
Lessons and Experiences from the

Design, Implementation, and Deployment of a

Wildlife Tracking System

Sivan Toledo†, Oren Kishon†, Yotam Orchan⋆, Adi Shohat⋆, and Ran Nathan⋆

†Tel-Aviv University and ⋆The Hebrew University of Jerusalem

Abstract—We describe software-engineering lessons we learned
by building, deploying, and operating a large-scale distributed
wildlife tracking system. The design started four years ago; the
system has been operational for the past two years, but kept
evolving during this time. The paper describes the structure of
the system and then a series of interesting and well-documented
lessons we learned. Most of the lessons surprised us, in spite of
some of us being fairly experienced; some are not so surprising,
but we felt that they are interesting enough to document here.
Some of the lessons are particularly interesting because they
are specific to computer systems built by computer scientists for
collecting or processing experimental science data. These issues
mostly revolve around the difficulty of building and maintaining
complex systems in small teams in which junior members often
leave well before the project is over.

I. INTRODUCTION

The design and implementation of specialized computer

system for experimental science offers computer scientists a

unique opportunity but also unique challenges. Many scientific

disciplines are increasingly dependent on sophisticated sen-

sors, massive amounts of data, and sophisticated algorithms.

These trends create opportunities for computer scientists to

contribute to other branches of science. But contributing in

a meaningful and substantial way requires overcoming sig-

nificant challenges. Reliability and usability constitute one

such challenge. For such a system to actually generate sci-

entific results, it must be reliable and usable. Technology-

demonstration prototypes often fall short of these criteria and

fail to produce useful data for science. On the other hand, the

total engineering effort that can be devoted to the system in an

academic environment is usually quite limited. The evolving

collaboration relationship between the experimental scientists

and the computer scientists pose additional challenges.

This paper documents the main challenges that we faced

and the main lessons that we learned in the course of a 4-

year project that aims to develop a novel wildlife tracking

system. The system, called ATLAS, has been deployed in

the field gradually during the second year of the project and

has been operational during the past two years. Development

and additional deployment efforts also continued during the

past two years. Our primary deployment currently consists

This research was supported by the Minerva Center for Movement Ecology
and by grants 965/15 and 863/15 from the Israel Science Foundation (funded
by the Israel Academy of Sciences and Humanities).

of 3 beacon transmitters and 9 basestations (software-defined

radio receivers) in remote locations in the Hula Valley in

northern Israel, a server and database in Tel-Aviv University,

and secondary servers and databases in the Hebrew University

and in an Amazon cluster in Ireland. We have also successfully

demonstrated rapid mobile deployment of a completely self-

contained second system during a 2.5-day experiment in a

rural area in another part of Israel. Recent analysis of the

accuracy of ATLAS localizations shows that in the center of

its coverage area, localization errors are of the same order

of magnitude as the errors in GPS localizations [31]. More

specifically, localization errors have typical standard deviation

of about 5m and mean errors of about 5–15m.

The current implementation of ATLAS consists of more

than 53k lines of code, about 38k of which in Java and the

rest mostly in C.

The rest of the paper is organized as follows. Section II

provides an overview of our system. We survey related work

in Section III. The lessons we learned are presented in Sec-

tion VI, and our high-level conclusions in Section VII.

II. AN OVERVIEW OF THE SYSTEM

Our system, called ATLAS, is a reverse-GPS system that

localizes miniature transmitters attached to wild animals. In

reverse-GPS systems, multiple receivers at known locations

detect transmissions from transmitters in unknown locations.

The receivers estimate the time of arrival (TOA) of each

transmission and send these detection reports to a server. The

server treats each detection report as a constraint of the form

propagation-time= distance/c where the propagation time is

the difference between the (unknown) time of transmission

and the time of arrival, the distance is between the unknown

location of the transmitter and the known location of the

receiver, and c is the propagation speed. The server estimates

the location of the transmitter (and the time of transmission,

which is useless but appears in the constraints) by minimizing

the errors in a set of constraints associated with one trans-

mission and several receivers. ATLAS uses radio signals that

travel at the speed of light; over short distances, reverse-GPS

systems can also use acoustic signals. This framework is called

reverse-GPS because the role of transmitters and receivers in

it are reversed from their roles in GPS, in which signals from

transmitters in known locations (in space) are received and

stoledo
Text Box
Proceeings of the IEEE International Conference on Software Science, Technology and Engineering (SWSTE).
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained 
for all other uses, in any current or future media, including reprinting/republishing this material 
for advertising or promotional purposes, creating new collective works, for resale or redistribution 
to servers or lists, or reuse of any copyrighted component of this work in other works.



tag

arrival

time

estimation

radio

base station 2

arrival

time

estimation

radio
arrival

time

estimation

radio

locali-

zation
client

server

base station 1

base station 3

database

Figure 1. The overall structure of an ATLAS localization system. Basestations detect radio transmissions from tags and estimate their arrival times. A server
estimates the location of tags from timed detection reports. Communication between basestations, the server, and clients use TCP/IP connections.

processed by receivers at unknown locations. The roles of

transmitters and receivers are reversed in the two frameworks,

but the physics is the same and the mathematical location-

estimation frameworks are very similar. Figure 1 shows the

structure of ATLAS.

ATLAS’s transmitters, or tags, consist of a microcontroller

and a low-power data transceiver [28]. They are powered by

small batteries [26] and weigh 0.9g and up. Each tag transmits

a unique long pseudo-random packet periodically, normally

every second, 2s, 4s, or 8s. We have so far produced over 500

tags and deployed over 300 of them on wild animals, mostly

birds and bats (and 50 more in the mobile-system experiment).

We have collected over 39M localizations, including 51 indi-

viduals with > 100,000 localizations and 6 with > 1,000,000

(all Barn Owls carrying tags that weigh 10-15g). Altogether,

we tagged individuals of more than 20 different species.

