailing matrix. This technique leads to an increase in
the total flop count of the decomposition compared to the standard
algorithm, by a factor of approximately 3×.

By using shape morphing, we show that the rectangular recursive
algorithm of Elmroth and Gustavson [8] can maintain the standard
format of representing the orthogonal factor by its Householder
vectors (one per column) and still achieve cache-obliviousness, min-
imizing both words and messages. The rectangular recursive algo-
rithm also increases the flop count with respect to the standard al-
gorithm, by about 17% for tall skinny matrices and about 30% for

Figure 4: Cartoon of rectangular recursive algorithm for QR
[8]. Shaded areas correspond to computation. The triangles
correspond to the intermediate T factor. In SMQR, the first
and fourth steps assume column-major ordering, and the sec-
ond and third steps assume rectangular recursive ordering.

Figure 5: One recursive step in converting from column-major
to rectangular recursive order.

square matrices. To limit the increase in computation, one can use a
hybrid algorithm, using the rectangular recursive algorithm on pan-
els of sufficiently small width. Since this tuning parameter prevents
the algorithm from begin cache-oblivious, we do not consider the
hybrid algorithm here.

5. ALGORITHMS AND ANALYSIS

5.1 Converting Rectangular Recursive to
Column Major and Back

The algorithm for reshaping a rectangular m × n matrix from
column-major order to rectangular recursive order is provided in
Algorithm 4. The algorithm is recursive; at each step it splits the
matrix along its largest dimension and is then recursively called
on both submatrices. When the input is short and fat (m ≤ n),
splitting the matrix does not require any data movement, since in
column-major order the left and right halves of the matrix are al-
ready contiguous. When the input is tall and skinny (m > n),
splitting the matrix requires “separating” each column into its top
and bottom halves. We perform this operation with the SEPARATE
function: since it involves contiguously streaming through the input
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and contiguously writing to two output locations, as illustrated in
Figure 5, the communication cost is O(mn) words and O(mn/L)
messages. The recurrence for the communication cost is therefore

RSH(m,n) =



2RSH(m/2, n) +O
(
mn
L
α+mnβ

)
if m > n and mn > M

2RSH(m,n/2)
if m ≤ n and mn > M

O
((
mn
L

+ 1
)
α+mnβ

)
if mn ≤M.

There are at most log2
mn
M

recursive steps, and each has communi-
cation cost bounded by O(mn

L
α+mnβ), so the solution is

RSH(m,n) = O
(mn
L

log
mn

M
+ 1
)
α

+O
(
mn

(
log

mn

M
+ 1
))

β.

Reshaping from rectangular recursive order to column-major or-
der is described in Algorithm 10, and has identical costs.

Algorithm 3
(
A1
A2

)
= SEPARATE(A,m,n,m1)

Input: A is m× n in column-major order
Output: A1 is the first m1 rows of A in column-major order, A2

is the remaining m−m1 rows of A in column-major order
for j in 1:n do

A1(1 : m1, j) = A(1 : m1, j)
A2(1 : m−m1, j) = A(m1 + 1 : m, j)

end for

Algorithm 4 B = RESHAPETORECURSIVE(A,m,n)
Input: A is m× n with m ≥ n in column-major order
Output: B is the same matrix in rectangular recursive order

if m = n = 1 then
B(1, 1) = A(1, 1)
return

end if
if m > n then

m1 = dm/2e, m2 = bm/2c(
B1

B2

)
= SEPARATE(A,m,n,m1)

B1 = RESHAPETORECURSIVE(B1,m1,n)
B2 = RESHAPETORECURSIVE(B2,m2,n)

B =

(
B1

B2

)
else

n1 = dn/2e, n2 = bn/2c(
B1 B2

)
= A

B1 = RESHAPETORECURSIVE(B1,m,n1)
B2 = RESHAPETORECURSIVE(B2,m,n2)
B =

(
B1 B2

)
end if

5.2 Rectangular Matrix Multiplication
The SMLU algorithm requires a recursive matrix multiplication

algorithm for square matrices stored in rectangular recursive order.
The rectangular recursive matrix multiplication algorithm and its
communication cost analysis are in [12]. In our model the commu-

nication costs are worked out in [3] and are

GEMM(m,n, k) = O

(
mnk√
ML

+
mn+mk + nk

L
+ 1

)
α

+O

(
mnk√
M

+mn+mk + nk

)
β,

where m,n, k are the three matrix dimensions.

