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a b s t r a c t

We present a method for computing the null space of finite element models, including models with
equality constraints. The method is purely algebraic; it requires access to the element matrices, but
not to the geometry or material properties of the model.

Theoretical considerations show that under certain conditions, both the amount of computation and
the amount of memory required by our method scale linearly with model size; memory scales linearly
but computation scales quadratically with the dimension of the null space. Our experiments confirm this:
the method scales extremely well on 3-dimensional model problems. In general, large industrial models
do not satisfy all the conditions that the theoretical results assume; however, experimentally the method
performs well and outperforms an established method on industrial models, including models with many
equality constraints.

The accuracy of the computed null vectors is acceptable, but the method is usually less accurate than a
more naive (and computationally much more expensive) method.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The computation of the null space of finite element matrices is
an important task in many industrial applications. In this paper we
show a method to efficiently compute the null space of symmetric
positive semidefinite finite-element matrices, possibly with addi-
tional linear equality constraints. Our method is strictly algebraic
and does not use the geometry of the underlying model; the only
information needed is the model in elemental form and a represen-
tation of the linear constraints. Our method works for any model
with symmetric semidefinite elements. It works both when the
constraints are symmetrically added to the finite-element matrix
and when the constraints are appended to the symmetric finite-
element matrix to create a rectangular matrix.

In structural mechanics the null space of a finite-element ma-
trix corresponds to the zero energy modes of the structure. Such
zero energy modes are important in static and dynamic analysis
of floating structures [16], for example, where the computed null
space is used to solve a consistent but rank-deficient system of lin-
ear equations. Certain domain decomposition methods also require
the computation of the null space of floating substructures. This is
the case for FETI [13,11], for the balancing domain decomposition
method [26], and for some direct flexibility methods [14,6].
ll rights reserved.

ter Science, Tel-Aviv Univer-
x: +972 3 6350780.
Although most finite-element analyses are performed on non-
singular matrices, a nonempty null space can also be introduced
due to an error in the modeling phase. A model with too few con-
straints (boundary conditions) can lead to a singular coefficient
matrix. If the linear solver factors the matrix with a backward sta-
ble factorization (such as LU with partial pivoting), the singularity
can be detected fairly easily either as a breakdown in the factoriza-
tion process or using inverse iteration [21]. The failed factorization
process, is however, expensive. Other types of linear solvers, espe-
cially iterative ones, do not cope well with singular or nearly singu-
lar matrices, which can cause the solver to converge extremely
slowly or not at all. Our method can address this issue by quickly
checking if a finite element model is sufficiently constrained; the
scaling of our null space computation routine is approximately
linear.

Finally, algebraic multigrid methods such as smooth aggrega-
tion [19,35,36] also benefit from an efficient computation of the
null space of semidefinite finite-element matrices.

The remainder of the paper is organized as follows. The next
section gives an overview of our method and relate it to existing
work. Section 3 describes our method in detail. We present numer-
ical results in Section 4. Finally, we summarize our results in Sec-
tion 5.
2. Overview and related work

Let K ¼
P

eKe be an n-by-n finite-element matrix, where all the
Kes are symmetric positive semidefinite element matrices. Let C be
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a c-by-n row block of linear constraints (C may be empty). Our ulti-
mate goal is to compute the null space of the rectangular matrix

KC ¼
K

C

� �
;

or of the symmetric square matrix

K CT

C

" #
:

We compute the null space using a two phase process. In the
first phase we efficiently compute an ðnþ ‘Þ-by-ðnþ ‘Þ matrix
FðKÞ. The matrix FðKÞ is an easy-to-factor approximation of K
that preserves its null space (in a specific technical sense that we
describe later). The theory behind the approximation FðKÞ was
developed in an earlier paper [33], and the algorithmic aspects
are described below in Section 3. In the second phase we compute
the null space of

bK ¼ FðKÞbC
" #

;

where bC is the matrix C padded with ‘ zero columns. We then ex-
tract the null space of K from the computed null space of bK . Any
reliable method for computing the null space of bK is appropriate
here, including the methods in [7,17,31].

The key insight in our method is the construction of the matrixbK such that factoring it is significantly easier than factoring KC .
Once a matrix is factored using a backward-stable factorization,
computing its null space is relatively easy using inverse power iter-
ations. This technique works well even for rectangular matrices
[18]. Unfortunately, factoring KC (or even just K) is expensive for
three-dimensional models. Our method addresses this by replacing
K by FðKÞ, which preserves the null space but is easier to factor
(even though its dimension is higher).

Our method uses a combinatorial relationship called mutual
rigidity between the Kes. This relationship, which we define in Sec-
tion 3.1, is closely related to element relationships defined in sev-
eral papers; two mutually rigid elements are defined asmechanism
free adjacent elements in [29], as elasticity connected elements in [8],
and as adjacent in the natural association graph in [22,23]. This rela-
tionship is also closely related to the mechanism buster algorithm in
[11].