Transmission from tags are received and processed by

basestations that consist of an antenna, low-noise amplifiers

and filters [27], a sampling receiver, and a computer. Software

running on the basestation’s computer processes the RF sam-

ples, detects transmissions from tags, estimates their arrival

time (to within a few nanoseconds to tens of nanoseconds),

and sends the detection reports to the server. We use both

commercial low-noise amplifiers and custom amplifier-filter

units. The radio receivers are commercial units (USRP N200

by Ettus Research) and are fitted with a accurate and stable

GPS-disciplined master oscillators; the accuracy and stability

of the oscillators are critical to the performance of the system

because we time the arrival of signals using the sample clock

of the receivers. We synchronize the clocks at the basestations

to a single time frame using transmissions from beacons (tags

at fixed known locations). The detection of signals from tags

and the arrival time estimation are done by correlating the

received signal with a replica of the long pseudo-random

packet that each tag transmits. The arrival-time estimate is

obtained by interpolating the correlation values near their max-

imum; this yields an accurate sub-sample estimate. The cross

correlation computation is expensive and accounts for most of

the processing load in basestations. Due to this load, we mostly

use relatively powerful computers in basestations (desktops

with quad-core Intel i7 processors); in the mobile deployment,

we successfully deployed weaker computers (laptops) who

were still able to cope with about 50 tags. To reduce the

computational load, the periodicity of tag transmissions is very

accurate. Once a tag is detected, the system knows when it will

transmit next (to within less than 100us). Basestations perform

correlation computations only on windows of RF samples

that contain subsequent transmissions along with margins of

about 2ms. A significant portion of the code that a basestation

runs is essentially a scheduler that schedules these digital-

signal processing (DSP) computations. Most of the rest of the

code performs the signal processing itself. The scheduler and

configuration section of the code are written in Java; the DSP

and the interface to the sampling receiver are written in C for

performance.

Detection reports are sent by basestations to a primary

server. These connections, like all other connections in an

ATLAS system, use secure TCP connections. Our current

deployments use cellular modems to provide connectivity to

remote basestations. The connections between ATLAS com-

ponents are completely reliable (messages are retransmitted

periodically until acknowledged by the receiver) and they are

delay tolerant (messages are eventually delivered to the desti-

nation even if the two sides crash and/or get disconnected).

The primary server groups detection reports of the same

tag along with detection reports of a beacon from about the

same time. These reports are used to form constraints in a

weighted least-squares minimization problem whose solution

is the estimated location of the tag. The detection reports and

the localization solutions are written to an SQL database. The

database also contains auxiliary tables that we describe later.

The system has been tested with both MySQL and SQLite (a



Figure 2. A graphical client showing raw localizations of two Barn Owls
over four days.

serverless single-file database that requires less administration

and configuration than, say, MySQL). The server can also send

detection reports and localizations to clients. The server is

implemented in Java. The non-linear minimization algorithms

that solve for locations use building blocks from the Apache

Commons Math library [9].

Real-time or transient clients receive all the detections and

localizations that the server processes while the client is con-

nected. Persistent clients are ones that the server knows about.

Their connection to the server is reliable and delay tolerant,

which means that after a down period or a disconnected period,

the client receives all the data that it missed while down or

disconnected. We currently support two different clients. One

client is a graphical desktop program, shown in Figure 2, that

can display both real-time data and localizations stored in the

database; it is a transient client. Secondary servers are clients

that run essentially the same code as the primary server; the

only difference is that they do not receive detection reports

directly from basestations; they receive all the data (detections

and localizations) from another server.

Servers, both primary and secondary, can be configured in

a variety of ways. They can utilize a unified database or no

database, or a separate SQLite for every day; these daily files

constitute an application-level backup mechanism. A server

can be configured to compute localizations or not, to support a

set of persistent clients, to compute summary tables (statistics)

and presentation tables (containing the most recent data for

display on a web site), and so on.

Delay tolerance in the servers is not limited to reliable

transport of data. When a detection report arrives hours or days

after the actual event, the server recomputes the localization

that was derived from the same transmission (in some cases,

it computes the localization for the first time, if there were

not enough constraints without the late detection report). The

re-computation is not done upon the reception of every late

report, which would be expensive in terms of database queries.

Instead, the late report marks a time-span containing the arrival

time (typically one hour) as invalid in an auxiliary table.

A clean-up thread checks for these invalidation records and

recomputes a batch of localizations if one is found.

ATLAS components that must run continuously (basesta-

tions and servers) are executed by a script that runs them

in an infinite loop, with a delay of 10s between invocations.

The delay aims to limit overhead and to allow missing system

resources that might have caused the component to crash (e.g.,

connections to the radio or the the Internet) to be restored

before ATLAS is restarted. These scripts are typically invoked

automatically from /etc/rc.local after the computer

boots.

Two additional components are used on an ad-hoc basis, not

on a continuous basis. The query program queries an ATLAS

database. It can recompute localizations from detections, and

it stores the output of the query or of the localization computa-

tion in a variety of ways: in a text table for analysis in Matlab,

in a standalone SQLite ATLAS database file, or back in a

unified ATLAS database. Running the localization algorithm

in this way allows the use of estimation formulations that are

more expensive and potentially more accurate than the fast

formulation used by default by ATLAS servers. Localizations

computed off-line by this program also include estimates

of uncertainty (covariance matrices, residuals, and gradient

norms) that the servers do not compute.

The homing-in program uses the basestation code base to

receive transmissions from a single specified tag and to present

the signal strength of the received signals both visually and

as an audible tone. This program is used to find the direction

to a tag (with a directional antenna that can be rotated) in

order to retrieve it even in locations with no ATLAS cover-

age. This retrieval technique, called homing in, has several

applications in wildlife research and management, such as

retrieving expensive tags or data-logging tags. ATLAS tags

transmit wideband signals that existing homing-in receivers

cannot process, thereby necessitating this program. We also

use it to test tags prior to deployment.

ATLAS is highly configurable and is designed to support

many instances at different sites. The configuration for a

particular site is described by a set of configuration files that

are stored in one directory on a web server. Some of the files

contain Java properties (text files with key-value pairs that the

system can query) that configure various ATLAS components

and others contain plain-text representation of Java objects that

represent the particular site: the tags used in the site, the tags

that basestations need to track, and the location of beacons

and basestations. The web server in which we store these files

is actually a Subversion server; users update the configuration

files of their site using a Subversion client. This scheme allows

simple HTTP access to the files from ATLAS components,

but at the same time provides version management to users.