5.3 Rectangular Triangular Solve
The SMLU algorithm requires a recursive triangular solve on

matrices stored in rectangular-recursive layout. An algorithm for
square matrices with optimal communication costs is given in [3].
In Algorithm 5 we generalize to the case of rectangular matrices.
Let A be an m × n matrix, and L be an m ×m unit lower trian-
gular matrix.1 At each recursive step, split the larger of m and n.
Splitting m gives two recursive calls to RECTRSM and one call
to matrix multiplication. Splitting n gives two recursive calls to
RECTRSM. Thus the communication cost recurrence is:

TRSM(m,n) =



2TRSM(m/2, n) + GEMM(m,m, n)
if m > n and 2mn+m2 > M

2TRSM(m,n/2)
if n ≥ m and 2mn+m2 > M

O
((

mn+m2

L
+ 1
)
α+ (mn+m2)β

)
if 2mn+m2 ≤M

with solution

TRSM(m,n) = O

(
m2n

L
√
M

+
mn+m2

L
+ 1

)
α

+

(
m2n√
M

+mn+m2

)
β.

Algorithm 5 U = RECTRSM(A,L,m,n)
Input: A is m× n, L is m×m and unit lower triangular, both in

rectangular recursive layout
Output: U = L−1A in rectangular recursive layout

if m = n = 1 then
U(1, 1) = A(1, 1)
return

end if
if m > n then

m1 = dm/2e, m2 = bm/2c(
L11

L21 L22

)
= L(

U1

U2

)
= U

U1 = RECTRSM(U1,L11,m1,n)
U2 = RECGEMM(L21,U1,U2,m2,m1,n)
U2 = RECTRSM(U2,L22,m2,n)

U =

(
U1

U2

)
else

n1 = dn/2e, n2 = bn/2c(
U1 U2

)
= U

U1 = RECTRSM(U1,L,m,n1)
U2 = RECTRSM(U2,L,m,n2)
U =

(
U1 U2

)
end if

1A non-unit lower triangular matrix changes only the base case
computation.
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5.4 Pivoting
The SMLU algorithm returns a pivot vector p of lengthm, where

p(i) = j indicates that row j in the original matrix has been pivoted
to row i in the output. Two subroutines are required to manage the
pivoting.

First, APPLYPIVOTS, presented as Algorithm 6, applies a pivot
vector to a matrix. It applies the pivot vector to each column of the
matrix in sequence. For each column, it applies the pivot vector re-
cursively by streaming through the entire column to separate entries
between those that belong in the top half from those that belong in
the bottom half of the permuted column, the calling itself on both
the top and bottom halves. If m < M , at least one column fits into
memory and APPLYPIVOTS needs to read the matrix only once. If
m > M , it reads and writes each column log(m/M) times. The
communication costs are

APPLYPIVOTS(m,n) = O
(mn
L

(
1 + log

m

M

)
+ 1
)
α

+O
(
mn

(
1 + log

m

M

))
β.

It is also necessary to combine two pivot vectors into one, which
is done by COMBINEPIVOTS, presented in Algorithm 7. This is
accomplished by two calls to APPLYPIVOTS with n = 1, so the
communication costs are

COMBINEPIVOTS(m) = O
(m
L

(
1 + log

m

M

)
+ 1
)
α

+O
(
m
(

1 + log
m

M

))
β.