There is, however, a fundamental difference between the ele-
ment-relationship definition in this paper and the definitions in
the papers cited above. Our definition is purely algebraic; it uses
only the information in the element matrices. All the other defini-
tions use geometrical information, discretization specific informa-
tion, or assumptions on the physics that the elements model.
Therefore, our method is more general and can be used with many
finite-element modeling techniques. Moreover, our method is not
restricted to structural mechanics; it works equally well in electro-
static problems, for example.

Our method also uses the inter-element relationship differently
than earlier methods. We use the rigidity relations and the under-
lying graph to combinatorially sparsify K. In essence, we form the
stiffness matrix of another physical structure, which has the same
null space as the given structure but is much easier to analyze (be-
cause its stiffness matrix is easier to factor).

The specific problem of computing the null space of large semi-
definite sparse matrices arising in structural mechanics was ex-
plored in [12] and in [29]. In both cases the null space of rigid
substructures was computed using additional geometrical infor-
mation. The method in this paper works without this information,
and therefore may be suitable for broader usage scenarios.
Several papers [7,17,31] proposed algorithms for finding the
null space of another matrix arising in structural mechanics, the
equilibrium matrix in the force method. More recent papers
[22,23] presented efficient algorithms to compute the null space
of the equilibrium matrix, when the matrix was computed using
specific finite-element formulation and specific element types.
The equilibrium matrix is underdetermined (has more columns
than rows), whereas our paper focuses on computing the null
space of another family of matrices, namely stiffness matrices
and such matrices with appended constraints. These matrices are
square or overdetermined (have more rows than columns) but pos-
sibly rank deficient.

Finally, we mention another related group of algorithms that
can be used to compute the null space of sparse rectangular matri-
ces such as KC . These methods are based on rank revealing QR fac-
torizations [28,30,1]. These works compute a QR factorization in a
careful way to handle rank deficiency. The QR factorization can
then be used to accurately compute a null space basis for the ori-
ginal matrix. Computing the QR factorization of KC , however, is
very slow. Nevertheless, these methods can be used to compute
the null space of bK . Our method uses an LU factorization rather
than a QR, since sparse LU factorizations are usually much faster
than sparse QR factorizations.
3. The method in detail

We start with some notation. We represent a finite element
model as collection of elements of the form e ¼ ðke; IeÞ where ke

is an ne-by-ne element matrix in local variables and Ie is a vector
of size ne containing the global indices corresponding to the local
variables. The matrix Ke is the n-by-n element matrix in global
coordinates. In other words, KeðIe;IeÞ ¼ ke. The linear constraints
of the model, if there are any, are given in a c-by-n block of rows
denoted by C. This is all the information that we need for our meth-
od. Let K ¼

P
eKe, the steps for computing the null space of

KC ¼ KT CT
� �T are:

(1) Compute the rigidity graph, a combinatorial graph in which
vertices represent elements and edges represent rigidity
relationships.

(2) Use the rigidity graph to extend every element e ¼ ðke; IeÞ
into an extended element ê ¼ ðke;bIeÞ.

(3) Assemble the elements fêg into an ðnþ ‘Þ-by-ðnþ ‘Þ matrix
FðKÞ.

(4) Pad C into Ĉ ¼ ½C 0� and append to FðKÞ, to create
bK ¼ FðKÞbC
" #

:

(5) Compute the LU factorization of bK with partial pivoting.
(6) Compute the null space of bK using subspace inverse itera-

tion, using its LU factors.
(7) Restrict the null space of bK to its first n coordinates and

orthogonalize.

The theoretical idea behind this is that x 2 nullðbK Þ if and only if
Q T x 2 null
K

C

� �� �
;

where Q is the ðnþ ‘Þ-by-n identity matrix (an identity extended
with ‘ zero rows).

The rest of this section describes these steps in detail and ex-
plains the theoretical justification for the method.
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3.1. Rigidity graphs

We define an undirected weighted combinatorial graph which
we call the rigidity graph [33, Definition 6.1]. The vertices in this
graph correspond to the elements and the edges connect certain
pairs of elements. Informally, this graph is the dual of the finite-
element mesh. Fig. 3.1c illustrates the rigidity graph of the model
in Fig. 3.1b.

More formally, the edges of the graph represent a local relation
between pairs of elements. We call this relation mutual rigidity
relationship. The rigidity relationship can be defined and com-
puted in a purely algebraic way (but if the element types are
known, not just the ðke; IeÞs, then mutual rigidity can be deter-
mined by the element type and adjacency in the mesh). We next
show how to algebraically determine whether two given element
matrices are mutually rigid.

We denote by ‘e the dimension of the null space of ke, and we let
Ne be an ne-by-‘e matrix whose columns are a basis for the null
space of ke. In structural analysis in 2 and 3 dimensions, ‘e is 3
and 6 respectively; in electrostatic problems, ‘e is 1 in any
dimension.