To allow ATLAS components, especially basestations, to boot



even when disconnected from the Internet, ATLAS caches

these files in the current working directory. When a component

starts, it checks if the server has a newer version of one of

the files and if so replaces the old version by the most recent

one. If the server is not accessible but the files are present, the

component starts anyway. Components also check the server

for a new version of these files every few minutes. If the local

file that was used at startup time becomes obsolete, the code

exits; when the script restarts it 10s later, it retrieves the new

version.

III. RELATED WORK

The field of movement ecology is a branch of life sciences

that studies ecological processes primarily through analysis of

the movement of individuals and ensembles of animals and

plants [25]. This field has been undergoing rapid growth in

recent years thanks to new technologies to track animals and

thanks to computer systems that can process large amounts of

tracking data [4], [6], [16].

This growth has been driving research on the engineering

and deployment of both the tracking systems and the data

processing systems. We list several key examples. Kays et

al. [15] document experiences from several years of operation

of a regional-scale angle-of-arrival (AOA) wildlife tracking

system in a nature reserve in Panama. Dyo et al. [10] document

software and hardware evolution during a year-long project

that tracked Badgers using RFID tags. They also describe

a variety of deployment challenges and solutions. Juang et

al. [14] describe software, hardware, and deployment issues

of ZebraNet, a tracking system for large social mammals.

More generally, building and deploying distributed sensing

systems is hard; a fairly large number of reserach papers have

been devoted to describing system building and deployment

experiences and the lessons that can be learned from them

(see, e.g., [2], [13], [19], [24]).

Interest and research on management of large-scale animal-

movement databases is also growing [18], [29].

ATLAS as a system is related to a number of earlier systems

described in the literature. The closest one is a pioneering

reverse-GPS wildlife tracking system built by MacCurdy et

al. [21]. In spite of this system’s novelty, it has been used

very little to produce science results, perhaps as a result of

engineering that aimed primarily to prove that the concept is

viable as opposed to long-term production use by scientists.

The angle-of-arrival system that Kays et al. [15] is based on

a different physical principle than ATLAS, but it is similar to

ATLAS in the senses that it was a distributed system, it was

engineered as a production system (also by a small team), and

was in operation in a remote location for several years.

IV. TEAM-RELATED CHALLENGES IN THE DEVELOPMENT

OF SYSTEMS THAT SUPPORT EXPERIMENTAL SCIENCE

This section discusses personnel-related challenges in the

development of complex computer systems that support ex-

perimental science. Such systems are developed by three types

of teams. Some systems are developed by an experimental-

science group (e.g, [21], developed primarily by a staff engi-

neer in an Ornithology research group). Others, like ATLAS,

are developed by computer scientists, often in collaboration

with prospective users; for other systems in this category,

see [10], [14], [22], [23]. The rest are developed by commer-

cial companies; LimeLight1, a system for tracking animals in

an arena and quantifying their movement, examplifies systems

in this category.

ATLAS was designed and built by a team consisting of both

computer scientists and life scientists in academic institutions.

Some of the challenges and lessons that we discuss are also

relevant to other types of teams, but some are specific to this

collaborative setting.

A. The Challenges of Small Teams

Most of the science-support systems built in academic

environments are designed and implemented by small teams.

This appears to be true for most of the systems mentioned

above, both those that were built by the experimental-science

group and those built in collaboration with computer scien-

tists; it is probably also true for many commercial systems,

especially specialized ones that serve only a small community

of scientists.

The small size of a team is not an impediment when the

system is not particularly challenging, or when the design and

implementation challenges are limited to one or two areas in

which the small team has expertise (see, e.g., [1]). However,

when the technical challenges are frequent and diverse, the

small team size is constraining in at least two senses.

First, small teams typically do not possess expertise in

many different areas. Learning to gain expertise is possible,

of course, and is often necessary to carry out the project. But

this takes time and effort, so the learning processes must be

limited to areas that deserve the effort and to the level of

expertise that is actually required. These decisions are difficult

to make, because by definition they are made when the team

lacks expertise in a problem area. Sections VI-A and VI-B

document decisions of this type that we have made, both good

and bad.

Second, a small team typically lacks sufficient engineering

resources. This can easily lead the team to cut corners,

especially on software engineering practices that appear to

bring little immediate benefit, such as testing, documentation,

and rigorous definition of interfaces. When this is coupled with

motivation and incentives that are not aligned with system

reliability, the severity of the problem increases; we discuss

this topic in Section IV-C below.

B. Two Kinds of Funding Shortages

Research projects to develop novel complex systems like

ATLAS are challenging to carry out in academic institutions

due to funding that is limited in two different ways, both

significant. First, the amount of funding is limited, leading to

1http://actimetrics.com/products/limelight/



small team sizes and often also to inability to hire experienced

engineers. Second, typical research grants provide funding for

only a few years, roughly the duration of a PhD project,

making initiation of longer-term projects risky.

C. Motivation Discrepancies in Collaborative Projects

By definition, the main motivation for a science-support

system is the production of scientific results. In a project

carried out by the experimental-science group, this is often the

only motivation. But in a collaborative project, the computer

science (or electrical engineering) group is usually driven by

a strong secondary motivation: to advance its own field and to

publish in its venues. Without this motivation, the computer

science group is unlikely to contribute in a significant way to

the design and implementation of the system (it may contribute

in a minor way by giving advice).

The motivating factors of the two groups converge in areas

that represent a technological challenge. For example, if it

is difficult to product accurate results (this has been one

challenge in ATLAS), then both groups are motivated to

address the challenge: the experimental-science group needs

accurate measurements, and the computer-science group wants

to solve the estimation or system challenge. The same might

be true for capacity challenges: the experimental scientists may

need large quantities of data, and the computer scientists may

welcome the performance challenge.

But the motivating factors diverge in other areas, especially

ones related to robust software engineering. The experimental

scientists usually need a system that is robust, reliable, usable,

and maintainable. These traits require an engineering effort

that the computer scientists are not rewarded for.

