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Abstract

This thesis studies several issues concerning applications of parametric search-

ing in geometry.

In parametric searching problems, we are typically given a problem whose

solution depends on some input and a real parameter. We are only given the

input, not the value of the parameter, and we are asked to �nd a value of the

unspeci�ed parameter in which the answer to the problem has some property

(it is zero, or maximal etc.).

The �rst chapter introduces the main techniques of parametric searching,

most notably Megiddo's ingenious technique [Me]. We also present other

techniques, most of them less general, and other extensions. While most of

the material in the Introduction is an exposition of the known techniques

(mainly those techniques needed later in the thesis, but not exclusively), it

does contain some original material. Speci�cally, in section 1.3.1 we show

how to relax the requirements set by Megiddo when the problem at hand is

computing the minimum of a convex function (convex with respect to the

parameter). In section 1.6.1 we present a simple argument that shows that

in some cases the complex techniques of Megiddo and others can be replaced

by a simple randomized procedure with the same (expected) e�ciency. In

section 1.8.1 we discuss the relation of linear programming to parametric

searching.

The main part of this thesis is contained in Chapter 2. Most of the re-

sults in this chapter also appear in [To]. In that chapter, several polygon

containment problems are solved. Given a convex polygonal object P and

an environment Q consisting of polygonal obstacles, we seek a placement

for the largest copy of P that does not intersect any of the obstacles, al-

lowing translation, rotation and scaling. We employ the parametric search

technique of Megiddo [Me] presented in the introduction. In order to solve

this general problem, we also solve the �xed size problem, in which we are

only required to decide whether a �xed-size copy of P can be placed in Q.

We use an algorithm due to Leven and Sharir [LS, LS1] that �nds a su-

perset of placements, not all of which are valid. Our solution runs in time

O(k

2

n�

4

(kn) log

3

(kn) log log(kn)) where k is the complexity of P , n is the

complexity of Q, and �

q

(r) is the maximum length of an (r; q)-Davenport-

Schinzel sequence (which is almost linear in r for any �xed q) [ASS, HS].

In addition, we solve some restricted variants of the general case. One
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variant in which Q is the interior of a convex polygon and P is not allowed to

rotate, is solved in linear time (linear in n+ k, the sum of complexities of P

and Q). Another variant, in which we have to place (disjoint copies of) two

convex polygons P

1

and P

2

inside a third convex polygon Q (of complexities

k

1

, k

2

and n, respectively) and P

1

and P

2

are not allowed to rotate, is solved in

timeO((n+k

1

+k

2

) log

2

(n+k

1

+k

2

)). The last variant we consider is placing

the largest copy of a triangle under translation, rotation and scaling inside

a convex polygon Q, and it is solved in time O(n

2

log

2

n). These algorithms

rely on the algorithms of Chazelle [Ch] and Avnaim and Boissonnat [AB]

that solve the corresponding �xed size polygon containment problems.

The last chapter describes some practical experimentation that we have

carried out on parametric searching problems. We have coded algorithms

that solve two geometric problems using the parametric search technique of

Megiddo. Although these programs do not implement the best (and optimal)

solutions of these problems, they run fast. Their speed is greatly increased by

the use of a very simple heuristic. This heuristic allows even very ine�cient

versions of the algorithms (almost an order of magnitude slower) to run very

fast. It must be added that these conclusions are experimental only and only

valid for the input distributions that we have used. In addition to studying

the behavior of the algorithms, practice in coding these (rather complex)

algorithms was also gained; this is also brie
y documented in Chapter 3.

This is especially valuable because many parametric searching algorithms

tend to be complex, but quite similar to one another.
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Chapter 1

Introduction

1.1 What is Parametric Searching ?

This introduction plays two roles in this work. One is to explain the general

methods we apply later to some speci�c problems. The other role is to

show the width and depth of this subject. Later, we will use only a small

portion of the theory exposed here, but we thought it appropriate to o�er

a better coverage in the introduction. This is not meant however to be a

comprehensive survey. Rather we try to expose the reader to the various

topics, and give pointers to the literature where a complete discussion can

be found.

While most of the material in this chapter is a survey of published works,

some is original material. This includes the material in sections 1.3.1, 1.6.1.

Section 1.8.1 contains a new exposition of known results.

The term parametric searching is not a technical term, but rather a col-

lective name to a number of techniques. These techniques can be applied

to problems involving both combinatorial and numerical features, such as

computational geometry problems, combinatorial optimization problems, etc.

The output of these problems is always a real number or a vector of reals.

1.2 A Preliminary Example

The �rst technique we describe, and by far the most important and gen-

eral one, is the ingenious technique developed by N. Megiddo [Me]. As in

Megiddo's paper, we introduce it through an example.

7



The problem. Let Y

i

(�) = a

i

� + b

i

be n distinct linear functions such

that all the a

i

's are positive (thus all are increasing functions). For every

real � let F (�) be the median of the set fY

1

(�); : : : ; Y

n

(�)g. F is a piecewise

linear, monotone increasing function with O(n

2

) breakpoints. Our problem

is to �nd �

?

, the root of the equation F (�) = 0.

One (trivial) way to solve the problem is to �nd all the roots of the n

functions Y

i

; their median is �

?

. But this method will not serve our expository

needs.

A �rst solution. We compute the median of the set fY

1

(�

?

); : : : ; Y

n

(�

?

)g.

There is an obvious obstacle, that we do not know �

?

and therefore we do

not know the members of the set. The median �nding algorithm that we will

employ however, will access the members of the set only through comparisons

between pairs of elements. Comparing a pair of linear functions only amounts

to �nding in what side of their intersection we are. If we are to the left of

the intersection, the line with smaller slope is above the other; to the right

of the intersection, the line with higher slope is above.

Thus we can resolve a comparison between Y

i

(�

?

) and Y

j

(�

?

) in the follow-

ing manner (see Figure 1.1): without loss of generality assume that a

i

> a

j

.

We compute the intersection point Y

i

(�

i;j

) = Y

j

(�

i;j

). We evaluate F (�

i;j

),

the median of the set fY

1

(�

i;j

); : : : ; Y

n

(�

i;j

)g whose elements can easily be

computed. Because F is monotone increasing, if F (�

i;j

) < 0 than �

i;j

< �

?

and thus Y

j

(�

?

) < Y

i

(�

?

). The opposite case F (�

j;j

) > 0 is symmetric, and

if F (�

i;j

) = 0 we can stop the algorithm right there, because we have found

�

?

= �

i;j

.

Once we know the median line at �

?

(and this is what the algorithm

computes!) we can easily �nd its root, and this is the sought �

?

.

The complexity of this algorithm is easy to analyze. We use the median

�nding algorithm of Blum et al [BFPRT] which performs O(n) comparisons,

each of which is resolved by performing another median �nding procedure,

this time on a concrete set of numbers. Thus every comparison takes O(n)

time and the whole algorithm runs in O(n

2

) time.

A better solution. We can improve this, by noticing that every single

comparison made by the main median �nding algorithm is very costly. The

trick is to use a parallel median �nding algorithm. We use for this purpose

8
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Figure 1.1: The median of a set of lines

a parallel sorting algorithm (that certainly �nds the median), which uses n

processors and O(log n) parallel time (see below for a more detailed discussion

of the model of parallel computation that we assume). We simulate the �rst

parallel step sequentially, by simulating the n processors one by one. Each

one performs a comparison. We do not resolve them immediately as in our

�rst version, but rather collect the comparisons from all the processors. When

all n processors generate their comparisons, we calculate the n intersection

points involved in the comparisons. We sort the points, �

1

< �

2

< � � � < �

n

.

We now perform a binary search to locate �

?

in this sorted list. This is done

using log n \costly" comparisons, each using O(n) time.

9



Once we have located �

?

in the list, we can resolve all the comparisons in

the �rst step of the parallel algorithm.

We repeat this for every parallel step, and as in the sequential case the

termination of the algorithm provides us with a solution to the original prob-

lem of �nding �

?

.

The time complexity of this version is much better. We perform log n

comparisons per parallel step, and there are O(log n) such steps. Thus the

cost of all comparisons is O(n log

2

n). We sort O(log n) sequences of test

values, one in every parallel step, with a total cost of O(n log

2

n). In addition,

the cost of simulating the parallel sort is O(n log n), and thus the overall

running time is O(n log

2

n), almost an order of magnitude better than the

sequential version of the algorithm.

An improvement. Before we conclude this section we would like show a

minor improvement. This improvement is not enough to lower the asymp-

totic running time of the algorithm, but it does lower the running time and

together with another improvement due to Cole [Co1], shown in section 1.8.2

will lead to lower asymptotic running time.

The observation is that we need not sort the set of test values �

1

< �

2

<

� � � < �

n

in order to resolve all the n comparisons. What we do is �nd the

median �

m

of this set and compare it to �

?

. If �

m

< �

?

we resolve half the

comparisons whose intersection is lower then �

m

. Otherwise the other half of

comparisons is resolved. The cost of this step is one comparison and O(n)

other operations (�nding the median �

m

and resolving half the comparisons).

We repeat this procedure with the values left until all the comparisons are

resolved. There are log n such steps and comparisons, and the total number

of other operations is O(n) (because the sizes of the resulting subsequences

shrinks geometrically). Thus there will still be log n comparisons per parallel

step, but the number of other operations other than those involved in the

comparisons is only O(n log n), an improvement of a logarithmic factor.

We note that another improvement could be achieved by employing a

more e�cient parallel median-�nding algorithm such as in [CY].
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1.3 A Formal Description of Megiddo's Tech-

nique

The previous example showed the main ideas behind Megiddo's technique,

and it is now time to turn to more formal details, which reveal the full

generality of the method.

Megiddo's technique. Suppose we have a problem P(�) that receives

as input n data items and a real parameter �. We want to �nd a value �

?

at which the output of P(�) satis�es certain properties. Typical examples

are when the output of P(�) is a real number and we want to �nd a value

�

?

in which the output is zero or extremal. Suppose we have an e�cient

sequential algorithm A

s

that solves P(�) at any given �. We also require

that A

s

can determine whether a given � is equal to, less than, or greater

than the sought value �

?

. Assume moreover that the 
ow of execution of

A

s

depends on comparisons, each of which involves testing the sign of a

low-degree polynomial in the input data items and �.

Megiddo's technique runs the algorithm A

s

\generically", without spec-

ifying the value of �, with the intention of simulating its execution at the

unknown �

?

. Each time a comparison is to be made, we compute the few real

roots of the polynomial associated with the comparison. We run the \con-

crete" version of A

s

at each root, and thereby determining the location of �

?

among the real roots. This determines of course the sign of the polynomial

at �

?

, because the sign of a polynomial is constant between two consecutive

roots. This in turn determines the outcome of the original comparison made

by the \generic" algorithm A

s

, and its execution can be resumed.

As we trace the execution of the \generic" A

s

, each comparison resolved

further constrains the range where �

?

can lie. We obtain a sequence of smaller

and smaller intervals containing �

?

until we reach the end of A

s

with a �nal

interval I. The outcome of A

s

will be the same combinatorially when we run

it at any � 2 I, including �

?

. If I is a singleton, we have found the sought �

?

.

Otherwise it is usually straightforward to �nd �

?

, often as an endpoint of I.

Note that if �

?

is found to coincide with a real root of one of the comparisons,

then the algorithm can be stopped \prematurely" right there.

Actually, if at the end of the algorithm one of I's endpoints is �

?

, then

it was one of the real roots tested. If A

s

can decide whether a value is �

?

,

11



the \generic" algorithm will never terminate, but rather it will be halted as

soon as �

?

is found. This is the case in most of the applications of Megiddo's

technique.

The cost of this search is usually dominated by C

s

T

s

, where C

s

is the

maximum number of comparisons made by A

s

and T

s

is the running time

of A

s

. This bound is generally too high, so Megiddo suggests to replace A

s

with a parallel algorithm A

p

that also solves the problem P(�). If A

p

uses

P processors, and runs in T

p

parallel steps, then each such step involves at

most P independent comparisons, that is, each can be carried out without

knowing the outcome of the others. We then collect the roots of the P

polynomials associated with the comparisons, and run a binary search to

�nd the location of �

?

among them, using the serial algorithm A

s

at each

binary step. This requires O(P + T

s

log P ) time per parallel step, for a total

of O(PT

p

+ T

s

T

p

logP ) time. This is often a saving of nearly an order of

magnitude in running time over the generic sequential version.