Let e and f be two elements. Let Ce;f be the common variables
that appear both in Ie and If . We denote by Ce!f and Cf!e the
jCe;f j-vectors that contain the indices of the common variables in
Ie and If , respectively. In other words, IeðCe!f Þ ¼ If ðCf!eÞ ¼ Ce;f .
a

c

e

Fig. 3.1. The construction of the fretsaw extension for simply supported planar elastic tria
rectangles represent boundary conditions in the form of simply supported grid points. (
slack variables. New slack variables are marked with black circles. The elements where
matrices are the same. (f) The resulting finite element model.
We also define Ne!f and Nf!e as the rows subset matrices
NeðCe!f ; :Þ and Nf ðCf!e; :Þ, respectively (the colon selects all the col-
umns, as in Matlab).

The elements e and f are mutually rigid if the following condi-
tions hold:

(1) The element matrices ke and kf have the same null space
dimension (i.e. ‘e ¼ ‘f ).

(2) The number of the shared variables jCe;f jP ‘e.
(3) The columns of Ne!f and Nf!e are linearly independent.
(4) The columns of Ne!f span the columns of Nf!e and vice

versa.

If e and f are mutually rigid, we add an edge ðe; f Þ to the rigidity
graph. We assign a weight to the edge: the number of shared vari-
ables jCe;f j. (In other applications of the rigidity graph other
weights may be appropriate.) These weights will be used in the
second phase of the algorithm. Informally and intuitively they indi-
cate that a pair of elements that share more nodes than another
pair of elements, are more strongly connected.

We determine the set of mutually-rigid element pairs as fol-
lows. We begin by computing the eigen-decomposition of each
ke, which gives us the ‘es and the Nes. The next challenge is to find
all the element pairs that satisfy conditions 1 and 2 above; that is,
the pairs that share both the dimension of the null space and
b

d

f

ngles. (a) The original model problem. (b) Its finite element discretization. The small
c) The rigidity graph. (d) The spanning forest (tree in this case). (e) The addition of
slightly shrunk to illustrate the addition of slack variables. In practice the element
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Fig. 3.2. Detaching a rigidity edge by adding slack variables. The element matrices
remain unchanged (in local coordinates), but in the local-to-global index mapping
of the dark element, new slack variables X11 and X12 replaced the original variables
X5 and X6.
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enough unknowns. A naive approach is to first find all the pairs
that have the same null-space dimension and share at least one un-
known, and then to remove from this list all the pairs that do not
satisfy condition 2. We use a more sophisticated algorithm that
is guaranteed to run in time that is linear in the problem size with
a small constant. The algorithm is somewhat complex, but it does
not employ data structures other than arrays and lists. We omit the
details, which appear in [32].

In practice we first find the common ‘e for the given model, then
we only process the elements that share this specific ‘e. This means
that every element f with ‘f – ‘e will be a singleton in the rigidity
graph.

We now need to test conditions 3 and 4. We compute the
reduced singular values decompositions (SVDS) of Ne!f and Nf!e :

Ne!f ¼ Ue!f Re!f VT
e!f and Nf!e ¼ Uf!eRf!eVT

f!e. We test whether
Ne!f is full rank by checking whether the ratio of its smallest to larg-
est singular values is less than machine � (� 10�16 in double preci-
sion), and similarly for Nf!e. We test condition 4 by computing
kUf!eUT

f!eNe!f � Ne!f kF and kUe!f UT
e!f Nf!e � Nf!ekF . If both are

small enough, then the condition 4 holds. By definition,
Uf!eUT

f!e ¼ Nf!eNþf!e and Ue!f UT
e!f ¼ Ne!f Nþe!f . Therefore, this cri-

teria determines whether the following two equalities hold:

Nf!eNþf!eNe!f ¼ Ne!f

Ne!f N
þ
e!f Nf!e ¼ Nf!e :

By [2, Proposition 6.1.7], a vector b is in the range of a matrix A if
and only if AAþb ¼ b. Therefore, condition 4 holds if and only if the
last two equalities hold.

In some models there are element pairs ðe; f Þ such that Ie # If .
We detect such pairs during the computation of the rigidity graph
and sum each pair into a single element by summing the two ori-
ginal element matrices. This process can be performed efficiently
using a single pass on the data [32].

We close this section with a short discussion about the mutual
rigidity relationship in the context of structural mechanics. The
relationship is computed algebraically, but a rule of thumb that
works for common element types is that two elements that share
grid points are mutually rigid if and only no mechanism exists
when examining a body consisting of only these two elements.
For example, two struts connected at one joint are never mutually
rigid [33, Section 7.2]; Two elastic triangles in the plane con-
structed by three struts each are mutually rigid if they share a side
(share two grid points) [33, Section 7.3]; elastic tetrahedrons in
space built out of six struts each are mutually rigid if they share
a face (share three grid points); solid tetrahedral elements that
are connected in a single grid point are mutually rigid if they share
the three displacement variables and three rotation variables in
that grid point, but are not mutually rigid if they share only the dis-
placement variables.
3.2. Fretsaw extensions and null-space preservation

In the second phase of the algorithm, we compute a maximum
weight spanning forest of the rigidity graph and form a finite-ele-
ment model of a structure whose rigidity graph is this forest. We
use the given element matrices but drop some of the inter-element
continuity constraints. Fig. 3.1d illustrates the spanning forest (tree
in this case) of the rigidity graph in Fig. 3.1c.