In other words, technological innovation rewards both sides

of the collaboration, but computer scientists are best served by

a proof-of-concept system, whereas the experimental scientists

are best served by a well-engineered production system. In par-

ticular, building production-quality systems entails two costs

that are hard to justify in computer science research projects.

One consists of engineering activities (e.g., extensive testing

and documentation) that computer scientists, including gradu-

ate students, postdocs, and faculty members usually receive no

credit for; they are measured by innovation and analysis, not

by quality metrics of the software that they write. The other

is maintenance; production systems must be maintained, and

by the time non-trivial maintenance is required, the students

and postdocs who designed and implemented the system are

usually long gone. We note that in some cases graduate

students write useful code and continue to maintain it for many

years, but this is the exception rather than the rule. FFTW, an

FFT library, is a good example of such software [12].

D. Interdisciplinary Cultural Differences

There are core structures and values that are shared by

many academic disciplines, but there are also many differ-

ences between disciplines. These differences create tensions in

collaborative projects. We encountered many surprises along

the way. Computer scientists often publish relatively quickly,

often within a year or so of the beginning of a project,

whereas ecologists often take longer to obtain sufficiently

large sample size and/or enough repetitions across seasons

(for example), and to cope with unexpected problems typical

of any fieldwork. When computer scientists promise to deliver

software in the context of a research project, they usually mean

that they will deliver a flaky prototype; when life scientists

imagine software products, they imagine robust industrial-

strength software. We could go on and on.

E. Mitigation and Guidance

We now describe how we addressed the challenges listed

in Sections IV-A to IV-D, and we propose additional coping

mechanisms.

Small Teams: Most of ATLAS’s code was written by the

first two authors, a faculty member and a graduate student.

Some of the algorithmic code was based on prototype codes

written by three additional students, two graduate students

and an undergraduate. The majority of the code written by

the second author and all the code written by the other

students was subsequently re-written by the first author, a

faculty member, to improve code quality metrics and to reduce

concerns over long-term maintainability. Our assessment is

that this solution addressed the code-quality and maintenance

issues, as well as some of the motivation discrepancies (more

on that below). The costs to the faculty member in terms

of reduced productivity (e.g., publication count) are hard to

assess, but this is certainly a valid concern. In other words,

this is probably not a solution that is universally applicable.

We also tried to address this issue, at least partially, by

delegating responsibility to software modules that seemed less

interesting (primarily the web interface to the system) to the

experimental-science group, which employed programmers to

design and implement these modules. Our assessment is that

this did not work well. The programmers employed the by

science group were all junior (undergraduate computer-science

students or people who just received a computer-science

degree), they worked in an environment with no professional

mentoring, and most of them persisted in this job a relatively

short period of time. We do not recommend this approach.

Another way to address these challenges is to employ

staff engineers to design and implement the production-quality

version of the system. We did this, but fairly late in the project,

mostly due to the time lag it took to raise sufficient funding

(but also because we did not fully understand the utility of

this early on).

Funding: We started the project only after securing stable

long-term funding. In 2012, the last author received long-term

funding (6+6 years) from the Minerva Foundation and the

Hebrew University to launch a research center in movement

ecology. This was a key turning point because it dramatically

reduced the risk of running out of funding before the new

system matured enough to deliver useful science results.

Consequently, we conceived and launched the ATLAS project

as a joint initiative of the two PIs (the first and last authors)

under the auspices of the new Minerva Center for Movement



Ecology (MCME). Research centers like the MCME, which

are rather rare in academic institutes, provide the means to

advance relatively long-term projects. In our case, the Minerva

Center funds were sufficient to recruit a technical manager

responsible for all implementation issues and fieldwork (the

third author), to hire several students and research assistants

(including the second and fourth authors), to purchase the

required equipment and to cover associated costs (e.g. commu-

nication and maintenance). Our preliminary work in the first

two years enabled us to secure additional funds in the form

of a joint research grant from the Israeli Science Foundation.

This grant supports two students, several part-time assistants

and two post-doctoral fellows in both groups. Funding remains

a limiting factor, especially with regards to recruiting full-time

experienced engineers for extended periods.

For non-trivial collaborative systems, securing long-term

funding is essential. We note that the last author envisioned

a collaborative project similar to ATLAS more than a decade

ago, but those plans did not materialize due to lack of sufficient

funding.

Motivation and Incentives: We made the motivation of

each group clear and explicit early on and agreed how to share

credit in a way that provides sufficient incentives to all parties.

We feel that this is absolutely essential, even if it does not

completely eliminates tensions.

Summary: Our main recommendation is that teams that

initiate design of new systems in support of experimental

science be aware of these challenges and plan their projects

accordingly. The fact that a certain party (individual or team, in

a computer-science group or in an experimental science group)

can design and implement a system does not imply that the

system will engineered well enough to produce useful science

results. Similarly, an agreement to collaborate intensively on

an interdisciplinary long-term project does not completely

eliminate surprises and tensions down the road; they are bound

to happen so participants should expect them.

V. DOING RESEARCH WHILE DEVELOPING: PROTOTYPING

TRADEOFFS

The software engineering practices that are used in collab-

orative projects that aim to develop systems for experimental

scientists need to support both technology-focused research

and efficient construction of robust software. One practice that

is particularly important to both tasks is the use of software

prototypes, implementations that are relatively easy to build.

They are used to demonstrate feasibility of software compo-

nents and to explore the design space. The utility of prototypes

has been recognized decades ago [5]. The tradeoffs associated

with with prototypes in general and with different kinds of

prototypes (e.g., throw-away vs. evolutionary) continue to be

discussed in the software engineering literature [7], [17], [20],

but in general they are well understood.

Science-support systems built in collaboration with com-

puter scientists tend to be high-risk; if they are straight-

forward, there is no motivation for computer scientists to

collaborate. The feasibility-demonstration aspect of prototypes

is particularly important in challenging high-risk systems, so

they are useful in systems like ATLAS. We indeed used

two major software prototypes (as well as many hardware

prototypes [28], [27]); we discuss them later in this section.