As in our example, our overall algorithm is sequential. In practice, each

step of the parallel algorithm is simulated sequentially. The only reason for

using a parallel algorithm is to be able to generate only a small number (T

p

)

of \batches" of independent comparisons, which can be e�ciently resolved.

See below for a discussion of the model of computation that we use.

Note that we can maintain the sequence of smaller and smaller intervals

known to contain �

?

(that is we can maintain the tightest bounds on �

?

found so far) so that we can trivially compare �

?

with a value not lying in

the current interval. Alternatively, we can behave in each parallel step as

if we have no previous information on the location of �

?

. We did not make

either assumption in the complexity analysis. It is certain however, that

maintaining the interval will lower the number of costly comparisons. In a

sense, this prevents the algorithm from asking questions the answer of which

is already known. The e�ect of this heuristic will be examined experimentally

in chapter 3.

Plugging the example into the formal framework. To render the

general technique just demostrated somewhat more digestible, we show how

to \plug in" the example of the previous section into the formal framework.

The problem P(�) was computing the median F (�). The value �

?

was the

root of this monotone increasing function F . The algorithm A

s

can also

12



determine whether a given � is equal to, less than or greater than �

?

, because

F (�) is monotone increasing. The sequential algorithm A

s

was a median

�nding algorithm run on the set of values fY

1

(�); : : : ; Y

n

(�)g, and therefore

T

s

was O(n) ([BFPRT]). The parallel algorithm A

p

was a parallel sorting

algorithm with P = n processors and T

p

= O(log n) running time. The

comparisons in the sorting algorithm were resolved by testing the sign of the

linear polynomial (a

i

� + b

i

) � (a

j

� + b

j

).

1.3.1 Relaxing some requirements | convex func-

tions.

In many cases in which P(�) is a monotone function and �

?

is its root, the

requirement that A

s

determine whether a given � is equal to, less than or

greater than �

?

is satis�ed automatically, as in our example. Another class

of problems involves a convex function P(�), and the solution �

?

is the point

where it achieves its minimum. Given a test value �, the standard technique

to determine the side of � containing �

?

is to compute the sign of the derivative

of P(�)). We show below how this computation can be avoided, and replaced

by a simpler technique.

Consider a step of the parallel \generic" algorithm A

p

. We compute

O(n) roots and we have to locate �

?

among them. As before, we �nd their

median �

m

and run A

s

at this value. We also �nd the two root adjacent

to �

m

, denote them �

m

0

< �

m

< �

m

00

and run A

s

at these values too. If

P(�

m

0

) < P(�

m

) < P(�

m

00

) we conclude that the convex function is decreasing

at �

m

, therefore �

?

> �

m

, and we resolve half the comparisons and continue

as before. The case P(�

m

0

) > P(�

m

) > P(�

m

00

) is symmetric and dealt

with in a similar manner. The di�cult case is P(�

m

0

) > P(�

m

) but also

P(�

m

00

) > P(�

m

). In this case we do not know in what side of the minimum

�

m

lies. We can however resolve all the comparisons other than the one that

generated �

m

, because we have located �

?

between P(�

m

0

) and P(�

m

00

).

We now duplicate the state of the parallel algorithmA

p

to form two copies

of it, A

p;<

and A

p;>

. In A

p;<

we resolve the comparison as if �

?

> �

m

and in

the other �

?

< �

m

. We also record the value of �

m

. We now run two simulated

parallel algorithms. In subsequent stages, as long as we do not run into a

value �

0

such that P(�

0

) < P(�

m

) the initial assumptions remain valid and

both A

p;<

and A

p;>

can continue their execution. If both reach termination

13



in this state, we know that both assumptions were false and in fact �

?

= �

m

,

because the algorithms did not �nd any point lower than �

m

, and thus this

is the minimum. If we run into a point �

0

such that P(�

0

) < P(�

m

), without

loss of generality assume that �

0

< �

m

and therefore �

?

> �

m

. In this case

the assumption that was used to initiate A

p;>

was false and we \kill" A

p;>

.

But this state of a�airs will lead to a new \lowest" point �

0

whose relation

to �

?

is unknown. Thus we will duplicate the state of A

p;<

and resume the

execution with two new algorithms as we did for �

m

.

It is clear that using this procedure does not impair the asymptotic com-

plexity of the general method, because the nondeterminism is limited to at

most two paths of execution at any time. There is an added complexity, a

constant factor, that results from the fact that we perform three evaluations

of P at any binary step instead of one.

One has to check however that the total cost of duplicating the state of

the parallel algorithm A

p

does not dominate the complexity. This will be the

case in most problems, because we duplicate the state of the algorithm only

once per parallel step, or T

p

times.

Finally we note that in many applications the direction of the minimum

can be found directly by computing the derivative P

0

(�) (see for example

[Me3] for two di�erent ways to compute the sign of these derivatives). The

above procedure can facilitate however the application of Megiddo's tech-

nique to new problems, where deciding the direction of the minimumthrough

the derivative may be di�cult or costly.

1.4 Models of Computation

There are two issues concerning models of computation that need to be clar-

i�ed. One is the model in which we require the parallel algorithm to be

speci�ed, and the second is the arithmetic model of computation in which

the entire algorithms are speci�ed.

1.4.1 Model of parallel computation

When we use a parallel algorithm in Megiddo's technique, its complexity

has a two-fold in
uence on the overall parametric search algorithm. As we

simulate it, we perform every step the parallel algorithm performs. Thus the

14



overall number of operations of the algorithm, including pointer operations,

number manipulations and so on, are counted in the overall complexity of the

parametric searching algorithm. These operations have to be counted using

some plausible model of computation such as a RAM or a Turing Machine.

The initial motivation for using a parallel algorithm is to batch together (the

costly) comparisons. So a separate count is needed for the number of proces-

sors used by the algorithm (in other words, how many comparisons can be

batched together in a single step) and in how many steps will the algorithm

terminate. This is in fact all that is required from the parallel algorithm.

There is no need to concern ourselves about synchronization, inter-process

communication, and other problems of concurrent programming, because the

algorithm will be simulated on a sequential, rather than a parallel machine.

The model of computation the parallel algorithm can be speci�ed in is thus

Valiant's comparisons model [Va] (in which only comparisons are counted in

the complexity), with the added constraint that operations other than com-

parisons need to be counted as well, but need not be performed in parallel.

Since this is a rather weak model of parallel computation, it may be easier

to design algorithms that run under it rather than under a more realistic

model such as EREW-PRAM or a similar model.

1.4.2 The arithmetic model of computation

As in other geometric-related algorithms there are two issues that arise. One

is the class of operations that can be performed in constant time. In addition

to the standatd arithmetic operations, we also assume that real roots of

polynomials of constant degree can be computed in constant time. This can

actually be done, but it is rather complicated for high degree polynomials |

see below.

Another, more subtle issue is related to the representation of real num-

bers. We assume that real numbers are represented exactly and that arith-

metic operations on them can be done in constant time. This assumption

lies at the very heart of parametric search techniques. Assume for example

that we are working with a �xed point number representation with b bits.

Instead of simulating a parallel algorithm we could simply perform a binary

search over the interval of representable numbers and in b (which is con-

stant) number of comparisons we could restrict the interval where the sought

parameter lies to an interval containing no representable numbers. This pro-
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cedure (which seems to be very practical by itself) shows that parametric

search algorithms search for an exact value and are therefore not optimal as

approximation algorithms.

1.5 Another Important Example

In this section we present another important example. This problem, called

slope selection has several characteristics that highlight some issues in para-

metric searching.

Given a set of n lines in the plane and an integer 1 � k �

�

n

2

�

, the problem

is to select the k-th leftmost intersection point of the lines. The name slope

selection comes from the geometric dual of this problem, where, given n

points, we have to �nd the k-th largest slope of the

�

n

2

�

lines determined

by the points. We assume that no two lines are parallel and that the x-

coordinates of the intersections are all distinct.

The problem was ingeniously solved in optimal O(n log n) time by Cole,

Salowe, Steiger and Szemer�edi [CSSS], and all the material in this section is

from their paper.

By reduction from element uniqueness it follows that the lower bound for

this problem is 
(n log n). If the search is shallow, that is k = O(n), the

problem can be solved in optimal O(n log n) time by a standard plane sweep

technique. This observation will have a crucial role in the next section.

A parametric search algorithm. We now present a parametric search

algorithm that solves the problem. We label the x-coordinates of the inter-

section points from left to right t

1

; : : : ; t

k

; : : : ; t

(

n

2

)

. We also number the lines

in decreasing order of their slopes, so that the lines are ordered upwards to

the left of the �rst intersection point t

1

(see the numbering in Figure 1.2).

We use a parallel sorting algorithm as the generic algorithm A

p

, which at-

tempts to sort the lines according to their y-coordinate immediately to the

right of t

k

, that is, at t

k

+ �, for su�ciently small � > 0. If we could perform

this computation then the �nal interval I in which t

k

is known to lie must be

(t

k

; t

k+1

), because the permutation the sorting algorithm returns is valid in

any point of I, but the permutation is certainly not valid outside (t

k

; t

k+1

).

On the other hand, the interval I cannot be smaller than (t

k

; t

k+1

) because
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this interval does not contain any intersection points, so it can not be reduced

further.
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Figure 1.2: A permutation of lines and the number of inversions

It remains to show how to decide, given an x value (which will always be

an intersection point t

i

of two lines being compared), whether x < t

k

, x = t

k

or x > t

k

, or actually to decide whether i < k, i = k or i > k. The solution is

to compute the y coordinates of the lines at x+ �, sort this list in decreasing

order, and calculate the number of inversions I(x) in this permutation which

we label �(x). This will give us the index i, because every intersection point

to the left of (and including) t

i

(and only these points) adds one to the

number of inversions (see Figure 1.2). Computing the permutation amounts

to sorting the lines according to their y values, which can be done in time

O(n log n). Calculating the number of inversions in a permutation can also

be done in time O(n log n) by performing a merge sort, and in each merging

step computing the number of inversions between the two halves of the list
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and adding the number of permutations inside each half. These numbers of

course are computed in a recursive manner together with the sorting.

We conclude that if we use a parallel sorting algorithm with n processors

and O(log n) parallel parallel time (for example [AKS]), the overall running

time of the algorithm will be O(n log

3

n). Because the parallel procedure is

a sorting network, we can make use of Cole's improvement [Co1] discussed

below in section 1.8.2, which performs only O(log n) sequential tests instead

of O(log

2

n), thereby reducing the running time to O(n log

2

n).

Further relaxation of the requirements. Recall that in the formal

description of Megiddo's method it was required that the parallel algorithm

A

p

also solves the problem P(�). We are now in position to comment that

this is far too stringent a requirement. As in this section, all we have to

require is that the output of A

p

changes combinatorially at �

?

, and this will

ensure that �

?

will be tested and found.

This observation is useful in many algorithms, including polygon contain-

ment problems to be discussed later, and elsewhere, [AS] for example. This

observation was noted in Megiddo's original paper [Me] where he used sorting

as the parallel procedure in a problem involving minimum spanning trees.

An optimal solution. Cole et al. [CSSS] were able to shave another

logarithmic factor o� the running time of the algorithm and bring it down

to an optimal O(n log n). There are many technical di�culties in their solu-

tion, and therefore we do not describe it in full; the interested reader should

consult their paper. We restrict out attention to the main ideas behind their

improvement, since we believe similar techniques can improve other algo-

rithms as well. The reader should bear in mind however, that these ideas

cannot be implemented without solving some technical di�culties.

The �rst observation is that computing the exact number of inversions

in the permutation �(t

i

) is expensive and not necessary. All we want to

know is whether i < k, i = k or i > k. Knowing i exactly is not required.

Cole et al. suggest that instead of calculating the exact number of inversions

one can calculate an approximation to this number. An error bound on this

approximation is also needed. For example, if k = 250 and the approximation

to the rank i of t

i

is i

?