The basic step in the computation of the new model is removing
a rigidity edge between two adjacent elements. In order to detach
such elements we add new slack variables to the model. Fig. 3.2
illustrates this step. We now show how to efficiently allocate those
new slack variables to the elements so that the modified model
will be the exact forest we computed.
Let F be the maximum weight spanning forest of the rigidity
graph. We first compute the connected components of F. We store
for each element e the index Ce of its connected component. We
also randomly select a representative element for each connected
component. These elements will not be altered during the entire
process. We define r to be the highest variable index used so far
in the process. We initialize it to n (the highest variable index in K).

In many cases, we know an a-priori grouping of the variables
into grid points. This knowledge can accelerate the following part
of our method. If it is not known (or not passed to the software
layer that performs this operation) we treat each variable as a dif-
ferent grid point. In any case, the acceleration is only by a bounded
constant factor, namely the number of variables per grid point.
Next, we perform the following operation for every grid point p.

(1) Let Ep be the set of elements that are incident on p. We par-
tition Ep according to the connected components of F (stored
for every e 2 Ep in Ce). Let fEp;igi be the parts of Ep

ð]iEp;i ¼ EpÞ.
(2) For each part Ep;i of Ep we perform the following steps:
(a) We construct the induced subgraph Gp;i of F with the
vertex set Ep;i. The edges of Gp;i are
fðe; f Þje; f 2 Ep;i; ðe; f Þ 2 Fg:
(b) We compute the connected components of Gp;i. Let
V ð1Þp;i ; . . . ;V

ðnp;iÞ
p;i be the vertex sets of the connected com-

ponents. (np;i is the number of connected
components.)

(c) If np;i > 1 then we need to detach the elements in dif-
ferent V ðjÞp;is. We do that by adding new slack variables
and exchanging the variables corresponding to p in all
of the V ðjÞp;is except for one. We first select the set V ðkÞp;i of
elements that are not changed. If Ep;i contains a
representative element of a global connected compo-
nent, then we select the k such that V ðkÞp;i contains
this representative. Otherwise, we select k arbitrarily.
Let Dp be the number of variables that correspond
to p (Dp can be 1 if no knowledge of variable grouping
to grid points exist). For every j – k, we do the
following:

(i) We go over all e 2 V ðjÞp;i, we renumber the Dp vari-

ables corresponding to p in Ie to the new slack
variables ðr þ 1Þ; ðr þ 2Þ; . . . ; ðr þ DpÞ.

(ii) We let r  r þ Dp.
We denote the resulting Ie by bIe. See Fig. 3.3 for an illustrated
example for this process. Steps 1, 2(a) and 2(b) can be fused into
a single pass on the data.

Let ‘ be the number of new variables that were introduced in
the process above. We now assemble the resulting finite-element
model into the ðnþ ‘Þ-by-ðnþ ‘Þmatrix FðAÞ. This matrix is called
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Fig. 3.3. Slack variable allocation mechanism. Parts (a) and (b) illustrate a model
before and after the addition of slack variables respectively. The rigidity graph is
illustrated in yellow and its spanning forest is illustrated in red. The rigidity forest
has two connected components illustrated in pink and light yellow. The rigidity
forest around grid points A;B and C is not connected. Grid point A represents the
basic case. There is only one connected component of the forest adjacent to A. The
subgraph incident on A is not connected. Therefore, slack variables are added. We
do not add slack variables for point B since the induced rigidity forest for every
connected component of the rigidity forest is connected. We add one set of slack
variables for point C since the rigidity forest is connected in the pink connected
component and not connected in the light yellow connected component.
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a fretsaw-forest extension [33, Definition 8.8]. Fig. 3.1f reveals the
reasoning behind this name.

The next theorem shows that under a fairly natural condition,
the null space of the fretsaw extension is a subset of the null space
of the original stiffness matrix. The condition that guarantees this
is called element compatibility. Let S # Rn be a linear space. An ele-
ment matrix ke is called S-compatible if every vector ve in null ðkeÞ
has a unique extension into a vector v in S (by extension we mean
that vðIeÞ ¼ ve), and if the restriction vðIeÞ of every vector v in S is
always in null ðkeÞ. In linear elasticity, element matrices are
S6-compatible with the space S6 of rotations and translations. In
electrostatic problems, element matrices are S1-compatible with
the space S1 of constant vectors.

Theorem 3.1. Let K ¼
P

eKe, where fKeg is a collection of symmetric
positive semidefinite n-by-n matrices that are compatible with some
S # Rn, let Q be the ðnþ ‘Þ-by-n identity matrix, and let FðKÞ be a
fretsaw-forest extension of K, as constructed by the algorithm above.
Then,

(1) There exist an ðnþ ‘Þ-by-n matrix P such that PTFðKÞP ¼ K
and Q T P ¼ I.

(2) null ðFðKÞÞ# nullðQKQTÞ.

The first part of the theorem is exactly [33, Lemma 8.9]. The sec-
ond part of the theorem is a slight extension of Theorem 8.11 in
[33]. We omit the proof because it requires a considerable amount
of notation and definitions. The complete proof appears in [32].