The time and effort required to build both a prototype and a

production system are a potential disadvantage of prototypes.

The best tools for building prototypes are sometimes inappro-

priate for production use. This may be due to low performance,

to lack of reliability-enhancing mechanisms like strong typing,

or to high cost. When such tools are used, the prototypes

tend to be of the throw-away type. When the prototype is

an incomplete implementation built with tools that are also

appropriate for production, the prototype can evolve into a

production implementation. So-called evolutionary prototypes

can lead to lower overall cost than throw-away ones because

less code is thrown away. Minimizing the total effort is

particularly important when a small team builds a challenging

system.

Prototypes are often good research platforms. Development

tools that enable rapid prototyping also enable rapid instru-

mentation, modification, and sometimes visualization. This im-

plies that the prototype may better support technology-focused

research investigations than the production implementations

that replace them.

We built prototypes of both the basestation and the server

programs of ATLAS. Both prototypes used Matlab implemen-

tations of numerical algorithms and Java classes for com-

munication, task queues, and non-numerical data structures

(e.g., for batching detection reports into sets of detections

of the same transmission). The prototype of the basestation

software also included a C program that communicated with

the Matlab/Java program through a TCP connection. The

role of the C program was to configure the radio receiver

and to collect and buffers samples from it. The Matlab/Java

basestation program performed digital signal processing (DSP)

to detect transmissions from tags and to estimate their arrival

times. The server prototype was also split into two programs

(processes), a pure Java program that communicated with

basestations and stored data in a database and a Matlab/Java

program that computed localizations.

We replaced the DSP code that was implemented in Matlab

with a C implementation just prior to the deployment of the

first basestation. The main rationale was to eliminate the need

to manage Matlab licenses in remote machines. We later also

replaced the separate radio-interface C program with a version

of the code that is callable from Java and runs in the same

process. This was done in order to improve stability and to

enable operators to diagnose and fix problems more easily.

Code stability and licensing concerns also led us to replace

the Matlab implementation of the localization algorithms with

a Java implementation. Our Java code does not implement the

localization algorithms directly; it relies heavily on numerical

algorithms implemented by the Apache Common Math library.



A. Prototypes: Lessons and Recommendations

Our assessment is that using Matlab or a similar tool for

the initial implementations was the right thing to do. Mat-

lab offered programming environment with a large and well

documented library of sophisticated algorithms and powerful

visualization tools. These properties allowed us to to build

working software relatively quickly. We also feel that the

decision to replace the Matlab implementations with C and

Java ones led to better engineered code that is more stable.

The Java implementation of the localization code is also well

structured so it should be easier to maintain than the initial

Matlab code. The performance of the C signal-processing

code is critical to the performance and capacity of ATLAS

basestations. As a result, the code is low level and complex.

It is likely to be much more difficult to maintain than a

comparable Matlab code.

We did not explicitly decide upfront that the Matlab imple-

mentations would only serve as prototypes. This was probably

a mistake, because it caused us to spend time on careful

engineering of Matlab codes that were eventually discarded.

An important and unexpected consequence of the transition

from a Matlab prototype to a C or Java production code

was that visualization and algorithmic investigation became

more difficult. We did maintain both implementations for a

while, in order to preserve the visualization and experimen-

tation capabilities. But as the software continued to evolve,

we realized that maintaining two working versions of a

components was too costly and we ceased to maintain the

Matlab implementations. It is hard to determine whether we

actually lost some research opportunities when we replaced the

Matlab implementations with Java and C. However, making

visualization and experimentation more difficult is clearly a

significant disadvantage in a system that is a computer-science

research project as well as a science-support system.

Our recommendations to teams developing similar systems

are (1) to use rapid prototyping environments for at least the

initial implementation of challenging components; (2) to try

to decide early on which implementations are throw-away

prototypes and which will evolve into production code; (3) to

carefully weigh the costs and benefits of throwing away and re-

placing prototypes. The costs consist not only of the additional

implementation effort, but also of more difficult maintenance

of complex high-performance implementations (especially in

low-level languages like C) and of the increased difficulty

of algorithmic experimentation and visualization. The benefits

of license-freedom and increased stability and performance

may or may not justify replacing the prototype. Careful initial

planning may also point to programming environments that are

suitable for both prototyping and production, eliminating the

need to throw away prototypes. Having said that, it is also true

that the benefits of prototyping include the freedom to defer

decisions about implementation languages and environments,

a freedom that must be given up if the prototype is to evolve

into the final product.

VI. GENERIC SOFTWARE ENGINEERING CHALLENGES

AND LESSONS

Not surprisingly, we have also encountered during the

project challenges that are not specific to systems designed

to support experimental science. The first two issues that we

discuss in Sections VI-A and VI-B are particularly important

to small teams; the other issues that we discuss later in the

section are generic.

A. Do-it-Yourself or Ready-Made?

One tradeoff that comes up again and again is whether to

use existing software modules (libraries or entire subsystems)

or to develop the required functionality from scratch. The

benefit of using an existing library/subsystem is clear: the

functionality of the module becomes available without any

design or implementation effort. But there are also costs

to consider. The costs that worried us most are (1) future

maintenance tasks due to the long-term dependence on the

modules that are used, (2) the effort to choose a module if

more than one is available, and (3) the effort required to learn

how to use the module effectively and correctly. In the case of

commercial modules, the monetary cost is obviously also an

issue. The literature usually refers to this issue as the build-

or-buy decision and to the existing subsystem as a COTS

(commodity off the shelf) product.

The maintenance cost induced by dependence on a COTS

module is hard to assess, mostly because this cost is paid

long after the decision to use the module. We were worried

about these costs and we did make a conscious effort to avoid

dependence when the payoff seemed small. More specifically,

we were concerned that future upgrades of modules that we

depend on will modify their behavior in a way that requires

changes in our code. We were also concerned about the

opposite problem, that lack of maintenance of a module will

cause problems.

Obviously, when an existing module offers sophisticated

functionality that is actually needed, the right thing is to

use it. The tradeoff requires consideration mostly when the

functionality is relatively simple.