= 200 with an error bound of 25, we know that i < k

because 175 � i � 225 < 250 = k. If the error bound is too large, we will
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re�ne the approximation and obtain a new approximation with a smaller

error bound, and repeat this step until the relation between i and k can be

decided.

The second observation is that the sequential tests the algorithm makes

are not independent, and the resolving of a previous test can ease the resolv-

ing of the current one. Consider a sequential test made by the algorithm.

We are given a point t

i

and we would like to compute the above approxima-

tion. The point t

i

lies in the interval I = (x

0

; x

00

) where t

k

is known to lie

(otherwise the comparison can be trivially resolved). We have computed an

approximation to the rank of the interval's endpoint. If t

i

is not too far away

from one endpoint of the interval, say x

0

, the permutations �(x

0

) and �(t

i

)

are not much di�erent, and therefore �(t

i

) and the number of inversions may

be computed cheaply from �(x

0

) and its rank.

The third observation is that if we use the permutations themselves as

suggested above, then the calculation of �(t

i

) from �(x

0

) is still too costly.

Here the idea of approximation comes to the rescue once again, because if

we keep only an approximation �

?

to the permutation �, then \dragging" it

from x

0

to t

i

will not be too costly. Speci�cally, the cost of this \dragging"

while keeping the same error bound can be madeO(n), and of course the total

number of re�nements during the whole algorithm is log n if every re�nement

halves the error bound. Thus the total cost of the sequential tests will be

O(n log n) time, bringing down the total cost of the algorithm to the same

complexity.

We will not go into further details here, but we would like to summarize

the method. The main idea is not to compute the permutation �, but to

maintain a data structure that represents an approximation to that permu-

tation. The approximated rank is the number of inversions in this approxi-

mated permutation. The approximation is �ne enough so that the relation

of the rank to k can be decided, but at the same time coarse enough so

that \dragging" the approximated permutation and maintaining the number

of inversions is not too costly. As \dragging" is cheap, and the number of

re�nements is logarithmic, we can save a logarithmic factor in running time.
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1.6 A Probabilistic Approach

In this section we show how randomization can be exploited in solving para-

metric search problems. The �rst part of this section describes a direct way

of using random sampling, eliminating the need for using Megiddo's complex

technique. The second part is a remark on the use of probabilistic algorithms

within the framework of Megiddo's technique.

1.6.1 Direct use of random sampling

We now describe how to use random sampling to solve parametric search

problems. The idea is simple; we have a large ordered (discrete) parameter

space where the solution in known to exist. We do not want to construct it

explicitly. Megiddo's technique uses a parallel algorithm to direct this search.

But a simpler approach can be taken.

Let us simply select at random some elements from this parameter space,

sort them in increasing order �

1

< �

2

< � � � < �

n

, and locate the desired

solution among them, say �

k

< �

?

< �

k+1

. Intuitively, the number of elements

which lie in the interval (�

k

; �

k+1

) should be small, and we now conduct the

rest of the search in a much smaller space.

Let us see how this idea can be implemented for the slope selection prob-

lem. We have

�

n

2

�

= O(n

2

) intersection points between our n lines. The

x-coordinate of each one of them can be the solution. We therefore select a

random sample of size n from the set of intersection points, assigning equal

probability to each point. As these points are referenced by a two-dimensional

index (point p

i;j

is the intersection of lines i and j) we simply select n pairs

of lines and compute their intersections (we are only interested in the x-

coordinate). Next we sort the n numbers �

1

< �

2

< � � � < �

n

and locate �

?

among them, say �

k

< �

?

< �

k+1

, using log n costly comparisons. If we use

the method of Cole et al [CSSS] to locate �

?

, the cost of this step will be only

O(n log n). We now need an argument that shows that the expected number

of intersections in the interval (�

k

; �

k+1

) is O(n), so that we can perform a

shallow search to locate �

?

, using a sweep procedure, for an overall expected

running time O(n log n).

We need the following lemma:

Lemma 1 Given a set of N points, x

1

; : : : ; x

N

, one of which, say x

j

, is
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marked, and a random sample of K points x

i

1

� � � � � x

i

K

such that x

i

l

�

x

j

� x

i

l+1

, where the points in the random sample are assumed to be chosen

independently and with equal probability, then the expectation of i

l+1

� i

l

is

O(N=K).

Proof. As the values of the points are not important, we can ignore them

and work with the indices only. So we are given a random sample of K points

in the range 1; : : : ; N . Let us decide on the following sampling strategy:

we select K i.i.d. random variables X

1

; : : : ;X

K

in the real interval (0; N ]

and take their ceilings. Sorting the random variables (which is equivalent to

sorting the ceilings) we obtain theirK order statisticsX

(1)

� � � � � X

(K)

. It is

known that E(X

(i)

) =

iN

K+1

(see for examle [Fe, p. 23] for the density function;

the expectation is easily derived). Therefore the di�erencesE(X

(i)

�X

(i�1)

) =

N

K+1

(we take X

(0)

= 0 and X

K+1

= N). But j lies in one of these intervals

and the proof is complete.

Note that while the lemma we needed is of a general nature, the shal-

low search procedure is speci�c to the problem. Repeating the sampling

procedure will not lead us quickly to the solution.

To summarize, we were able to solve the slope selection problem in op-

timal expected time, without resorting to parallel algorithms or to Cole's

improvement. At the present time, this solution seems to be much more

practical in terms of the constants hidden in the O-notation.

Ji�r�� Matou�sek [Ma] has obtained similar results for the same problem. His

algorithm is quite similar to ours, but he proves its correctness in a di�erent

way. The only di�erence between the algorithms is that Matou�sek uses a

\quality control" to make sure the sample is good. If the sample is not good,

that is the remaining interval contains too many intersection points, the

sampling is repeated until a good sample is obtained. This is clearly better

than our algorithm that will sweep an interval containing many intersections

when the sample is not good.

Perhaps even more important is Matou�sek's observation that even a small

sample containing only one point, leads to a good algorithm. In this case the

(slightly worse) expected running time will be O(n log

2

n). The importance

of this technique (referred to as randomized halving) lies in the fact that it

may be widely applicable to parametric searching problems.

21



1.6.2 Megiddo's probabilistic improvement

Cole [Co1] reports that Megiddo has suggested another use of randomness

in parametric searching. Cole refers to this as Megiddo's probabilistic im-

provement, so we shall also use this name. Megiddo suggests that if one uses

probabilistic parallel algorithms as the \generic" algorithm in this technique,

the expected running time will be lower than the running time of the deter-

ministic version. Cole [Co1] uses probabilistic parallel median and minimum

�nding algorithms that use O(n) processors and constant expected time to

improve some parametric search algorithms.

Agarwal, Aronov, Sharir and Suri [AASS] use this idea extensively. They

devise randomized algorithms for both the parallel \generic" algorithm and

the sequential algorithm to reduce considerably the complexity of the deter-

ministic version of the algorithm.

1.7 A Matrix Search Approach

In a number of papers, Frederickson and Johnson [FJ1, FJ2, Fr] propose a

completely di�erent approach to parametric searching. The material in this

section is taken from their papers. Their approach is both e�cient and simple

when applicable. It also demonstrates the nature of parametric searching. As

usual, we do not go into all the details and generalizations possible, but rather

outline the technique to help the reader appreciate it. Again we recommend

that the interested reader consult the original papers for the missing details.

Consider the special case of the max-min tree k-partitioning problem

where the tree is a single path. In the max-min tree k-partitioning prob-

lem we are given a tree with n nodes and a non-negative weight associated

with each node, and we are required to delete k of the edges so as to max-

imize the weight of the lightest of all resulting subtrees. Let us de�ne F (�)

to be the maximal number of edges that can be deleted so that the weight

of every subtree is at least �. We would like to �nd �

?

, the maximal � such

that F (�) � k.

As pointed out by Perl and Schach [PS], F (�) can be evaluated in O(n)

time. Megiddo exploited this, and designed a parallel procedure for evaluat-

ing F (�) that runs in O(log n) time with O(n) processors, and obtained an

O(n log

2

n) algorithm for the case where the tree is a path. Cole [Co1] later
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improved this and obtained an O(n log n) algorithm.

We now present the matrix search approach. Let the nodes be v

1

; v

2

; : : : ; v

n

and let the weights be w

1

; w

2

; : : : ; w

n

. We de�ne the distances d

i;j

=

P

i

�=j

w

�

for 1 � j � i � n, and for technical reasons d

i;j

= 0 for 1 � i < j � n. It is

clear that the solution �

?

equals to d

i;j

for some i and j. Thus have identi�ed

a set of size

1

2

�

n

2

�

= O(n

2

) that contains the solution. We could compute

the set explicitly and perform a binary search over it to �nd �

?

. This would

cost O(n

2

) time just to compute the set, so we have to abandon this idea,

although the binary search would not examine more then O(log n) elements

of the set.

The important observation is that elements in the set can be referenced

implicitly as d

i;j

and that there is a partial order on the set. If the order was a

total order, we could perform the binary search easily, without precomputing

the whole set. The idea is to exploit the partial order that is present in the

set to direct the binary search. The partial order follow from the fact that

d

i;j

� d

i;j+1

and d

i;j

� d

i+1;j

. Frederickson refers to this partial order as a

sorted matrix because the elements can be arranged in a square matrix

A

n�n

=

0

B

B

B

B

B

B

@

d

1;1

0 0 : : : 0

d

2;1

d

2;2

0 0

d

3;1

d

3;2

d

3;3

0

.

.

.

.

.

.

d

n;1

d

n;2

d

n;3

: : : d

n;n

1

C

C

C

C

C

C

A

where the rows and the columns are sorted. The matrix need not be con-

structed explicitly of course, since we can compute an element in constant

time if we keep only the linear-space array w

1

; w

2

; : : : ; w

n

(more precisely, if

we maintain the pre�x sums in this array).

Frederickson and Johnson show how to search for a value �

?

in such a

matrix, assuming a procedure that can compare �

?

with any givan value (as

usual, �

?

is not known explicitly). Their technique requires O(log n) such

comparisons and O(n) other constant-time operations. As the comparisons

cost O(n) each, the total cost of their max-min path k-partitioning algorithm

is O(n log n). Frederickson [Fr] shows how this can be extended to trees, and

designs better comparison algorithms so that he �nally obtains a linear time

optimal algorithm for the max-min tree k-partitioning problem.

We now describe the search procedure on this matrix. We assume that

n = 2

k

for some integer k. The procedure has two phases. In the �rst
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phase, we have a collection of sorted matrices, which are all sub-matrices of

the initial matrix A. In every step of the �rst phase we divide each of the

matrices into four square submatrices and discard some of these matrices.

After k = log n steps we are left with only singleton submatrices, and the

second phase consists of a regular binary search, as the one described in

section 1.2.

The �rst phase starts with A as the only matrix and divides it into four

square submatrices. In every step, after dividing the matrices we form two

sets of elements: S is the set of the smallest element of each matrix (the upper

right element) and L is the set of largest elements (lower left elements). We

compute x

s

, the median element in S, and x

l

, the median element in L. We

determine the relation of x

l

and x

s

to the sought value x

?

by using two binary

tests. If one of them is x

?

we are done. Otherwise there are four possible

outcomes to these comparisons:

i. If x

s

< x

?

we update the lower bound on x

?

and discard every matrix

whose largest element � x

s

.

ii. If x

s

� x

?

we update the upper bound on x

?

and discard almost ev-

ery matrix whose smallest element � x

s

. We leave one matrix whose

smallest element is x

s

so that this element is still in the searched range.

This results in discarding at least half the matrices minus one.

iii. If x

l

> x

?

we update the upper bound on x

?

and discard every matrix

whose smallest element � x

l

.

iv. If x

l

� x

?

we update the lower bound on x

?

and discard almost every

matrix whose largest element � x

l

. We leave one matrix whose largest

element is x

l

so that this element is still in the searched range. This

results in discarding at least half the matrices minus one.

We shall now show that the number of matrices in each step at most

roughly doubles. As we start with one matrix and there are log n steps, the

total number of matrices over all steps is linear (it is bounded by a geometric

series whose largest element is n). Thus the number of \non-comparison"

operations (median �nding and discarding matrices) is O(n) as stated.