The sum K ¼
P

eKe of n-by-n SPSD finite-element matrices is usu-
ally singular, so Kd ¼ f has an infinite number of solutions or none
at all. In order to be able to form a numerical problem with a un-
ique solution, linear equality constraints are usually added to K.
Let C be a c-by-n matrix. A common way to get a nonsingular sys-
tem is symmetrically adding the block C to K. It can be easily
shown ([32]) that

null
K CT

C 0

" # !
¼

u

v

� �
ju 2 nullðKÞ \ nullðCÞ and v 2 nullðCTÞ

� 	
:

Another possibility is adding a c-by-n block of new rows C to K.

Clearly, null KT CT T
h i
 �

¼ nullðKÞ \ nullðCÞ.
The following lemma shows that the fretsaw-forest extension

also preserves the null space under equality constraints.
Lemma 3.2. Let K ¼
P

eKe, where fKeg is a collection of symmetric
positive semidefinite n-by-n matrices, let Q be the ðnþ ‘Þ-by-n
identity matrix, let FðKÞ be a fretsaw-forest extension of K, and let
C be a c-by-n matrix. Then,

null
FðKÞ
CQT

" # !
# null

K

C

� �
Q T

� �
:

Proof. Let

x 2 null
FðKÞ
CQT

" # !
:

By definition, FðKÞx ¼ 0 and CQT x ¼ 0. By Theorem 3.1, since
x 2 nullðFðKÞÞ, then x 2 nullðQKQTÞ. Therefore, QKQT x ¼ 0 and
KQT x ¼ QT QKQT x ¼ 0. Therefore,

K

C

� �
Q T x ¼ KQT x

CQ T x

" #
¼ 0 ;

which concludes the proof of the lemma. h

The containment in the null-space and the special padding
structures enable us to get a stronger characteristic which is sum-
marized in the next lemma.

Lemma 3.3. For the above K;FðKÞ;Q and C, let bN be an ðnþ ‘Þ-by-s

matrix whose columns form a basis for null
FðKÞ
CQT

� �� �
, then

ðQT bNÞ ¼ null
K
C

� �� �
.

Proof. Let r 2 Rs. We first show that QT bNr 2 null KT CT T
h i
 �

. By

definition, bNr 2 null
FðKÞ
CQT

� �� �
. By Lemma 3.2, bNr 2 null

KT CT
� �T

QT

 �

. Therefore, KT CT
� �T

Q T bNr ¼ 0 so QT bNr 2

null KT CT
� �T

 �

. This shows that null KT CT
� �T

 �

�

fQT bNrjr 2 Rsg.
We now show the containment in the other direction. Let

x 2 null KT CT
� �T
 �

. By Theorem 3.1, there exists an ðnþ ‘Þ-by-n

matrix P such that K ¼ PTFðKÞP and QT P ¼ In. By the definition of
x,

K

C

� �
x ¼ 0

PTFðKÞP
CQ T P

" #
x ¼ 0

PTFðKÞ
CQ T

" #
Px ¼ 0 :

Since FðKÞ is SPSD, there exist a matrix U, such that FðKÞ ¼ UT U.
This implies that Px 2 nullðFðKÞÞ, since

PTFðKÞPx ¼ 0

xT PTFðKÞPx ¼ 0

xT PT UT UPx ¼ 0

kUPxk2 ¼ 0

UPx ¼ 0

UT UPx ¼ 0

FðKÞPx ¼ 0 :
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Therefore,

FðKÞ
CQT

" #
Px ¼ 0 :

By the definition of bN , there exists a vector r such that Px ¼ bNr.
Multiplying the last equality by Q T , we get x ¼ QT Px ¼ QT bNr. This
shows the other containment direction and concludes the proof
of the lemma. h
3.3. Rectangular inverse iteration

Once we construct the augmented fretsaw-forest matrix bK , we
compute a basis bN for its null space using rectangular inverse iter-
ation [18]; see [21] for additional background on inverse iteration.
This process requires the sparse LU factorization with partial pivot-
ing of bK . Once this factorization is computed, the algorithm usually
performs a few iterations involving solving linear systems of equa-
tions of the form UX ¼ B where X and B have only a few columns;
between every two iterations, the algorithm orthogonalizes X. In
some rare cases the algorithm becomes somewhat more complex,
but not more expensive. As long as the dimension of the computed
null space is small, the orthogonalization is not a dominant cost.

In practice, there are cases where there are zero columns and
rows in K and therefore also in FðKÞ and bK . In these cases, we first
remove the zero rows and columns from bK . This has no algebraic or
theoretical significance, but was needed for our specific implemen-
tation of the rectangular inverse iteration.

Another issue that arises in practice is the treatment of single
point constraints. Single point constraints correspond to rows in
C (and in bK ) with only a single nonzero each. In exact arithmetic,
the corresponding variables in the null space are always zero. In
practice, the inverse iteration process assigns small values to these
variables that depend on the scaling of the single nonzero rows in
C. In order to handle this numerical behavior, and to avoid the
question of proper scaling of the single nonzero rows in C, we
chose to force a zero in the corresponding variables by removing
those columns from bK .