This issue came up several times during the development

of ATLAS. One interesting case is the logging infrastructure.

We realized that we need a logging module when we started

running the basestation code continuously. We were aware that

there exist logging libraries for Java, but at the time we felt that

the functionality is so simple that it would be easier to develop

it ourselves than to learn to use a logging library. We developed

a class that performed logging to a file and used it for well

over a year. When we realized that we need to constrain the

size and number of log files, we switched to using the Apache

Commons Logging library [8]. The switch required an effort to

select this particular logging library, to learn how to configure

it and to use it, and to modify all the call sites (we decided

to call the new library from the calls sites directly in order

to take advantage of the severity-level support rather than to

use the old class as a wrapper). The original coding effort was



thus wasted; in hindsight, it would have been better to use an

existing logging library immediately.

This issue came up several more times. The most interesting

cases are listed below.

• We use Subversion, a source-code management system2,

to manage the configuration files of deployed ATLAS

systems. The system retrieves up-to-date configuration

files through secure HTTP connections (Subversion run-

ning under Apache offers this access method to the

most up-to-date version of the file, in addition to ac-

cess though a custom protocol). System administrators

update configuration files using the Subversion interface,

which offers sophisticated versioning and authorization

capabilities. The main costs associated with the use of

this subsystem are the need to install a subversion client

on ATLAS administrators’ machines and the need to

deploy a Subversion server as part of ATLAS installations

(other file repositories with an HTTP retrieval mechanism

should also work).

• We use the Apache Common Math Java library [9] to

solve the nonlinear optimization problems whose so-

lutions define locations estimates, and also to perform

linear algebra transformations and decompositions that

are associated with the localization algorithms [31].

• On the other hand, we have implemented the signal

processing that is used for detection of signals emitted

by tags and for estimating their arrival time in custom

code written in a combination of Java and C (mostly C).

The C code does call a high-performance Fast Fourier

Transform (FFT) library, FFTW [12], but the rest of

the code is custom. We have investigated a few digital-

signal-processing libraries (e.g., GNU Radio [3]) but did

not find one that was appropriate. The custom code

that we wrote is fairly simple algorithmically, but it

uses complex memory management in order to achieve

high performance. The decision to use an existing FFT

library was simple: the performance of the arrival-time

estimate code depends mostly on the performance of the

FFT algorithm that it calls, so using an existing high-

performance library is essentially the only reasonable

option. The interface to FFTW is fairly complex so the

decision to use it does carry a cost in terms of code clarity

and simplicity.

• We also decided not to use an existing delay-tolerant

reliable transport layer. We have not investigated this

issue deeply, but from the superficial investigation that we

did carry out no easy-to-use and easy-to-deploy candidate

emerged. We implemented our own custom transport

layer.

B. Hidden Complexity

We mentioned above the effort required to learn how to use

a sophisticated module effectively and correctly. In one case,

we introduced a serious bug into the system because we failed

2https://subversion.apache.org/

to understand the complexity of one simple-looking module.

Finding the fault was difficult. Fixing it was easy.

The module in question is the Java serialization

mechanism (java.io.ObjectInputStream,

ObjectOutputStream, and related classes and interfaces).

This mechanism is part of Java’s standard library, but using

it correctly is not trivial. The bug in our code caused

long-running ATLAS programs (the basestation and server

programs) to run out of memory. A memory-contents analysis

revealed that most of the heap stored objects that were sent

or received by object streams. Reading the documentation

carefully, we realized that the streams maintain a reference

to every object that passes through them, in case another

reference to one of them reappears in a serialized object. This

behavior is required in order to duplicate aliased structures

on the receiving side. Once we understood what caused

the problem, we fixed the bug by replacing the calls to the

read and write methods by calls to readUnshared

and writeUnshared, which do not maintain references to

the objects (and do not guarantee correct reconstruction of

aliased structures).

In Java and other languages with a vast standard library, it

is prudent to expect that some sections of the standard library

would require the learning curve that we normally associate

with complex external modules and libraries.

C. Data Transport Reliability: Near-Perfection is Hard to

Explain, Perfection is Unforgiving

The first version of the delay-tolerant transport layer that

we designed and implemented seemed to satisfy all the re-

quirements of the system. It was not 100% reliable but came

close; it was allowed to rarely lose messages. This was justified

by the argument that lost messages are primarily real-time

arrival-time reports that can also be lost due to a variety of

other reasons: RF noise and interference, software upgrades

and restrarts, and so on.

In the almost-perfectly-reliable design, outbound messages

are placed in a persistent file-backed queue. If the TCP

connection is too slow to cope with the sending rate or if the

remote side is unreachable, the in-memory queue spills into a

file. Messages are never discarded because the queue is full. A

specialized thread tries continuously to extract messages from

the in-memory queue or from the file and to write them to the

TCP connection. The only messages that are lost in this design

are the ones that are written to the outgoing TCP connection

but are not delivered because the connection disconnects.

Assuming disconnections are rare, relatively few messages are

lost. We did experience a massive loss of messages during a

period of a few days in which the server crashed repeatedly

due to an unrelated bug, causing TCP connections to be

established and disconnected repeatedly. But except for this

incident, the system did deliver most of the messages.

The main defect in the almost-perfect design was that it

proved difficult to explain the level of data-transport reliability

to users and potential users. As soon as they understand

that ATLAS collects data from computers deployed at remote



locations, they ask what happens to the data that is collected

when a basestation is disconnected. The original design did

not allow us to respond that all of this data always eventually

arrives at the server. The explanation that we provided was

complex and appeared to be confusing to many users.

To address this defect, we improved the design so as to

make data collection and processing perfect, not just almost

perfect. In the new design, messages (objects) to be sent are

collected into bundles that are acknowledged as a unit by the

receiver, to reduce the overhead of sending and processing

acknowledgments. A bundle is finalized and transmitted when

the oldest message in the bundle passes an age threshold to

limit latency (30s by default), or when the bundle passes an

object-count threshold. Bundles that need to be sent through

a TCP connection are first stored in an SQLite database

associated with the connection. Bundles are deleted when they

are acknowledged by the receiving side and are retransmitted

periodically as long as they are not acknowledged.