We use induction to prove that the number of matrices after step i is

smaller than or equal to B

i

= 2

i+2

� 1. This is obvious for step 0, because
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in the beginning of step 1 we have one matrix, and B

0

= 2

2

� 1 = 3. If after

step i either condition (ii) or (iv) is satis�ed then at least half the (but one)

matrices are discarded and we are left with at most

1

2

(4B

i�1

) + 1 = 2B

i�1

� 2 + 1 = B

i

:

Otherwise both conditions (i) and (iii) occur, that is x

s

� x

?

� x

l

. Now

consider the matrices we have at hand as sub-matrices of the original, that

is we consider the original matrix as a block matrix of the appropriate size.

Because the original matrix is sorted, if two such blocks are one above and

to the right of another along a secondary diagonal of the block matrix, then

every element of the �rst block is smaller than or equal to every element of

the second block. Thus there can be at most one block along each secondary

diagonal such that its largest element is larger than x

l

and its smaller element

is smaller than x

s

. The number of diagonals is d = 2

i+1

� 1. Let h be the

number of matrices we have at hand. At least

h

2

of them have an element

smaller than x

s

(by the de�nition of x

s

). At least

h

2

� d of those have their

largest element smaller than x

s

, and can therefore be discarded. Similarly at

least

h

2

� d of the present matrices have their smallest element greater than

x

l

, and can also be discarded. Thus the number of remaining matrices is at

most

2d = 2(2

i+1

� 1) < 2

i+2

� 1 = B

i

which concludes the proof.

We summarize the technique. The problem is such that a set of candidate

parameters for the solution can be speci�ed implicitly. The set of candidates

has a special structure such that a partial order can be imposed on them.

A binary search is carried over this set using the notion of sorted matrices,

using O(log n) comparisons and O(n) other operations. Note that weaker

partial orders, such as a \sorted cube" with a similar structure, enable the

use of a similar technique, but unfortunately (for the case of a cube) with

an O(n

2

) overhead of other operations. This is because in the case of a cube

there are O(n

2

) \diagonals", so we can arbitrarily embed n

2

elements, upon

which no order information can be imposed in a sorted cube of n

3

elements.
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1.8 Some More Extensions

1.8.1 The Connection Between Linear Programming

and Parametric Searching

In this section we show the connection between parametric searching and

linear programming. We have two goals in mind. One is to show the poten-

tial practical value of Megiddo's technique. The other goal of this section

is to show the connection between Megiddo's parametric search technique

and Megiddo's linear programming algorithm [Me1, Me2]. The connection

between the two algorithms suggest a general way to improve the e�ciency

of parametric search algorithms.

Parametric search solution to linear programming. Consider linear

programming with only 2 variables. For the sake of simplicity assume that

we have a set of n half planes y � a

i

x + b

i

, i = 1; : : : ; n (the simpli�cation

is that all the inequalities have the same sign). We would like to �nd the

lowest point that satis�es all the n constraints.

If we knew x

?

, the x coordinate of this point (x

?

; y

?

), we could com-

pute also y

?

which is simply maxfa

1

x

?

+ b

1

; : : : ; a

n

x

?

+ b

n

g. So as usual

in Megiddo's technique we use a parallel maximum �nding algorithm to

compute maxfa

1

x

?

+ b

1

; : : : ; a

n

x

?

+ b

n

g without actually knowing x

?

. We

still have to show how to determine for a given x

i;j

, the abscissa of the

intersection of two lines, its relation to x

?

, in order to resolve compar-

isons made by the parallel algorithm. To answer this question we compute

Y = maxfa

i;j

x

i;j

+ b

i;j

; : : : ; a

i;j

x

i;j

+ b

i;j

g. We then compute the set I of lines

achieving this maximum, i.e. Y = a

k

x

i;j

+ b

k

for k 2 I. We now look at the

slopes a

k

for k 2 I. If there are both non-positive and non-negative slopes,

then x

?

= x

i;j

. If there are only negative slopes then x

?

> x

i;j

and only

negative slopes indicate that x

?

< x

i;j

(see Figure 1.3).

As for the maximum �nding algorithm we can use Valiant's algorithm

[Va], which uses n processors and takes O(log log n) time.

As each comparison costs O(n) time, both for maximum �nding and for

computing the set I, the overall running time of the algorithm isO(n log n log log n).
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Figure 1.3: A linear programming problem; half-plane 4 is redundant

Megiddo's linear programming algorithm. We can improve upon

the algorithm of the last paragraph, using the following observation: when

we resolve a comparison and conclude that a

i

x

?

+ b

i

< a

j

x

?

+ b

j

, we know

that discarding the half plane i from the set of n half planes does not change

the solution to the problem (see Figure 1.3).

We examine carefully the state of the algorithm after the �rst sequential

comparison was made. We shall assume that Valiant's parallel sorting algo-

rithm [Va] is used for maximum�nding. The algorithm begins by performing

n=2 comparisons, between disjoint pairs of lines. That is, the algorithm ar-

bitrarily groups the lines into pairs and compares the lines in each pair (this

is equivalent to the bottom step in a recursive merge sort). The parametric

search technique now �nds the median of the test values (intersection points)
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and sequentially compares the median to the unknown x

?

. This results in

resolving half the comparisons.

Instead of letting the parametric search algorithm continue, we discard a

quarter of the half-planes and restart the algorithm with the remaining half-

planes. The discarded half-planes are one out of each pair whose comparison

is resolved. The total cost of the algorithm up to now is O(n), for grouping

the lines into pairs and computing n=2 intersection points, for �nding their

median, for performing the sequential test and for discarding a quarter of

the half-planes.

We restart the algorithm with only 3n=4 lines, and since these problem

sizes form a geometric series, the total cost until reaching a trivial case in-

volving only two or three half-planes is an optimal O(n).

As we restart the parallel algorithm before it reaches its second step, we

do not actually need it at all. Instead we arbitrarily group the lines into

pairs.

Discussion. The preceding paragraphs shows both the ability of para-

metric search techniques to solve important problems with close to optimal

complexity, and that close inspection of what the algorithm does can lead

to improvements in its complexity. In this case the improved complexity is

optimal.

This method of eliminating a constant fraction of the input at each step,

referred to as prune and search by Edelsbrunner [Ed], applies to many other

problems, such as the planar 1-center problem, which is also solved in linear

time by Megiddo [Me].

Finally we note that Megiddo's linear programming algorithm, and hence

our �rst parametric search algorithm can handle all types of inequalities.

The algorithm can also be generalized to any �xed dimension and still run

in linear time (but the complexity grows more than exponentially with the

dimension).

1.8.2 An Improvement Due to Cole

Cole [Co1] improves upon Megiddo's original technique in certain cases, in

which the parallel algorithm A

p

is either sorting (or can be solved by sorting,

like minimum �nding) or performing several independent binary searches.
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Using the notations of section 1.3, recall that the running time of paramet-

ric search algorithms is usually dominated by O(T

s

T

p

logP ). The O(log P )

factor is caused by the fact that in every simulated parallel step logP com-

parisons are resolved, each of which cost O(T

s

). Cole shows how to shave

this logarithmic factor, by performing only one comparison at each parallel

step. This increases the number of steps, but the additional number of steps

is O(log P ) which is usually not more than T

p

.

We assume for simplicity that one root is associated with every compar-

ison (as is the case in the preliminary example and in the slope selection).

Assume that we have a sorting network with width n=2 and depth O(log n),

such as the Ajtai-Koml�os-Szemer�edi [AKS] sorting network. We regard the

sorting network as a parallel sorting algorithm which uses n=2 processors

and O(log n) parallel steps. Instead of simulating each parallel step (that is

each level in the network) in turn, and resolving all the comparisons in that

step, Cole proposes to resolve only some comparisons by performing only one

costly sequential binary test (running T

s

).

Speci�cally, Cole divides the comparators in the network into two classes:

active ones whose two inputs are known but their order is not known yet (so

the comparison can be made) and inactive ones that are not active (either

the comparison cannot be made because the inputs are not known or the

comparison resolved). Initially, the n=2 comparators in level 0 are active and

all the other are inactive.

Megiddo's original technique would resolve all the active comparisons at

once and thus make the comparisons in the next level the active ones. Cole

uses a more re�ned method. He assigns a weight to every active comparison.

An active comparison in level j has weight 4

�j

. At each step, instead of

�nding the median of the roots of the active comparisons, we �nd the weighted

median of the roots in O(n) time [Re]. On this test value we run A

s

, the

serial binary test. Thus the accumulated weight of the comparisons weighted

is at least half the weight of all active comparisons.

It can be shown that under the above weighting scheme, any method of

resolving comparisons with half the active weight results in no more than

O(log n) steps until the sort is complete (the bound is O(f(n) + log n) for a

sorting network with depth f(n)).

Since we runA

s

once in each step, the total running timewill beO(T

s

log n)

instead of O(T

s

log

2

n) for Megiddo's original method (using a parallel sorting

algorithm for A

p

).
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This usually improves the running time of parametric search algorithms

only if one uses a sorting network with width O(n) and depth O(log n). The

only such sorting network known is the AKS network, which at present time

involves huge constants. This means that the improvement is not practical.

The situation will be changed of course if faster sorting networks are found.

Cole's improvement is useful however from a theoretical viewpoint, as we

saw in section 1.5 where it was used to construct an optimal algorithm to

the slope selection problem.

1.8.3 Multidimensional Parameters

Up until now we have only presented problems and algorithms that compute a

single real number. It is interesting to note that Megiddo's parametric search

technique can compute multidimensional parameters, for example, a point

in the plane (linear programming in higher dimensions is another example).

There are two approaches that can be taken, which are applicable to di�erent

problems.

The simpler method is to use Megiddo's technique or some other para-

metric search technique to compute a single real number, and then, given

this number to compute the desired solution, such as a point in the plane.

This is the approach taken up later in this work to solve polygon contain-

ment problems. For example, we would like to �nd a placement of the largest

similar copy of a given triangle in a given convex polygon. The solution thus

is a four-dimensional vector, the expansion ratio (size) of the triangle, the

placement in the plane of a reference point on the triangle, and the angle

in which the triangle is placed. We tackle the problem in stages. We �rst

compute the extremal value of the expansion ratio, using parametric search,

that is we �nd what is the size of the largest triangle similar to the given one

that can be placed in the given polygon. Once this value is computed it is

straightforward to compute a placement of the largest triangle (which has a

�xed size) in the polygon.

A more complicated approach is taken up by Megiddo [Me3]. His problem

is formulated as minimization of a real convex function f(x; y) : R

2

! R.

Given a real y

0

the function h

y

0

(x) = f(x; y

0

) is also convex. The function

g(y) = min

x

f(x; y) = min

x

h

y

(x) is also a convex one. Megiddo uses his para-

metric search technique to evaluate g(y

0

) at a speci�c y

0

, that is, to minimize

h

y

0

(x). He then proceeds to design a similar parallel algorithm that minimizes
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h

y

0

(x). Now, having both a parallel and a sequential algorithms to evalu-

ate g(y), one can apply the parametric search technique again to minimize

g(y), using e.g. the technique of Section 1.3.1. The solution is of course the

minimum of f(x; y), because min

x;y

f(x; y) = min

y

min

x

f(x; y) = min

y

g(y).

This can be repeated again and again to work in any �xed dimension.

There is a fundamental di�erence between the two approaches. In the

�rst case, the optimization problem was one-dimensional, and once solved

the other dimensions of the problems can be computed. In the second case,

the optimization problem itself was two-dimensional, and this leads to the

increased complexity.
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Chapter 2

Extremal Polygon Containment

Problems

2.1 The Problem

Let P be a convex polygon having k vertices and edges, and let Q be a closed

two dimensional space bounded by a collection of polygonal obstacles (the

\environment") having altogether n corners. The main problem solved in

this chapter is to compute the largest possible placement of a similar copy of

P that can be placed inside Q, that is, a placement in which the copy of P

does not intersect any of the obstacles. We also give e�cient algorithms that

solve similar extremal polygon containment problems under more restrictive

conditions, and an algorithm that computes largest disjoint placements of

two polygons in a third.