The inverse iteration result bN is an ðnþ ‘Þ-by-ŝ matrix. Our
method truncates the last ‘ rows of bN and then orthonormalize
it. The result is an n-by-s matrix N. (Note that s can be smaller than
ŝ). Lemma 3.3 guarantees that the computed null space is exactly
the null space of KT CT

� �T .
It is intuitive that the sparsified structure is weaker than the

original structure. This can also be quantified theoretically in a
purely algebraic way: By [33, Lemma 8.14] and using [4, Proposi-
tion 6.1] the generalized eigenvalues kðFðKÞ;QKQTÞ are bounded
by 1. This behavior affects the inverse iteration process. For a given
threshold, the inverse iterations outputs vectors which are linear
combinations of null vectors of bK and of vectors that correspond
to small singular values. In other words, the generated bN spans a
linear space that contains the null space of bK and some other vec-
tors. Fortunately, we can still recover the null space of KT CT

� �T .
The following lemma shows exactly how to do this.

Lemma 3.4. For the above K;FðKÞ;Q and C, let bN be an ðnþ ‘Þ-by-ŝ
matrix whose columns span a linear space that contains null

FðKÞ
CQT

� �� �
. Let V be a matrix, such that span ðVÞ ¼

null K
C

� �
QT bN� �

, then span ðQT bNVÞ ¼ null K
C

� �� �
.

Proof. Let U be an ŝ-by-s matrix such that span

ðbNUÞ ¼ null
FðKÞ
CQT

� �� �
. By Lemma 3.3, span ðQT bNUÞ ¼

null KT CT
� �T

 �

.

Let x 2 null KT CT
� �T
 �

. By definition, there exists a vector r

such that x ¼ QT bNUr. By the definition of x,

K

C

� �
x ¼ 0

K
C

� �
QT bNUr ¼ 0 :

Since Ur 2 null KT CT
� �T QT bN
 �

, there exist a vector t such that
Ur ¼ Vt. Therefore, x ¼ QT bNVt. This shows that null KT CT

� �T

 �

is contained in span ðQT bNVÞ.
In order to complete the proof, we need to show that every

vector in span ðQT bNVÞ is also in null KT CT
� �T
 �

. Let x ¼ QT bNVt

for an arbitrary t. By the definition of V,

K

C

� �
x ¼

K

C

� �
QT bNVt ¼ 0t ¼ 0 :

This shows that x 2 null KT CT
� �T

 �

and concludes the proof of the
lemma. h

The Lemma implies the following final step in the algorithm:
compute an orthonormal basis for KT CT

� �T
QT bN
 �

. This is usually
inexpensive since bN only has a few columns. If we denote by V the
matrix whose columns spans this null space, then the null space of

KT CT
� �T is exactly QT bNV .

In general, triangular factorizations (Cholesky, LDLT ; LU, or QR)
of large finite-elements problems are expensive. But our method
is efficient because triangular factorizations of forest-based fretsaw
extensions are sparse and cheap to compute. In particular, if C con-
sists of single-unknown constraints and the rigidity graph of K is
connected, then bK can be factored using sparse symmetric factor-
izations with no fill outside the original element matrices
[33, Lemma 8.13].

The analysis of the cost of the factorization in [33] cannot be di-
rectly applied, however, the LU factorization of bK is usually cheap
to compute and produce factors with small amount of fill. There
are three gaps between that analysis and the computation that
we use here. First, the analysis in [33] assumes that the rigidity
graph is connected. But in many real-world models, even models
with many solid elements, the rigidity graph is disconnected. As
the number of connected components in the rigidity graph in-
creases, so does the fill in the LU factors that our method computes.
Second, the analysis in [33] assumes that C consists of single-un-
known equality constraints; if this is not the case, the structure
of C introduces additional fill that is hard to characterize theoreti-
cally. Third, the analysis in [33] bounded fill and work in symmet-
ric factorization (Cholesky or LDLT ), whereas rectangular inverse
iteration requires an LU factorization. Existing theory on fill in
sparse LU factorization [3,5,10,15,20] cannot be directly applied
to our forest or tree-based fretsaw extensions. Nevertheless, the
existing body of theory suggests that the LU factorization of tree-
based fretsaw extension should be cheap relative to the original
finite element model.

Our experimental results, which are reported below, indicate
that in spite of the lack of complete theoretical analysis, the LU fac-
torization of bK is indeed inexpensive.

4. Numerical results

We have implemented a prototype of the fretsaw extension
method. Our implementation runs under MATLAB version 7.4 [27],
although all its computation-intensive parts are implemented in
C (and are invoked by MATLAB through its CMEX interface). The code
factors bK using MATLAB’s lu function with pivoting threshold 1.0
(partial pivoting), which uses UMFPACK version 5.0 [9]. However,



Table 1
Model statistics for the scaling experiments. The parameter n stands for the number
of unknowns, jfegj is the number of elements, nnz ðKÞ is the number of nonzeros in
the stiffness matrix, and jfXgj is the computed number of subdomains used in the
Schwarz domain decomposition preconditioner experiments.