Algorithm 6 APPLYPIVOTS(A,P ,m,n)
Input: A is m× n in column-major order, P is a pivot vector
Output: The rows of A are pivoted according to P

if m = n = 1 then
return

end if
if n = 1 then

m1 = dm/2e, m2 = bm/2c
c1 = new array of length m1

c2 = new array of length m2

P1 = new array of length m1

P2 = new array of length m2

j = 1; k = 1
for i in 1 : n do

if P (i) ≤ m1 then
c1(j) = A(i)
P1(j) = P (i)
j = j + 1

else
c2(j) = A(i)
P2(j) = P (i)−m1

k = k + 1
end if

end for
APPLYPIVOTS(c1,P1,m1,1)
APPLYPIVOTS(c2,P2,m2,1)

else
n1 = dn/2e, n2 = bn/2c(
A1 A2

)
= A

APPLYPIVOTS(A1,P ,m,n1)
APPLYPIVOTS(A2,P ,m,n2)

end if

Algorithm 7 P = COMBINEPIVOTS(PL,PR,mL,mR)
Input: PL, PR are left and right pivot vectors
Output: P is the combined pivot vector

// Convert the size of the right pivot vector
k = mL −mR

P ′R = new vector of length mL

P ′R(1 : k) = 1 : k
P ′R(k + 1 : mL) = PR + k

// Combine pivots
PI = APPLYPIVOTS(1 : mL,PL,mL,1)
P = APPLYPIVOTS(P ′R,PI ,mL,1)

5.5 Analysis of SMLU
Detailed pseudocode for SMLU appears in Algorithm 8. Each

call to SMLU has two recursive calls to itself, two calls to AP-
PLYPIVOTS, four calls each to RESHAPETORECURSIVE and RE-
SHAPETOCOLMAJOR, one call to RECTRSM, one to RECGEMM,
and one call to COMBINEPIVOTS. The recursive communication
costs are thus

SMLU(m,n) ≤ 2SMLU
(
m,

n

2

)
+ 2APPLYPIVOTS

(
m,

n

2

)
+8RSH

(
m,

n

2

)
+ TRSM

(n
2
,
n

2

)
+GEMM

(
m,

n

2
,
n

2

)
+ COMBINEPIVOTS(m)

which simplifies to

SMLU(m,n) ≤ 2SMLU
(
m,

n

2

)
+O

(
mn2

L
√
M

+
mn

L
log

mn

M
+
mn

L

)
α

+O

(
mn2

√
M

+mn log
mn

M
+mn

)
β.

If M < m, one column of the matrix does not fit in fast memory,
so the base case costs are SMLU(1,m) = m

(
β + α

L

)
. If M ≥

m, then M/m columns fit into fast memory at once, so the base
case costs are SMLU

(
M
m
,m
)

= M
(
β + α

L

)
. The solution to the

recurrence is

SMLU(m,n) =


O
((

mn2
√
M

+mn log mn
M

logn
) (
β+α

L

)
+α
)

if M < m

O
((

mn2
√
M

+mn
(
log mn

M

)2
+mn

) (
β+α

L

)
+α
)

if M ≥ m

Recall that the communication lower bound for LU [5] is

LU(m,n) = Ω

((
mn2

√
M

+mn

)(
β +

α

L

)
+ α

)
.

Compared to this lower bound, SMLU has an extra polylogarith-
mic factor on the mn term. In the square case, m = n, SMLU
asymptotically matches the lower bound except in the tiny range

n2

(log(n))4
�M � n2.

In the rectangular case, SMLU may be larger than the lower bound
by a logarithmic factor in a larger range

n2

(log(mn))4
�M � mn.
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Compared to the original rectangular recursive algorithm for LU
[14, 21], with partial pivoting but without shape morphing, SMLU
has a bandwidth cost with an extra log(mn/M) on the mn term.
Thus, outside the ranges given above, shape morphing does not in-
crease the bandwidth costs asymptotically. In all cases, shape mor-
phing does reduce latency costs relative to the original rectangular
recursive algorithm.