Some papers study the �xed-size polygon containment problem, in which

(the convex) P is only allowed to translate and rotate and we wish to deter-

mine whether there is any placement of a copy of P inside Q [Ch, AB1].

Chazelle [Ch] studies the problem for the case where P and Q are ar-

bitrary simple polygons and presents a naive algorithm that takes time

O(k

3

n

3

(k + n) log(k + n)). A more restricted case of the problem, in which

both P and Q are convex is also studied by Chazelle [Ch], who solves this

case in time O(kn

2

). Chazelle gives a simple solution to an even more re-

stricted version in which P is a triangle; this version runs in time O(n

2

).

Avnaim and Boissonnat [AB1] present an algorithm for the case where both

P and Q are non-convex, possibly non-connected polygons, which runs in
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time O(k

3

n

3

log(kn)). In another paper Avnaim and Boissonnat [AB] inves-

tigate the problem of simultaneous placement of two or three not necessarily

convex polygons in a closed polygonal environment. For this problem they

allow translations only.

Extremal polygon containment problems were also previously studied.

Fortune [Fo], and Leven and Sharir [LS1] consider the following problem:

�nd the largest homothetic copy of P inside Q. In other words, translation

and scaling of P are allowed, but rotation is not. When P is convex and

Q is an arbitrary polygonal environment, this problem is solved in time

O(kn log(kn)) by constructing a generalized Voronoi diagram of Q under

a convex distance function induced by P .

Chew and Kedem [CK] follow a related approach to solve a more di�cult

variant of the problem, in which P is also allowed to rotate, which is also

the main problem studied in this chapter. Instead of a Voronoi diagram,

they compute the Delaunay triangulation of Q under the convex distance

function induced by P at some arbitrary �xed orientation. By using a clever

incremental technique for constructing all the topologically di�erent trian-

gulations obtained as the orientation of P varies, they solve the problem in

time O(k

4

n�

3

(kn) log n), where �

q

(r) is the maximum length of an (r; q)-

Davenport-Schinzel sequence (which is almost linear in r for any �xed q)

[ASS, HS].

In this chapter we follow a di�erent approach that applies the parametric

search technique introduced by Megiddo [Me]. By exploiting e�cient sequen-

tial and parallel algorithms for the �xed size containment problem, we solve

the extremal problem in time O(k

2

n�

4

(kn) log

3

(kn) log log(kn)).

There are two advantages of our technique over the technique of [CK].

First, our solution is considerably faster than theirs when k is large | roughly

two orders of magnitude faster. Second, the application of Megiddo's tech-

nique to largest placement problems is so natural that it is surprising that

no one has observed this connection before. Roughly speaking, a solution for

the �xed-size problem allows us to determine whether any speci�ed expansion

ratio is too large or too small. This, plus an e�cient parallel version of the

�xed size containment algorithm, is all that is required for Megiddo's tech-

nique to apply (see below for more details). We demonstrate the generality

of our approach by considering several other extremal containment problems,

and show that Megiddo's technique applies to all of them. Speci�cally we

consider the extremal versions of the following problems: placing a convex

33



polygon in another convex polygon under translation, placing two convex

polygons in a third convex polygon under translation, placing a triangle in a

convex polygon under translation and rotation, and �nally the general case

of placing a convex polygon in a polygonal environment under translation

and rotation. Except for the general case, these problems were never solved

before. Some additional possible extensions of the technique are discussed at

the end of the chapter.

The chapter is organized as follows. In section 2.2 we investigate some

simple versions of the extremal polygon containment problem, involving one

and two polygons, and allowing the polygons only to translate. Section

2.3 presents a reduction of some polygon containment problems to linear

programming problems. Section 2.4 is devoted to a simple version of the

general case, in which we also allow rotation; we study the placement of a

triangle in a convex polygon. This can be regarded as a warm-up exercise

that sheds some light on the general and more complex algorithm. In section

2.5 we state some neccesary de�nitions and results from [LS], and note that

the combinatorial bound derived in that paper can be somewhat improved.

In section 2.6 we describe a variant of the �xed size containment algorithm

from [KS], which we use as a decision procedure, to decide whether a copy

of P having some �xed expansion ratio can be placed in Q. In section 2.7 we

give a parallel version of the �xed size containment algorithm. In section 2.8

we show how to combine the algorithms of section 2.6 and 2.7 to produce an

algorithm for the largest placement problem. We conclude with a discussion

of our results and some open problems.

2.2 Placement of Polygons Under Translation

In this section we investigate problems of placement of the largest homothetic

copies of polygons inside another polygon (i.e. allowing translations only).

De�nitions: We denote the set of translations of P that place it inside Q by

C(P;Q), and the set of translations of P that make it intersect Q by O(P;Q)

We will assume that the polygons P and Q are given as an array of their

vertices in counter clockwise direction, P = (p

1

; : : : ; p

k

) and Q = (q

1

; : : : ; q

n

).

We will consider Q as �xed and P as movable, and we will use the vertex p

1

as a reference point for P .
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Proposition 1 ([Ch]) If P and Q are convex, then C(P;Q) is a convex

polygon with at most n edges.

Proposition 2 ([GRS]) If P and Q are convex, then O(P;Q) is a convex

polygon with at most n+ k edges.

2.2.1 Computation of C(P;Q)

We assume that both P and Q are convex. The procedure given below for

the computation of C(P;Q) is taken from Chazelle [Ch].

1. For each edge q

i

q

i+1

of Q, we �nd the vertex p

i

of P that is nearest

to it, when P lies completely on the same side of the line q

i

q

i+1

as Q

(there may be two such vertices, in which case we choose one of them

arbitrarily).

This may be done in time O(n + k) by merging the normal diagrams

of P and Q, i.e., merging the edges of P and Q to a single list sorted

by slope, and �nding for each edge of Q between which edges of P it

lies in the merged list.

2. For every i = 1; 2; : : : ; n we place P so that p

i

lies on the edge q

i

q

i+1

,

and P and Q lie on the same side of the line q

i

q

i+1

. Now we draw a

line t

i

parallel to q

i

q

i+1

and passing through the reference point p

1

of

P .

Let ht

i

denote is the half plane that lies below t

i

if Q lies below the

line q

i

q

i+1

and above t

i

otherwise. The computation of all the ht

i

takes

O(n) time, a constant time for each half plane.

3. As shown in [Ch], C(P;Q) =

T

i

ht

i

, so what remains to do is to compute

the intersection of the n half planes. We note that the half planes are

given sorted by their slope. We compute the intersection by solving

the dual convex hull problem, and the sorting of half planes by slope

gives us a convex hull problem of n points sorted by their x-coordinate.

This problem can be solved in O(n) time, using the beneath-beyond

algorithm.

We conclude that the computation of C(P;Q) can be done in O(n + k)

time.
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In order to apply the parametric search technique of Megiddo, we need

a parallel version of this algorithm. Step 1, the merging of the normal dia-

grams, could be performed in parallel in O(log log(min(n; k))) parallel time

using

p

nk processors, using Valiant's algorithm [Va]. However, the normal

diagrams of P and Q are independent of the expansion ratio, so no compar-

ison that this merge generates depends on �

?

. We can thus implement this

step sequentially, \outside" the generic scheme of Megiddo. Step 2 involves

no comparisons, so it too can be performed sequentially. The coe�cients of

the t

i

's will be however functions of the expansion ratio of P . Step 3 is per-

formed in parallel using the parallel algorithm for computing the convex hull

of a plane point set, by Aggarwal et al. [ACGOY], that works in O(log n)

time and uses O(n) processors.

We now combine the sequential and parallel algorithms to obtain an al-

gorithm that computes the largest homothetic copy of P that can be placed

in Q. Note that the problem at hand satis�es the requirements of Megiddo's

technique, that is, when the expansion ratio � is smaller than some (unknown)

value �

?

, there is a placement of P inside Q, and when � > �

?

there is no such

placement. We run the generic parallel algorithm, without specifying �. We

resolve comparisons needed by the algorithm by computing the set of real

roots of the characteristic polynomials associated with the comparisons, and

locating �

?

in this (ordered) set by binary search. The decisions made during

the binary search are based on the outcome of the �xed-size algorithm, ap-

plied to a copy of P with expansion ratio equal to the root � being compared.

Note that the decision step only tells us whether � � �

?

or � < �

?

. In order

not to get stuck, we interpret � � �

?

as � > �

?

and continue in this manner.

When the entire algorithm terminates, it will have produced an interval I so

that �

?

is either its left endpoint or an interior point. However, the second

case is impossible, because the output of the generic algorithm is the same

for all � 2 int(I), but the output must change at �

?

, by de�nition. Hence �

?

is the left endpoint of I.

The running time of the algorithm is O(n + k), for the initial step 1

performed just once, plus the cost of the parametric search itself, which is

O(n log

2

n). We thus obtain:

Theorem 1 Given a convex polygon P with k vertices and a convex polygon

Q with n vertices, we can compute a placement of the largest homothetic copy

of P inside Q in O(k + n log

2

n) time.
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Remark. As noted by Chazelle [Ch], this will work even if P is not convex,

because in this case we simply apply our algorithm to conv(P ) instead of P .

Remark. In section 2.3 we show how to improve the running time to linear.

2.2.2 Computation of O(P;Q)

As shown by Guibas et al. [GRS], the calculation of O(P;Q) in the case of

two convex polygons P and Q amounts to the merging of the lists of their

edges sorted by slope.

This takes timeO(n+k) using a serial algorithm, or O(log log(min(n; k)))

parallel time using

p

nk processors, using Valiant's algorithm [Va].

2.2.3 Finding Largest Homothetic Placements of Two

Convex Polygons Inside a Third

We now consider the following problem. Given two convex polygons P

1

and

P

2

having k

1

and k

2

vertices respectively, and a third convex polygon Q

having n vertices, �nd the largest expansion ratio � such that �P

1

and �P

2

can be translated into Q without overlapping each other.

For the �xed-size containment problem we use the procedure given by

Avnaim and Boissonnat [AB] and Guibas et al. [GRS]. The procedure

computes the set U of all the valid translations T

r

of P

1

relative to P

2

,

for which there exists a translation that position both P

1

and P

2

in Q in

their valid relative position without overlapping. This is done by several

consecutive applications of the primitive operations C and O:

1. Compute C

1

= C(P

1

; Q).

2. Compute C

2

= C(P

2

; Q).

3. If C

1

or C

2

is empty then return ;.

4. Compute I = O(P

2

; P

1

).

5. Compute S = O(C

2

; C

1

).

6. Compute S

?

, the polygon symmetric to S with respect to the origin.
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7. Return U = S

?

n I.

The correctness of this algorithm is proved in [AB], and we repeat it here

for the sake of completeness.

Lemma 2 ([AB]) The set of all the valid relative positions is given by U =

S

?

n I.

Proof. Assume that u is a valid relative translation of P

2

. We have to show

that u 2 U . If u is valid, then P

1

and P

2

do not collide, so certainly u 62 I.

However as u is a valid relative translation, it is the di�erence between two

valid absolute translations u = u

1

� u

2

, where u

1

is a translation of P

1

and

u

2

a translation of P

2

. Since these are valid absolute translations, u

1

2 C

1

and u

2

2 C

2

. In addition, if we translate P

2

by �u, we should be able to

translate both polygons into Q using the translation u

1

, and this means that

C

2

translated by �u should intersect C

1

, or �u 2 S = O(C

2

; C

1

). Thus u 2 S

?

but u 62 I. This argument shows the other direction as well and the proof is

complete.

From the propositions above and the descriptions of algorithms for the

computations of C and O, it follows that the running time of this algorithm

is O(n + k

1

+ k

2

).

The parallel version of the algorithms for computing C and O can be used

for performing steps 1{5 of the algorithm above. Step 6 does not involve

comparisons, so we need not perform it in parallel. Step 7 is more di�cult to

handle, but we exploit the fact that we are only interested in the existence

of a translation in U , not in its full structure. So instead of computing U ,

we will only decide in step 7 whether U = S

?

n I is empty or not. As both

S

?

and I are convex polygons, the di�erence is not empty if and only if the

convex hull of S

?

[ I is not simply I. This is so because S

?

n I is empty if

and only if S

?

is contained in I, and this is true if and only if the convex hull

of their union is I. So computing the convex hull of S

?