Cube side size n jfegj nnzðKÞ
103 jfXgj

11 264 245 5 15
28 2646 4048 90 59
36 5739 9458 210 111
53 15,576 27,853 618 263
69 34,179 63,763 1414 576
82 54,069 103,052 2286 827
91 75,507 145,423 3228 1151
108 121,023 237,513 5269 1757
121 169,449 336,087 7456 2402
132 218,838 437,026 9695 3094
155 351,828 711,269 15,777 4833
174 492,729 1000,395 22,253 6646
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we use a C function to solve sparse triangular linear systems; it is
much faster than matlab’s n operator. Running times were mea-
sured on a 64-bit Linux 2.6 system with a 1.6 GHz AMD Opteron
242 processor and an 8 GB of RAM. The reported running times
are wall-clock times.

The numerical experiments whose results are reported in
this section all compute the null space of KC ¼ KT CT

� �T . The
inverse iteration code is the same as in [18 Section 5], with thresh-
old 10�8 and the initial estimate of the dimension of the null space
is set to the common ‘e of the model.1 We refer to our method in
this section as the fretsaw-forest method. Its output is the n-by-s ma-
trix N. We compare the fretsaw-forest method with a naive method
to compute the null space of KC , which performs inverse iteration on
the triangular factors of KC itself. We refer to this algorithm as the
direct method below. The result of this experiment is also an n-by-s
matrix N whose columns are an orthonormal basis of the null space
of KC .

In the first part of the experiments we also compare the fret-
saw-forest method to locally optimal block preconditioned conju-
gate gradient (LOB-PCG) with multiplicative Schwarz domain
decomposition preconditioner [24]. We use the implementation
within Hypre 2.0 [25]. The LAPACK and BLAS that are used as subrou-
tines in this process (and also within UMFPACK) are MATLAB’s (in this
case, ACML).

We used the Hypre 2.0 default parameters for both the LOB–
PCG solver and the Schwarz preconditioner. The subdomains in
the Schwarz preconditioner were computed using domain agglom-
eration; the specific number of subdomains for each problem is de-
tailed in Table 1. The overlap between subdomains was set to
minimal (one layer), and a direct solver was used within the sub-
domains. In experiments not reported here, we verified that for
our specific problems these parameters performed better than
other reasonable parameter sets.

We compare the accuracy of the methods using two metrics.
The first is discrete: the dimension s of the discovered null-space.
The second is continuous and contains more information: the rel-
ative error kKCNk2=kKCk2. We compute the numerator kKCNk2 but
approximate the denominator kKCk2 by the maximal absolute va-
lue of elements in KC .

4.1. Performance scaling on a model problem

In the first set of experiments we compute the null space of a
uniform symmetric elastic k-by-k-by-k cubes, with no constraints
1 This code (but using Matlab’s triangular solver) is publicly available at http://
www.tau.ac.il/~stoledo/research.html.
(namely, K ¼ KC). The cubes are discretized using a nonuniform
mesh of tetrahedra. Each tetrahedron is built out of 6 struts. Each
vertex of a tetrahedron is a joint in this struts structure. Fig. 4.1
shows such a cube. We used TETGEN version 1.4 [34] to generate
the mesh. The tetrahedra have a minimum radius-edge ratio of 2
and a volume bounded by 10. Each tetrahedron is modeled by a
single 12-by-12 element matrix. Table 1 summarizes the models’
characteristics.

Fig. 4.2a and e present the running times of the fretsaw-forest
method, the direct method, and the preconditioned LOB–PCG
method as a function of the problem size. They show that the fret-
saw-forest method is highly efficient for problems of modest to
large sizes. It is significantly faster than the other methods, reach-
ing up to an order of magnitude faster for the larger problems.
Fig. 4.2a–d are limited to smaller problems where there was en-
ough memory for the direct method to run. Fig. 4.2a demonstrates
that the direct method is comparable and even better then the pre-
conditioned LOB–PCG for problems where the factors of the matrix
fit into the memory. This shows that our comparison with this
fairly naive method is reasonable.

Fig. 4.2c demonstrates the linear scaling behavior of the fret-
saw-forest method; The running time of the entire process is linear
in the problem size and so are the independent running times of
the fretsaw-forest construction, factorization and inverse iterations
operations. The construction of the fretsaw-forest extension takes
most of the running time. Measurements not presented here show
that about 20% of this time is spent on computing the null spaces of
the element matrices kes, and more than 70% is spent on comput-
ing the rigidity graph. This means that when additional domain-
specific information is used to construct the rigidity graph, the
running time of this part might be reduced by an order of magni-
tude. The scaling behavior for the direct method is clearly super-
linear, as demonstrated by Fig. 4.2d.