An ATLAS server only acknowledges an incoming bundle

after the objects in the bundle has been stored in all the

databases that the server maintains. This includes the main

ATLAS database maintained by the server and also the SQLite

databases associated with outgoing connections to clients or

secondary servers.

The switch to the completely-reliable design caused unex-

pected failures. The failures were due to limited capacity in the

reliability-ensuring mechanism, namely the SQLite database.

If bundles are too small, the database may not be able to

commit them at a sufficient rate. Interestingly, this potential

bottleneck is in the system was introduced in order to ensure

message reliability; in the almost-perfect design, this potential

bottleneck did not exist. The failures were also hard to diag-

nose, because the limited commit rate slows down the module

that sends messages, which slows down the modules that feed

it, and they slow down the modules that feed them, and so on.

Back pressure causes large parts of the system to slow down.

It was hard to pinpoint what was slowing down the system.

We eventually discovered and corrected the problem. But in

general, completely-reliable systems operate without pressure-

escape valves, which means that performance bottlenecks must

cause failures, and the failures are not necessarily close to the

bottleneck, making diagnosis difficult.

D. Object-Oriented Zeal

ATLAS is a distributed system that sends objects (messages)

of several types between system components. In procedural

programming environments, messages carry a type field (e.g.,

the tag in MPI messages [11]). The receiver of a message

inspects the type field and processes the message accordingly.

The first design of ATLAS’s messaging mechanism was based

on this idea. Objects were serialized and sent to the destination.

The receiving thread deserialized the object and called a han-

dler method. Conditional statements in the handler checked the

type of the received object using the instanceof operator

and processed the message. Figure 3 (left) presents this design.

It worked, but we decided to use a more elegant solu-

tion, shown on the right side of Figure 3, which avoids

the instanceof operator and any other explicit message-

type tag. All messages have a common denominator: they

must be processed at the receiving side in some way. This

was expressed using a Message interface with one method,

execute, which is invoked by the receiver of a message and

it is responsible for processing the message. In this design, the

code in a class that implements Message is executed in two

completely different run-time environments: the constructor

is executed at the sender, whereas execute is executed at

the receiver. The receiver runs the correct code using Java’s

dynamic dispatch mechanism, not by explicitly checking the

type with instanceof. Our initial use of instanceof

is indeed considered in the software-engineering literature to

be a manifestation of poor object-oriented practices; and the

dynamic-dispatch design we used later is the recommended

solution [30].

This worked well as long as ATLAS had only two kinds of

communicating components, basestations and a single server.

Messages were constructed at basestations and their execute

were executed on the server.

Over time, we developed additional ATLAS components:

secondary servers, a command-line query interface, real-time

visual clients, and the homing-in program. These components

also receive messages, but a message received by one of

these components needs to behave differently than it does at

the main ATLAS server. For example, a detection message

arriving at the main server is stored in a database and grouped

with others to form a localization problem, but the same

message arriving at a real-time visual client updates a table

of recent detections. The original execute method did not

express all of these behaviors; to express all of them in this

method would again require conditionals to determine the

execution environment.

We reverted to the original design. Every ATLAS compo-

nent that receives messages has a handler method that tests

the type of incoming messages and processes appropriately.

VII. CONCLUSIONS

Building a computer system that enables experimental sci-

entists to collect new kinds of data or collect data in new

ways can be exciting, rewarding, and productive for computer

scientists. Such a project can both advance science and open

up interesting opportunities in systems research.

We have learned a lot from building ATLAS, a novel

distributed system for tracking wildlife. Some of the lessons

are generic and can be learned from and applied to many

other types of computer systems. Other lessons are specific

to science-support systems that are developed by academic

teams (or teams in other types research institutions). In such

cases, the system is being used as a production system by

the experimental scientists, but the development is done in

a team that rarely or never delivers production systems. The

discrepancy creates many challenges that stem from the small

size of the development team, from the limited tenure of junior



public void handle(Message m) {

if (m instanceof DetectionMessage) {

DetectionMessage dm = (DetectionMessage) m;

... // process an incoming detection message

}

if (m instanceof (TagSummaryMessage) {

...

}

...

}

public class DetectionMessage implements Message {

public final int basestation;

... // other fields

public DetectionMessage(...) {...}

@Override public void execute() {

... // process an incoming detection message

}

... // other methods

}

Figure 3. Two ways of handling incoming messages in an object-oriented program.

team members, from funding cycles that are too short, and

from friction between developers and users. We have tried

several techniques to mitigate the challenges; most worked,

some did not.

REFERENCES

[1] Vsevolod Afanasyev. A miniature daylight level and activity data
recorder for tracking animals over long periods. Memoirs of the National

Institute for Polar Research Special, 58:227–233, 2004.
[2] Guillermo Barrenetxea, François Ingelrest, Gunnar Schaefer, and Martin

Vetterli. The hitchhiker’s guide to successful wireless sensor network
deployments. In Proceedings of the 6th ACM Conference on Embedded
Networked Sensor Systems (SenSys), pages 43–56, 2008.

[3] Eric Blossom. GNU Radio: Tools for exploring the radio frequency
spectrum. Linux Journal, June 2004.

[4] E. S. Bridge, K. Thorup, M. S. Bowlin, P. B. Chilson, R. H. Diehl,
R. W. Fléron, P. Hartl, K. Roland, J. F. Kelly, W. D. Robinson,
and M. Wikelski. Technology on the move: Recent and forthcoming
innovations for tracking migratory birds. BioScience, 61:689–698, 2011.

[5] Fred Brooks. The Mythical Man-Month: Essays on Software Engineer-

ing. Addison-Wesley, 1975.
[6] F. Cagnacci, L. Boitani, R. A. Powell, and M. S. Boyce. Animal ecology

meets GPS-based radiotelemetry: A perfect storm of opportunities
and challenges. Philosophical Transactions of the Royal Society B:

Biological Sciences, 365:2157–2162, 2010.
[7] Alan M. Davis. Operational prototyping: a new development approach.