[ I is su�cient to

decide on the non-emptiness of U , and this computation can be performed

in O(log(n + k

1

+ k

2

)) parallel time using O(n + k

1

+ k

2

) processors.

Applying the parametric search paradigm, we obtain

Theorem 2 Given two convex polygons P

1

and P

2

with k

1

and k

2

vertices

respectively, and a convex polygon Q with n vertices we can compute dis-

joint placements of the largest homothetic copies of P

1

and P

2

inside Q (with
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the same expansion ratio), without intersecting each other in O((n + k

1

+

k

2

) log

2

(n+ k

1

+ k

2

)) time.

The assumption that the expansion of P

1

and P

2

is the same is not neces-

sary; we only have to assume that the expansion ratios of the two polygons

are expressed by two monotone increasing functions of the same parameter,

f

1

(�)P

1

, f

2

(�)P

2

.

2.3 Placing Polygons Using Linear Program-

ming

In cases where we have to place a translated copy of one polygon in another

convex polygon a much more e�cient approach can be taken. In these cases

we can reduce the polygon placement problems to linear programming prob-

lems. We are indebted to Nimrod Megiddo and independently to Alon Efrat

for pointing this out.

We are given two polygons, a convex polygon Q = (q

1

; : : : ; q

n

) and a

simple polygon P = (p

1

; : : : ; p

k

). Without loss of generality assume that P

is also convex (otherwise replace P with conv(P )). We have to place a copy

of P inside Q. The transformations allowed (translation, translation and

scaling etc.) will be speci�ed later.

Assume that we seek a placement of the largest homothetic copy of P in

Q. The copy of P is thus �P + b where � > 0 is a real expansion ratio and b

is a translation vector. As in section 2.2.1 we only need to ensure that P is

on the \right" side of each edge of Q, and this holds if the vertex of P nearest

to that edge is on the \right" side of the edge (the edge-vertex pairing can

be computed in time O(n + k)). That is, we will have n inequalities that

ensure that the copy of P is inside Q,

a

T

i

(�p

i

+ b) � 1

for i = 1; : : : ; n, with the linear goal function max�. The a

i

's and p

i

's are

constants. The variables are the vector b and the expantion-ratio �.

This linear problem can be solved in O(n) time using Megiddo's linear

programing algorithm [Me1, Me2] and the overall running time is thus O(n+

k).
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The technique can also be applied to 3-dimensional convex polyhedra. As

before, we �nd the nearest vertex of P for each face of Q, and solve the linear

programming problem

a

i

(�p

i

+ b) � 1

for i = 1; : : : ; n, with the linear goal function max�.

Finding the nearest vertices of P to faces of Q can be done by computing

the normal diagram of P (which is actually a planar map on a sphere),

preparing it for fast point location, and locating the normal direction of each

face of Q in this map. Computing the normal diagram can be done in linear

time, given a reasonable representation of the polyhedra (e.g. a quad-edge

structure), preprocessing can be done in O(k) time using the technique of

[EGS], and the point location queries can be all done in O(n log k) time.

Thus the overall running time of the algorithm is O(k + n log k).

It is obvious that the technique can be applied to �xed-size queries as

well. We run the same procedure as above. If the resulting expansion-ratio

is smaller than 1 then a copy of P cannot be placed in Q, otherwise it can.

We thus obtain the following result:

Theorem 3 Given a convex polygon P with k vertices and a convex polygon

Q with n vertices, we can compute a placement of the largest homothetic copy

of P inside Q in O(k + n) time. In three dimensions, we can do the same

for convex polytopes in time O(k + n log n).

2.4 Placing a Triangle Under Translation and

Rotation

Before we tackle the general problem of extremal containment of a convex

polygon in a general polygonal environment, we consider a restricted version

in which we compute the largest similar copy of a triangle T = ABC in a

convex polygon Q = (q

1

; : : : ; q

n

).

This (�xed size) containment problem was studied by Chazelle [Ch]. He

observed that there is a free placement of T in Q if and only if there is a

placement of T in Q in which a vertex of T and a vertex of Q coincide. Thus

in order to test if there exists a free placement of T in Q, we go over all the

3n pairs of a vertex of T and a vertex of Q and for each pair test if there is

a free placement such that the relevant vertices coincide.
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When the vertices of such a pair, say A and q

1

, coincide, we use the angle

� of rotation around the �xed vertex A of T to describe the placement of T .

The placement is free i� both edges AB and AC lie in the half-planes whose

intersection is Q. As B and C can intersect the line de�ning a half-plane only

twice when T rotates around A, we can generate an interval of placements

(= angles) that are free relative to that half-plane. The intersection of all n

intervals is the set of free placements. This intersection can be computed in

time O(n) per pair, or O(n

2

) overall.

The parallel version works by sorting all the endpoints of all free intervals

for each vertex-vertex contact. Note that the parallel algorithm does not

solve the same problem as the sequential one. However, the output of the

sorting algorithm changes combinatorially at �

?

. As indicated in Section 1.5

this is all that is required from the \generic" algorithm. This takes O(log n)

time and uses O(n) processors per pair [Co], or O(log n) time and O(n

2

)

processors overall. Thus we obtain:

Theorem 4 Given a triangle T and a convex polygon Q with n vertices, we

can compute a placement of the largest possible similar copy of T inside Q

in time O(n

2

log

2

n).

The discussion above is similar in nature to the solution of the general

case given below. The increased complexity caused by allowing rotations

prevents us from computing the set of all possible free placements as we did

when translation alone was allowed. Instead we restrict our attention to

a distinguished subset of \critical" free placements that necessarily exist if

any free placement exists. There is also an analogy between computing the

intersection of relatively free intervals to �nd a free placement, and the use

of lower envelopes below. The details of the general case, however, are much

more complex.

2.5 The General Case | Finding Free Criti-

cal Orientations

We now begin the description of our solution to the general case. In this

section we give a short exposition of the de�nitions and results in [LS]; this
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is needed in order to present the algorithms in subsequent sections. The

material is taken almost verbatim from [LS].

Let P be a convex polygonal object having k vertices, free to translate

and rotate (but not to change its size) in a closed two-dimensional space Q

bounded by a collection of polygonal obstacles (\walls") having altogether n

corners.

A free critical placement of P is one at which it makes simultaneously

three distinct contacts with the walls, and is fully contained in Q, so that it

cannot penetrate any obstacle.

A (potential) contact pair O is a pair (W;S) such that either W is a

(closed) wall edge and S is a corner of P or W is a wall corner and S is a

(closed) side of P . The contact pair is said to be of type I in the �rst case,

and of type II in the second case.

An actual obstacle contact is said to involve the contact pair O = (W;S)

if this contact is of a point on S against a point on W , and, furthermore, if

this contact is locally free, i.e., the inner angle of P at S lies entirely on the

exterior side of W if S is a corner of P , and the entire angle within the wall

region Q

c

at W lies exterior to P if W is a wall corner.

The tangent line T of a contact pair O = (W;S) is either the line passing

through W if W is a wall edge or the line passing through W and parallel to

S if S is a side of P (in the second case T depends of course on the orientation

of P ).
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Figure 2.1: A bounding function.

Let O

1

; O

2

be two contact pairs. We say that O

2

bounds O

1

at the orien-

tation � if the following conditions hold (see Figure 2.1):
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1. There exists a (not necessarily free) placement Z = (X; �) of P at

which it makes two simultaneous obstacle contacts involving O

1

; O

2

.

2. As we move P from Z without changing the orientation �, along the

tangent T

1

, in the direction of the intersection z of the two tangents

T

1

and T

2

, the subset P

?

= conv(S

1

[ S

2

) of P intersects W

2

until S

1

touches W

1

.

It is shown in [LS] that for any double obstacle contact, one of the contact

pairs always bounds the other. Let O

1

be any contact pair and consider all

contact pairs that bound O

1

(at any orientation �). For each such pair O

2

we de�ne the bounding function F

O

1

;O

2

(�) over the domain � = �

O

1

;O

2

of

orientations � of P in which O

2

bounds O

1

. For each � 2 �, we de�ne

F

O

1

;O

2

(�) to be the distance from the endpoint of the contact wall farthest

from z (the intersection of the tangents) to the contact point of O

1

, at the

placementZ = (X; �) in which P simultaneouslymakes two obstacle contacts

involving O

1

; O

2

; (see Figure 2.1). Note that � need not be connected, but

it consists of at most �ve subintervals (this is proved in [LS], Lemma 2.2).

The dependence of the bounding function on a speci�c endpoint of the

contact wall suggests that we group the bounding functions F

O

1

;O

2

of O

1

into

two classes, A

L

and A

R

, so that in each class the functions are related to the

same endpoint of the contact wall of O

1

.

With each class A

E

, E 2 fL;Rg, of each contact pair O

1

, we associate a

function

	

E;O

1

(�) = minfF

O

1

;O

(�) : F

O

1

;O

2 A

E

g:

This is the lower envelope of the functions in A

E

. An intersection of two

bounding functions of the same class, F

O

1

;O

2

and F

O

1

;O

3

, that lies on the

lower envelope of that class, is called a breakpoint of the lower envelope.

Critical free orientations (i.e. orientations of critical free placements)

can arise in three situations. The �rst kind of orientations is of critical

placements at which two contact pairs simultaneously bound a third one,

and both belong to the same class. Each such placement is represented as

a breakpoint on some lower envelope. The second kind of orientations arise

at critical placements where two contact pairs bound a third one but belong

to di�erent classes. The third kind of orientations arise when no two contact

pairs bound a third, but rather at critical placements involving three contact
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pairs O

1

, O

2

and O

3

so that O

1

bounds O

2

, O

2

bounds O

3

, and O

3

bounds

O

1

. see Figure 2.2 for an illustration.
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Figure 2.2: A critical contact of the third kind.

These are necessary conditions for a critical free placement of P , that is,

one of the three situations must occur at a critical free placement. However,

they are not su�cient, and while our algorithm will �nd every orientation

of any of the three kinds, it must also be able to discard critical placements

that are not free.

Remark. In [LS] it is proved that the number of breakpoints along one lower

envelope is O(�

s

(kn)) for some �xed s � 6 (see the remark after Lemma 2.3

in [LS]). We give a simple argument that shows s � 4.

Our argument relies on the fact that we can partition the functions F

O;O

0

in a class A

E

(O) into two subsets, one arising from contacts O

0

of type I

and the other from contacts O

0

of type II. As shown in [LS], two functions

from the same subset intersect at most twice, and functions from di�erent

subsets intersect at most four times. Hence the lower envelope of functions

in the same subset has complexity O(�

4

(kn)) (since they are only partial

functions) and since the �nal envelope of the class is the envelope of these

two sub-envelopes, it easily follows that it too has complexity O(�

4

(kn)).

Remark. The analysis of [LS], when turned into an algorithm, can produce

a list of all these critical placements in time O(kn�

4

(kn) log(kn)). However,

detecting which of these placements is indeed free is not straightforward. In

the context of motion planning, as studied in [KS], it is possible to sift out

the critical orientations and obtain a subset of free critical placements that

include all placements reachable from a given initial placement, and perhaps
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some other non-reachable but free placements. This can be done within

the same time bound, O(kn�

4

(kn) log(kn)), but cannot guarantee that all

free placements are found, and is therefore unsuitable for our purpose. This

issue is discussed in the algorithms that we give below. In our solution,

we do detect all free critical placements, at an extra cost of O(k log n) per

placement. Performing this faster still appears to be an open problem.

2.6 A Sequential Algorithm

In this section we present a sequential algorithm for the �xed size containment

problem, that is to determine whether it is possible to place a similar copy of

the convex polygonal object P , at some �xed expansion ratio to the original

P , in the polygonal environment Q. To solve this decision problem we solve

a related problem | �nding all the critical free orientations of P . If the set

of critical free orientations is empty, the solution to our decision problem is

\no", otherwise the answer is \yes".

2.6.1 Generating All the Critical Placements

Below we give the algorithm that generates all the critical placements. Each

one of them needs to be tested to decide whether it is free, using the algorithm

of the next subsection.

The algorithm closely follows the �rst stages of the algorithm in [KS].