Algorithm 8 P = SMLU(A,m, n)

if n = 1 then
P = 1 : m
i = ArgMax(|A|)
Swap(A(1), A(i))
Swap(P (1), P (i))
Scale(A(2 : m), 1/A(1))

else

// set submatrix dimensions
n1 =

⌈
n
2

⌉
n2 = n− n1

m1 = n1

m2 = m−m1

// recurse on left half(
A1 A2

)
= A

PL = SMLU(A1,m, n1)

// forward pivot
APPLYPIVOTS(A2, PL,m, n2)

// separate top m1 rows from bottom m2 rows(
A11

A21

)
= SEPARATE(A1,m,n1,m1)(

A12

A22

)
= SEPARATE(A2,m,n2,m1)

// convert each quadrant to Morton ordering
RESHAPETORECURSIVE(A11,m1, n1)
RESHAPETORECURSIVE(A12,m1, n2)
RESHAPETORECURSIVE(A21,m2, n1)
RESHAPETORECURSIVE(A22,m2, n2)

// triangular solve with Morton ordered arrays
A12 = RECTRSM(A12, A11, n1, n2)

// Schur update with Morton ordered arrays
A22 = RECGEMM(A21, A12, A22,m2, n1, n2)

// convert quadrants back to column major
A11 = RESHAPETOCOLMAJOR(A11,m1, n1)
A12 = RESHAPETOCOLMAJOR(A12,m1, n2)
A21 = RESHAPETOCOLMAJOR(A21,m2, n1)
A22 = RESHAPETOCOLMAJOR(A22,m2, n2)

// recurse on (bottom of) right half
PR = SMLU(A22,m2, n2)

// back pivot
APPLYPIVOTS(A21, PR,m2, n1)

// combine pivots
P = COMBINEPIVOTS(PL, PR,m,m2)
A = COMBINE(

(
A11 A12

)
,
(
A21 A22

)
,m,n,m1)

end if

6. DISCUSSION
Because of the impact of communication costs on performance,

there is a long history of algorithmic innovation to reduce com-
munication costs for LU factorizations. Table 1 highlights several
of the innovations, including SMLU presented here, and compares
the asymptotic communication costs and other characteristics for a
particular scenario: the table assumes a square matrix (m = n),
very long cache lines (L = Θ(M)), and reasonably sized matrices
(
√
M < n < M ).
The LAPACK library [2] was developed in the early 1990s to

provide a standard for high performance implementations for fun-
damental computations in linear algebra. The algorithms are based
on “blocking” in order to cast much of the work in terms of matrix-
matrix multiplication which can attain high data re-use, rather than
working column-by-column and performing most of the work as
matrix-vector operations. The LU factorization algorithm in LA-
PACK is a right-looking, blocked algorithm, and by choosing the
right block size, the algorithm asymptotically reduces the commu-
nication costs compared to the column-by-column algorithm. In
fact, for very large matrices (m,n > M ) it can attain the commu-
nication lower bounds for LU proved recently in [5, 13]. However,
for reasonably sized matrices (m,n < M ) the blocked algorithm
is sub-optimal with respect to its communication costs.

In the late 1990s, both Toledo [21] and Gustavson [14] inde-
pendently showed that using recursive algorithms can reduce com-
munication costs. The analysis in [21] shows that the RLU algo-
rithm moves asymptotically fewer words than the LAPACK algo-
rithm when m < M (though latency cost is not considered in that
work). In fact, the RLU algorithm attains the bandwidth cost lower
bounds. Furthermore, RLU is cache-oblivious, as later defined in
[12], so it minimizes bandwidth cost for any fast memory size and
between any pair of successive levels of a memory hierarchy.

Motivated by the growing latency cost on both sequential and
parallel machines, Grigori, Demmel, and Xiang [13] considered
bandwidth and latency cost metrics and presented an algorithm that
minimizes both. In the sequential case, cache lines are often short,
but in some cases, such as out-of-core computation, the long cache
line model with latency costs is appropriate. In order to attain the
lower bound for latency cost (proved in that paper via reduction
from matrix multiplication), the authors used the block-contiguous
layout and introduced tournament pivoting as a new and different
scheme than partial pivoting. Tournament pivoting scheme makes
different pivoting choices than partial pivoting and is theoretically
less stable (though the two schemes are equivalent in a weak sense
and have similar characteristics in practice [13]). The drawbacks
to CALU are that it requires knowledge of the fast memory size for
both algorithm and data layout (i.e., it is not cache-oblivious), and
that, because of its youth, tournament pivoting does not enjoy the
same confidence from the numerical community as partial pivoting.