IEEE Software, 9:70–78, 1992.
[8] Commons Logging Developers. Apache commons logging, release 1.2.

Available from https://commons.apache.org/logging, 2014.
[9] Commons Math Developers. Apache commons math, release 3.5.

Available from https://commons.apache.org/math, 2015.
[10] Vladimir Dyo, Stephen A. Ellwood, David W. Macdonald, Andrew

Markham, Niki Trigoni, Ricklef Wohlers, Cecilia Mascolo, Bence Pász-
tor, Salvatore Scellato, and Kharsim Yousef. WILDSENSING: Design
and deployment of a sustainable sensor network for wildlife monitoring.
ACM Transactions on Sensor Networks, 8:29:1–29:33, 2012.

[11] Message-Passing Forum. MPI: A message-passing interface standard.
Technical report, 1994.

[12] Matteo Frigo and Steven G. Johnson. The design and implementation of
FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005. Special issue
on “Program Generation, Optimization, and Platform Adaptation”.

[13] Timothy W. Hnat, Vijay Srinivasan, Jiakang Lu, Tamim I. Sookoor,
Raymond Dawson, John Stankovic, and Kamin Whitehouse. The
hitchhiker’s guide to successful residential sensing deployments. In
Proceedings of the 9th ACM Conference on Embedded Networked

Sensor Systems (SenSys), pages 232–245, 2011.
[14] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan

Peh, and Daniel Rubenstein. Energy-efficient computing for wildlife
tracking: Design tradeoffs and early experiences with ZebraNet. In
Proceedings of the 10th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS),
pages 96–107. ACM, 2002.

[15] R. Kays, S. Tilak, M. Crofoot, T. Fountain, D. Obando, A. Ortega,
F. Kuemmeth, J. Mandel, G. Swenson, T. Lambert, B. Hirsch, and
M. Wikelski. Tracking animal location and activity with an automated
radio telemetry system in a tropical rainforest. The Computer Journal,
54:1931–1948, 2011.

[16] Roland Kays, Margaret C. Crofoot, Walter Jetz, and Martin Wikelski.
Terrestrial animal tracking as an eye on life and planet. Sciene,
348:aaa2478–1–aaa2478–9, 2015.

[17] Fabrice Kordon and Luqi. An introduction to rapid system prototyping.
IEEE Transactions on Software Engineering, 28:817–821, 2002.

[18] B. Kranstauber, A. Cameron, R. Weinzerl, T. Fountain, S. Tilak,
M. Wikelski, and R. Kays. The Movebank data model for animal
tracking. Environmental Modelling and Software, 26:834–835, 2011.

[19] Lakshman Krishnamurthy, Robert Adler, Phil Buonadonna, Jasmeet
Chhabra, Mick Flanigan, Nandakishore Kushalnagar, Lama Nachman,
and Mark Yarvis. Design and deployment of industrial sensor networks:
Experiences from a semiconductor plant and the north sea. In Pro-
ceedings of the 3rd International Conference on Embedded Networked

Sensor Systems (SenSys), pages 64–75, 2005.
[20] Phillip A. Laplante and Colin J. Neill. The demise of the waterfall

model is imminent. Queue, 1:10–15, 2004.
[21] R. MacCurdy, R. Gabrielson, E. Spaulding, A. Purgue, K. Cortopassi,

and K. Fristrup. Automatic animal tracking using matched filters and
time difference of arrival. Journal of Communications, 4(7):487–495,
2009.

[22] Andrew Markham, Niki Trigoni, Stephen A. Ellwood, and David W.
Macdonald. Revealing the hidden lives of underground animals using
magneto-inductive tracking. In Proceedings of the 8th ACM Conference
on Embedded Networked Sensor Systems (SenSys), pages 281–294,
2010.

[23] Andrew C. Markham and Andrew J. Wilkinson. EcoLocate: A hetero-
geneous wireless network system for wildlife tracking. In Tarek Sobh,
Khaled Elleithy, Ausif Mahmood, and MohammadA. Karim, editors,
Novel Algorithms and Techniques In Telecommunications, Automation

and Industrial Electronics, pages 293–298. Springer, 2008.
[24] Robert S. Moore, Bernhard Firner, Chenren Xu, Richard Howard,

Yanyong Zhang, and Richard Martin. Building a practical sensing
system. In IEEE iThings, 2013.

[25] Ran Nathan, Wayne M. Getz, Eloy Revilla, Marcel Holyoak, Ronen
Kadmon, David Saltz, and Peter E. Smouse. A movement ecology
paradigm for unifying organismal movement research. Proceedings of

the National Academy of Sciences of the United States of America,
105:19052–19059, 2008.

[26] Sivan Toledo. Evaluating batteries for advanced wildlife telemetry tags.
IET Wireless Sensor Systems, 5:235–242, 2015.

[27] Sivan Toledo. A selective robust weak-signal UHF front end. QEX,
pages 31–36, January/February 2015.

[28] Sivan Toledo, Oren Kishon, Yotam Orchan, Yoav Bartan, Nir Sapir, Yoni
Vortman, and Ran Nathan. Lightweight low-cost wildlife tracking tags
using integrated transceivers. In Proceeings of the 6th Annual European
Embedded Design in Education and Research Conference (EDERC),
pages 287–291, 2014.

[29] Ferdinando Urbano and Francesca Cagnacci. Spatial Database for
GPS Wildlife Tracking Data: A Practical Guide to Creating a Data

Management System with PostgreSQL/PostGIS and R. Springer, 2014.
[30] Eva van Emden and Leon Moonen. Java quality assurance by detecting

code smells. In Proceedings of the 9th Working Conference on Reverse
Engineering (WCRE), pages 97–106. IEEE, 2002.

[31] Adi Weller, Yotam Orchan, Ran Nathan, Motti Charter, Anthony J.
Weiss, and Sivan Toledo. Characterizing the accuracy of a self-
synchronized reverse-GPS wildlife localization system. In Proceeings of

the 15th ACM/IEEE International Conference on Information Processing

in Sensor Networks (IPSN), Vienna, Austria, April 2016. To appear.