However, the data structures used are simpler, to ease the task of parallelizing

the algorithm later. We do not consider critical contacts in which P has only

one degree of freedom (a corner of P against a corner of Q, an edge of P

against an edge of Q), because they can be handled exactly like the triangle

in section 2.4, that also has one degree of freedom in every critical placement.

Step 1: Find all bounding functions. For every two contact pairs O

i

; O

j

,

�nd the range of orientations �

O

i

;O

j

in which O

j

bounds O

i

toward a speci�c

endpoint E of O

i

. Split the resulting bounding functions F

O

i

;O

j

into (at most

�ve) \subfunctions", each de�ned over a connected interval, and add them

to the appropriate collection A

L

(O

i

) or A

R

(O

i

).

Step 2: Calculate lower envelopes. We describe the calculation of the lower

envelope of A

L

(O) which is denoted by 	

L;O

; 	

R;O

is calculated similarly.
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1. Fix a contact pair O and partition A

L

(O) into two disjoint subsets A

0

L

and A

00

L

of roughly equal size.

2. Compute recursively the two lower envelopes

	

0

(�) = minfF

O;O

i

(�) : F

O;O

i

2 A

0

L

g

	

00

(�) = minfF

O;O

i

(�) : F

O;O

i

2 A

00

L

g:

Each of the recursive calculations produces a sequence of angular in-

tervals, delimited by breakpoints, in each of which the corresponding

partial lower envelope is attained by a single bounding function.

3. Merge these two sequences of intervals to obtain a re�ned sequence � of

angular intervals. In the merging process mark every breakpoint in � as

red if it was originally a breakpoint of 	

0

or as black if it was originally

a breakpoint of 	

00

. In addition, maintain a pointer from each red node

in � to the black interval it lies in (an interval of 	

00

) and from each

black node to the red interval it lies in. For each interval I 2 � there

exist two unique contact pairs O

0

; O

00

with F

O;O

0
2 A

0

L

, F

O;O

00
2 A

00

L

such that 	

0

(�) = F

O;O

0

(�), 	

00

(�) = F

O;O

00

(�) for each � 2 I. By the

analysis of [LS] the two functions F

O;O

0

; F

O;O

00

intersect in at most four

points (some of which may not belong to I), which can be calculated, as

the roots of some quartic polynomial, in constant time. Each of these

intersections which lies in I is clearly a breakpoint of 	 = 	

L;O

. Add

these points to � and mark them as white nodes. Every breakpoint of

	 is either of this kind (a white node) or is a breakpoint of 	

0

or of 	

00

,

i.e. one of the red or black nodes. Now we need to eliminate from �

the red and black nodes which do not lie on the lower envelope 	. For

each red (black) node, we follow the pointer to the black (red) interval

it lies in, and check which is higher | the red breakpoint in 	

0

or the

bounding function on 	

00

. If the former is higher we prune it from the

list �, otherwise the breakpoint remains in �. Thus at the end of the

process � represents the breakpoints in 	.

Note that maintaining the red/black pointers can be done in time pro-

portional to the length of the list (in one pass over the list), and the same

time bound applies to the pruning of the redundant nodes.
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The merging step can be done in time proportional to the length of �,

which, by [LS1] and the comments in Section 2, is O(�

4

(kn)). Hence the

calculation of the lower envelope 	

L;O

takes O(�

4

(kn) log kn) time, so all

these envelopes can be computed in overall time O(kn�

4

(kn) log kn).

The collection of breakpoints is a superset of all the critical orientations

of the �rst kind; every one of them will later be tested to decide whether it

is free, in the manner described in the next subsection.

Step 3: Calculate critical orientations of the second kind. These are orienta-

tions at which P makes simultaneously, at some free placement, obstacle con-

tacts involving three distinct contact pairs O

1

; O

2

; O

3

such that two of them,

say O

2

; O

3

bound O

1

but with F

O

1

;O

2

2 A

L

(O

1

) while F

O

1

;O

3

2 A

R

(O

1

). In

this case we �rst re
ect and translate one of the envelopes, so that they both

measure the distance from the same endpoint of O

1

. Then we merge the lists

of breakpoints in 	

L;O

1

and in 	

R;O

1

and compute the intersections of the

bounding functions from the two lower envelopes over each resulting interval

in the same way as in the previous step. These orientations are added to the

list of critical orientations.

Clearly, this step runs in O(kn�

4

(kn)) time. Again, we will later discard

non-free critical orientations found in this step.

Step 4: Calculate critical orientations of the third kind. Finally, we calculate

the third and most complex kind of critical orientations. At each such orien-

tation �, P can make simultaneously a free triple contact involving three dis-

tinct contact pairs O

1

; O

2

; O

3

, such that F

O

1

;O

2

2 A

E

1

(O

1

), F

O

2

;O

3

2 A

E

2

(O

2

),

F

O

3

;O

1

2 A

E

3

(O

3

), where E

i

2 fL;Rg for i = 1; 2; 3, and such that all three

functions lie at � on the corresponding lower envelopes.

To �nd these orientations we �rst merge all breakpoint lists from all the

lower envelopes calculated in step 2, to obtain a single sorted list � consisting

of O(kn�

4

(kn)) re�ned noncritical intervals. Each interval I 2 � has the

property that each lower envelope is attained over it by a single bounding

function.

Next we �nd all the critical orientations of the third kind (not necessarily

free). For each possible triple contact that the algorithm considers, we �nd its

(at most four) critical orientations, and then test which of these orientations

is indeed free.

We start by considering the �rst interval in �, denoted I

0

. For each
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contact pair O

1

and each side E

1

2 fL;Rg, �nd the unique contact pair O

2

such that 	

E

1

;O

1

= F

O

1

;O

2

over I

0

. For each E

2

2 fL;Rg, �nd the unique

contact pair O

3

such that 	

E

2

;O

2

= F

O

2

;O

3

over I

0

. For each E

3

2 fL;Rg

for which 	

E

3

;O

3

= F

O

3

;O

1

over I

0

conclude that (O

1

; O

2

; O

3

; E

1

; E

2

; E

3

) is a

critical contact, perhaps not free. Compute its critical orientations. Those

that lie in I

0

are tested to decide whether they are free, and if so they

are reported as such (the algorithm can thus be halted right now with an

a�rmative answer to the decision problem). The other orientations do not

lie in I

0

, so we �nd the interval each of them lies in, by binary search over the

sorted list �, and test whether the corresponding critical placement is free.

This takes O(kn log(kn)) time, excluding the tests for being free, O(log(kn))

time for each contact pair.

Each interval I 6= I

0

in � can induce new critical triplets but fortunately

only a constant number of them. The interval I was formed because its

left endpoint represents a break in one of the lower envelopes, say 	

L;O

1

.

So we need to repeat the process we did at I

0

, but this time starting with

only one particular contact (O

1

) and one lower envelope (	

L;O

1

). Thus every

interval I induces only O(1) new candidates for the critical orientations that

we seek. Finding the bounding functions on the lower relevant envelopes is

now accomplished by a binary search over the list of breakpoints on each

envelope. This takes O(kn�

4

(kn) log(kn)) time, as each of the O(kn�

4

(kn))

intervals requires O(log(kn)) time for the binary searches.

2.6.2 Deciding whether a critical orientation represents

a free placement

As mentioned above, the set of critical orientations computed so far may

contain orientations that correspond to critical placements that are not free,

so we need to test each critical placement whether it is indeed free.

To perform this test we use the following simple method. In a preliminary

step, we prepare data structures that will enable us to perform this test, at

any query placement of P , in time O(k log n). These data structures depend

only on Q. As we are required to perform at most O(kn�

4

(kn)) such tests,

the total time they require is O(k

2

n�

4

(kn) log n). As the environment Q is

static during the execution of the (largest placement) algorithm, we need to

build the data structures only once, \outside" the generic execution of the
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parallel version of the algorithm.

If a critical placement is not free, then either a vertex of Q lies inside P ,

or an edge of P intersects an edge of Q. To test whether the �rst situation

occurs we insert the n vertices of Q into a data structure that supports fast

counting of points inside a query polygon. We use the technique of [PY, Ed],

which uses O(n

2

) storage, O(n

2

) preprocessing, and can answer a query in

time O(k log n) for a query polygon with k sides. Given a placement of P ,

we query the number of points inside it and declare the placement non-free

if any such point is found. To test whether the second situation arises, we

preprocess Q for segment intersection queries, that is, given a query segment,

determine quickly whether it intersects an edge of Q. For this we use the

technique of [Ch1]. Again, this can be implemented with O(n

2

) storage,

O(n

2

) preprocessing, and can answer a segment intersection query inO(log n)

time. For each critical placement of P , we query this structure with each

edge of P , and declare the placement as non-free if any such intersection is

found. If none of these bad situations are detected, the placement is free.

We have thus shown:

Theorem 5 Given a convex polygon P with k sides, and a polygonal envi-

ronment Q with n edges, we can compute all free critical placements of P

inside Q in time O(k

2

n�

4

(kn) log(kn)).

2.7 A Parallel Algorithm

We now present a parallel version of the algorithm, or rather comment on

how to perform each step in parallel. Recall that we do not need a strong

parallel computation model. All we seek is a scheme in which many inde-

pendent comparisons are performed at each parallel step. Thus we ignore

synchronization and other bookkeeping problems, use Valiant's weak model

of parallel computation [Va], and perform tasks in a sequential manner when

they do not involve comparisons but only manipulation of pointers.

Step 1 can clearly be carried out by O(k

2

n

2

) processors in O(1) parallel

time, with each processor calculating one bounding function.

Step 2 is performed using a divide and conquer strategy. The divide phase

and the recursive calls can be done in parallel. The merge phase can be done

using Valiant's merging algorithm [Va] which runs in O(log log(kn)) paral-

lel time using O(�

4

(kn)) processors per envelope. Once the merge is done,
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maintenance of the red/black pointers can be done serially because this is

a mere manipulation of pointers and involves no comparisons. The testing

of red (black) breakpoints against their containing black (red) non-critical

intervals can be done in O(1) parallel time using O(�

4

(kn)) processors per

envelope. The subsequent pruning of breakpoints can be done serially, be-

cause it involves no comparisons. The total time required to compute all the

lower envelopes is thus O(log(kn) log log(kn)) using O(kn�

4

(kn)) processors.

Step 3 also uses a merge, but only once for each contact pair, and the

calculation of envelope intersections over all contact pairs can clearly be done

in parallel. The total parallel time for this step is therefore O(log log(kn))

using O(kn�

4

(kn)) processors.

Step 4 �rst requires the merging of all O(kn) lower envelopes into one

sorted list of breakpoints �. This can be done recursively. We divide the

lower envelopes into two collections of roughly equal size, compute the two

merged lists of breakpoints �

0

, �

00

and merge them. The merging step takes

O(log log(kn)) parallel time using O(kn�

4

(kn)) processors, so the whole pro-

cess takes O(log(kn) log log(kn)) time using O(kn�

4

(kn)) processors.

The handling of the �rst interval I

0

2 � can be done in parallel using

O(kn) processors and O(log(kn)) time. All the other intervals are each as-

signed a single processor and the time it takes to �nd the new critical triple

contacts is O(log(kn)). The test to decide whether a critical orientation is

free is performed in the same manner as in the sequential case. We use k

processors to perform the O(k) queries in O(log n) time. The data structures

depend only on Q and so can be preprocessed just once, outside the generic

parallel scheme.

We conclude that all critical free orientations can be calculated in paral-

lel, under Valiant's comparison model, in time O(log(kn) log log(kn)) using

O(k

2

n�

4

(kn)) processors.

2.8 The Overall Algorithm

We now apply Megiddo's technique to our problem, using the algorithms

of sections 2.6 and 2.7. We run the parallel algorithm generically, without

specifying the expansion ratio �. We resolve comparisons made by the parallel

algorithm by using our sequential algorithm, in the manner explained in the

Introduction chapter.
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The only �ne point is to verify that comparisons involve only evalua-

tions of signs of low degree polynomials in the unspeci�ed �. Indeed, a free

placement of P in Q has to satisfy a set of algebraic constraints (see [SS]).