Making the RLU algorithm latency optimal has been an open
problem for a few years. For example, arguments are made in [4]
and [13] that RLU is not latency optimal for several different fixed
data layouts. Through shape morphing, we show that attaining
communication optimality, being cache oblivious, and using partial
pivoting are all simultaneously achievable. The technique general-
izes to QR decomposition, for which a similar history of algorith-
mic innovation exists. SMLU is not optimal only in a small range
and only by a polylogarithmic factor. It remains open whether one
can close or reduce this gap.

Unfortunately, the idea of shape-morphing is unlikely to yield
the same benefits in the parallel case (i.e., attaining the latency
lower bound while using partial pivoting). Choosing pivots for each
of n columns lies on the critical path of the algorithm and therefore
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Algorithm Bandwidth Cost Latency Cost Pivoting Data Layout Cache
Oblivious

Lower Bound [5, 13] Ω
(
n3
√
M

)
Ω
(

n3

M3/2

)
any any -

Naïve O(n3) O
(
n3

M

)
partial CM 3

LAPACK [2] O
(
n4

M

)
O
(
n3

M

)
partial CM 7

RLU [21] O
(
n3
√
M

+ n2 log n2

M

)
O
(
n3

M

)
partial CM 3

CALU [13] O
(
n3
√
M

)
O
(

n3

M3/2

)
tournament BC 7

SMLU O
(
n3
√
M

+ n2 log2 n2

M

)
O
(

n3

M3/2 + n2

M
log2 n2

M

)
partial CM or RR 3

Table 1: Asymptotic communication costs and characteristics of LU factorization algorithms. This table assumes a square matrix
(m = n), very long cache lines (L = Θ(M)), and reasonably sized matrices (

√
M ≤ n ≤ M ). We use the acronyms CM, BC, and

RR for column-major, block-contiguous, and rectangular-recursive data layouts, respectively, as defined in Section 3.

must be done in sequence. Each pivot choice either requires at least
one message or for the whole column to reside on a single proces-
sor. This seems to require either Ω(n) messages or Ω(n2) words
moved. Tournament pivoting in the parallel case achieves substan-
tially lower communication costs [13, 20].
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APPENDIX
We include supplementary algorithms here. Algorithm 9 is the re-
verse of Algorithm 3, and Algorithm 10 is the reverse of Algorithm
4.

Algorithm 9 A = COMBINE(A1,A2,m,n,m1)
Input: A1 ism1×n andA2 ism−m1×n both in column-major

order
Output: A is m × n, the first m1 rows are from A1 and the re-

maining rows are from A2

for j in 1:n do
A(1 : m1, j) = A1(1 : m1, j)
A(m1 + 1 : m, j) = A2(1 : m−m1, j)

end for

Algorithm 10 B = RESHAPETOCOLMAJOR(A,n,m)
Input: A is m× n with m ≥ n in rectangular recursive order
Output: B is the same matrix in column-major order

if m = n = 1 then
B(1, 1) = A(1, 1)
return

end if
if m > n then

m1 = dm/2e, m2 = bm/2c(
B1

B2

)
= A

B1 = RESHAPETOCOLMAJOR(B1,m1,n)
B2 = RESHAPETOCOLMAJOR(B2,m2,n)
B = COMBINE(B1,B2,m,n,m1)

else
n1 = dn/2e, n2 = bn/2c(
B1 B2

)
= A

B1 = RESHAPETOCOLMAJOR(B1,m,n1)
B2 = RESHAPETOCOLMAJOR(B2,m,n2)
B =

(
B1 B2

)
end if
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