In our case these constraints are mainly algebraic inequalities that describe

the disjointness of P and Q. Computing a critical triple contact amounts

to setting three inequalities as tight constraints (i.e. equalities), and solving

these three equations in three unknowns (the (x; y; �) coordinates of P ), dis-

carding solutions which are not locally free. Computing a breakpoint thus

reduces to computing the critical triple contact placement associated with

the three contact pairs that de�ne the breakpoint. Evaluating a bounding

function at a given orientation amounts to setting the two constraints in-

volved in the corresponding two contact pairs to be tight, and adding a third

constraint that the slope of the line passing between two �xed points in P

will be at the given orientation. This will give us the desired placement of P ,

and we can calculate the value of the bounding function which is simply an

a�ne transformation of the placement. Using the standard transformation

t = tan(�=2), all contact constraints, and thus all functions of � computed

by the algorithm, become algebraic, and no trigonometric functions need be

used.

Since the only place where dependence on � can arise is in the coe�cients

of the constraints, and since the functions of � are polynomials of the �rst

or second degree, we are assured that all the equations in � we have to solve

during the algorithm are algebraic equations of bounded degree. We assume

that this kind of equations can be handled in constant time.

The running time of the algorithm can easily be deduced by \plugging in"

the running time of the sequential and parallel algorithms into the analysis

of Megiddo's technique. The fact that �

?

is the left endpoint of the �nal

interval is justi�ed as in section 1.5. This establishes our main result:

Theorem 6 Given a convex polygon P with k sides, and a polygonal envi-

ronment Q with n edges, we can compute a placement of the largest possible

similar copy of P inside Q in time O(k

2

n�

4

(kn) log

3

(kn) log log(kn)).

2.9 Conclusions

In this chapter we have applied Megiddo's parametric search technique to a

variety of extremal polygon placement problems. In addition, we presented
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a decision algorithm for the general �xed-size polygon containment problem,

which improves upon results obtained in previous papers that studied related

problems.

Our work raises a few open problems. One is to improve our algorithm

by about an order of k, bringing its complexity close to the motion-planning

algorithm of [KS]. We believe that Megiddo's technique can be applied to

many other extremal containment problems. As an example we mention the

problem of �nding the largest stick (line segment) that can be placed inside

a simple polygon, and the problem of �nding the largest stick that can be

placed in a polyhedral environment in 3-space. Finally, can our technique

be turned into a motion-planning algorithm, that �nds a \highest-clearance"

path among obstacles, as in [CK1]?
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Chapter 3

Experimental Results

3.1 Goals and Overview

This chapter presents experimental results concerning parametric search al-

gorithms. The experiments had two major goals:

� To study the feasibility and complexity of coding algorithms involving

parametric searching. In particular, to develop techniques to code ver-

sions of parallel algorithms that are intended to serve as the \generic"

algorithm in a parametric search algorithms.

� To study experimentally the behavior of parametric search algorithms.

This is especially important because it is clear that there are heuris-

tics that lower the running time of the algorithms, yet are di�cult

to analyze. In addition, the behavior of parametric search algorithms

incorporating a sequential \generic" algorithms was studied.

Two algorithms were coded. These are the simple preliminary exam-

ple from the Introduction (Section 1.2) and the slope selection algorithm.

The algorithms share the same generic parallel sorting algorithm of [Va] and

parametric search service routines. Only the code that performs the serial

comparisons is di�erent. Therefore others algorithms that rely on a parallel

sorting algorithms (including median �nding as the preliminary example and

maximum �nding) can be implemented rather easily. Versions in which the

generic algorithm is a sequential sort (using both merge sort and quick sort)

were also coded.

All the programs are written in the C programming language.
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3.2 The Structure of the Programs

In this section the general structure of the slope selection algorithm is de-

scribed. This is meant mainly to describe the \skeleton" of a parametric

search program, so less attention is paid to problem-speci�c routines.

3.2.1 The overall structure

The top level routine (after reading the input) is a simulation of a parallel

sort. We have used Valiant's parallel sorting algorithm [Va]. The details of

the simulation will be discussed in detail later.

The program keeps track of the level in which the parallel algorithms is in.

That is, the program lets each \processor" try to perform one comparison.

This comparison is not answered however, but collected by the program.

After all the \processors" generate their comparisons, the program resolves

all the comparisons gathered and runs the same parallel step again. This

time all the questions are answered and the parallel algorithm can proceed

to the next parallel step.

More speci�cally (see Figure 3.1), the main parallel sort is the rou-

tine sim_parallel_sort. When a comparison is about to be made in the

preparatory stage (when questions are not yet answered) it calls the routine

add_comparison. This routine will simply add the comparison to a data

structure holding the set of comparisons (an array). When all \processors"

have produced their comparisons, the sorting routine calls resolve_comparisons

that resolves all the comparisons. We will describe how this is done later.

In the second running of the parallel step, when all comparisons have been

resolved, the sorting algorithm calls the routine comparison that returns the

outcome of the comparison.

The routine resolve_comparisons implements the parametric search. In

our program, it simply generates the array of test values (x-coordinates of

intersections of pairs of lines), sorts this array and performs a binary search

over it. The routine that does the actual binary search and is also responsi-

ble for updating the parameter bounds is binary_search_parameter. The

decisions in the binary search are based on

� the relation of the test value to the parameter bounds, if is not inside

the bounds, or

54



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

H

H

Hj�

�

�

�

�

�

�

�

�

�

�*

�

?

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

H

H

H

H

H

H

H

H

H

H

H

H

H

H

Hj

?

?

?

test-values

comparisons

perform-test

binary-search

comparisonresolve-comparisonadd-comparison

sim-parallel-sort

Figure 3.1: General structure of the program.
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� the outcome of the sequential algorithm (in the slope selection case

| generating a permutation and counting its inversions), obtained by

calling the routine perform_test.

The level of problem dependency increases as we go down this calling

chain, but we believe that problem-dependent code is still well separated

from generic code in the program. The �rst problem speci�c detail (apart

from the obvious requirement that the generic parallel algorithm is sorting)

is in resolve_comparisonswhere it generates the set of test values from the

comparisons collected. Here we make the assumption that the input data to

be sorted are lines in the plane and that the test values are their intersections.

The next and inevitable problem dependency is in perform_test, the routine

that is supposed to do the serial test. Note that there is no problem speci�c

coding in other routines such as binary_search_parameter.

3.2.2 Simulating the parallel sort

There are two problems in coding the simulation of the parallel sort. The

�rst is to perform the algorithm in \levels" of parallel computation, although

the algorithm of [Va] is speci�ed as a recursive process. The second problem

is a rather technical one, and it concerns the separation of comparisons that

are going to be accumulated but not answered from comparisons that can be

answered right away.

The solution to the �rst problem was to maintain data structures repre-

senting tasks to be performed in the next parallel step, and then to iterate on

that data structure and perform the tasks one by one. These tasks generate

of course the set of tasks for the next parallel step. As the parallel algorithm

is Valiant's parallel merge sort, the tasks are always merging pairs of sorted

lists. The algorithm begins with a set of n singletons, and in each iteration it

groups the set into pairs, it then merges each pair, and transforms back the

merged pairs into a 
at set, that is regrouped and remerged until the entire

set is sorted. The merges themselves are also done recursively, by cutting

long lists into short fragments, merging pairs of fragments and concatenating

the sorted fragments into a sorted list.

The second problem has a more technical 
avor. We solved it by dividing

each parallel step into phases. In each phase every processor asks at most

one question (this is merely a more careful statement of Valiant's algorithm).
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Between the phases operations other than comparisons are made (pointer

manipulations and so on). To execute a parallel step (merging pairs of sorted

lists in a suitable data structure) we call a routine that performs the �rst

phase only. This routine however does not do the comparisons, but only

noti�es the parametric search algorithm that they need to be resolved (i.e.

it calls add_comparison). Now all these comparisons are resolved by calling

resolve_comparisons. The merging routine then calls another routine, that

performs the �rst phase, performing actual comparisons as needed by calling

comparison, and then collects the comparisons to be made in the second

phase.

Next, a third-phase routine performs the �rst two phases and collects

the comparisons of the third phase. This is continued until the last phase

routine, which can now carry out the whole parallel step to completion.

3.3 Experiments

Experimentation with the programs included running the programs (for me-

dian root �nding, our preliminary example and for slope selection) on random

data. By random data we mean on lines y = ax + b where all the real pa-

rameters (a's and b's) are drawn independently from some distribution. We

have used only uniform distribution on (0; 1) and exponential distribution

with parameter 1.

For evaluating the results, we note that the asymptotic running time

bounds of both algorithms are O(n log

3

n log log n). This is so because the

parallel algorithm A

p

in both cases is Valiant's sorting algorithm [Va] that

runs in O(log n log log n) parallel time and uses O(n) processors, and the se-

quential algorithm A

s

runs in O(n log n) time in both cases (we use sorting

in both cases, although a linear median �nding algorithm [BFPRT] could

be utilized in the prelinimary median root �nding; the slope selection algo-

rithm uses inversion counting algorithm that runs in O(n log n) in addition

to sorting).

During the execution, the program counts how many times add_comparison

is called (this is the row \Total number of tests" in the tables below), and how

many times perform_test is called (this is the row \Actual tests made").

The ratio between these numbers roughly represents the saving in running

time gained by maintaining the parameter lower and upper bounds.
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As can be seen in the tables, the saving in running time is huge (a factor

of more than 30 in the tables) in the parallel versions. The improvement is

most notable however in the serial versions. Practically, the short running

times of the serial versions, which are very easy to code, suggests that it may

be wise in practice to run these instead of the complicated parallel versions

or the costly enumeration methods.

Number of lines 1600 3200 6400 12800 25600

Total number of tests 493.5 590.0 685.6 788.7 908.1

Actual tests made 15.2 16.4 17.0 18.2 18.6

Table 3.1: Median root; parallel version; uniform distribution

Number of lines 1600 3200 6400 12800 25600

Total number of tests 37,523 82,556 178,652 392,238 839,799

Actual tests made 25.9 29.1 31.5 32.7 35.5

Table 3.2: Median root; serial version; uniform distribution

Number of lines 1600 3200 6400 12800 25600

Total number of tests 502.0 589.7 694.9 806.3 909.9

Actual tests made 21.9 24.1 28.1 28 31.8

Table 3.3: Slope selection; parallel version; exponential distribution

3.4 Conclusions

The results presented in this section indicate that Megiddo's parametric

search technique [Me] is practically feasible both in terms of the complexity

of coding and in terms of actual running times.
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Number of lines 1600 3200 6400 12800 25600

Total number of tests 500.8 585.8 690.6 789.9 907.3

Actual tests made 22.3 23.4 28.4 27.5 30

Table 3.4: Slope selection; parallel version; uniform distribution

Number of lines 1600 3200 6400 12800 25600

Total number of tests 27,062 56,062 151,385 307,566 637,312

Actual tests made 39.6 34.7 46.7 52.2 57.8

Table 3.5: Slope selection; serial version; uniform distribution

The use of a simple heuristic (using the bounds of the interval where the

sought parameter is known to lie, to avoid unnecessary costly comparisons)

is extremely e�ective. This conclusion is valid however only under the in-

put distributions tested. Moreover, the e�ectiveness of this heuristic is also

demonstrated for parametric search algorithms where the generic algorithms

are serial.

The latter are very simple to code. They seem to be e�cient in practice

(although this may be the e�ect of the input distribution), and are certainly

better than the brute-force enumeration methods (i.e. generating the

�

n

2

�

intersection points and ranking them in the slope selection problem) that

have similar running times.

There are two remarks that must be added. One is that the comparisons

in our programs depend upon linear functions. This simpli�es the coding

considerably. Dealing with roots of higher degree polynomials is possible,

but is non-trivial and time-consuming.

The second point is the model of numerical computation, discussed also

in the Introduction. Our programs use hardware 
oating point operations,

thus real numbers are not represented exactly. Programs where reals are rep-

resented exactly may run considerably slower. Another unfortunate result of

this fact is that our experimental data is not extremely reliable. Inputs with
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about 25000 lines are almost sure to contain numerically unstable situations

(e.g. nearly parallel lines) that may lead to erroneous results.
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