The reason for the linear factorization and inverse-iteration
times in the fretsaw-forest case is presented in Fig. 4.2b. This figure
presents the number of nonzeros in the LU factors in both the fret-
saw-forest and the direct method. The nonzeros number in the LU
factors of the fretsaw-forest sparsification appears to be linear in
the problem size. This demonstrates that the fretsaw sparsification
is effective with respect to the number of nonzeros in LU factoriza-
tions, not only with respect to nonzeros in symmetric factoriza-
tions. A closer inspection of the data indicates that the LU factors
Fig. 4.1. Model problem for the scaling experiments.

http://www.tau.ac.il/~stoledo/research.html
http://www.tau.ac.il/~stoledo/research.html
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Fig. 4.2. Performance of scaling experiments set. Parts (a)–(d) focus on small sizes, where the direct method had enough memory to complete. Part (a) shows the total
running time of the null space computation. Part (b) shows the total number of nonzeros in the LU factors in the direct and fretsaw-forest algorithms. Parts (c) and (d) show
the breakdown of the running times into the different phases of the direct and fretsaw-forest algorithms. Part (e) shows the total running time of the null space computation
for the complete set of test problems.
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do fill somewhat. This is not surprising given that the ordering that
UMFPACK computes is different from the ordering that [33, Lemma
8.13] assumes, and given that we use partial pivoting.

The null space dimension in all the experiments was correctly
computed to be 6. Fig. 4.3 shows the relative errors in the scaling
experiment. The relative error of the direct method was always
10�10 or less (when there was enough memory to run it). The rel-
ative error in the fretsaw forest method is worse: the method loses
between 3 and 5 digits of accuracy relative to the direct method,
but in all cases it is still smaller than 10�4. The relative error of
the iterative method was always smaller than 10�7 and was less af-
fected by the problem size. The loss of accuracy in the fretsaw-for-



0 0.5 1 1.5 2
x 107

10−14

10−12

10−10

10−8

10−6

10−4

NNZ(K)

Er
ro

r n
or

m

Relative Error

Fretsaw−Forest
Direct
Fretsaw−Only
Schwarz−LOBPCG

Fig. 4.3. Relative errors in the scaling experiment. The blue (Xs), green (triangles),
and cyan (stars) lines present kKC Nk2=maxi;jjKCði; jÞj. The red (circles) line present
kbK bNk2=maxi;jjbK ði; jÞj. Note there are no data points for the direct method for nnz
ðKÞ > 3:228e6 where there was not enough memory to complete the computation.

Table 2
Model statistics for the industrial experiments set. The parameter n stands for the
number of unknowns with a nonempty column in K; jfegj is the number of elements,
nrows ðCÞ is the number of rows in C, #SPC is the number of single point constraints
that correspond to nonempty columns in K, nnz ðKÞ is the number of nonzeros in the
stiffness matrix (without the constraints), and the parameter #CC stands for the
number of connected components in the rigidity graph.

Name Description n jfegj nnzðKÞ
103 nrows

ðCÞ
#SPC #CC

cyl Cylinder 648 150 41 0 108 1
lg0d Half Cylinder bracket 51,264 8665 2149 1248 512 2
lg0m Transmission part 99,927 18,681 7322 540 466 3
lg0q Cube 31,125 28,260 786 0 0 1
lg0r Brake 90,738 21,024 5341 1338 144 338
md0c Exhaust Manifold 52,938 9231 2769 4212 0 142
vl0d Crank Shaft 149,775 45,200 10,715 96 337 50
vl0g T-Joint 136,242 27,081 10,314 0 1909 2
vl0r Brake 126,399 27,365 8598 4851 132 82
plan10g Unknown 660 100 28 0 72 1
sm0d Unknown 12,444 2276 572 0 0 2
nxn_plm Aircraft fuselage

section
39,432 9162 1991 11,640 386 16
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est method is caused primarily by the fretsaw approximation itself,
not because we compute the null vectors of bK inaccurately: the rel-
ative error in the null vectors of bK is almost always under 10�10.
The approximate values of kbKk2 and kKCk2 were very close. Be-
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Fig. 4.4. Performance of industrial experiments set without constraints. Part (a) shows
breakdown of the null space computation times. Part (b) shows the total number of non
cause of the missing continuity relations in the fretsaw approxima-
tion, FðKÞ has smaller nonzeros eigenvalues than K. The small
eigenvectors of FðKÞ mix with the true null vectors of the struc-
ture, which FðKÞ and K share, and cause the computed eigenvec-
tors to be less accurate. In other words, the loss of accuracy
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the total running time of the null space computation. Parts (c) and (d) show the
zeros in the LU factors.
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appears to be due to the ill conditioning of FðKÞ, which shrinks the
spectral gap between numerically zero and numerically nonzero
eigenvalues.

4.2. Industrial structural analysis models experiments

In the second set of experiments we used industrial real-world
structural mechanics models. The models were produced by two
different versions of Nastran, MSC.Nastran and NX.Nastran. All
the models contain multiple element types and most of them con-
tain single-point and multi-point constraints. Table 2 summarizes
the main properties of the models.

We first computed the null space of these models without the
constraints. In such experiments the null-space is not empty but
contains at least the rigid-body motions of the body. In these
experiments the rigidity graph is often not connected, so the fret-
saw-forest methods indeed generate a forest and not a tree. The
number of connected components is shown in Table 2.

Fig. 4.4 shows the performance of the fretsaw-forest method
and the direct method in this case. We first focus on the factor-fill
graph (part (b) of the figure). As in the scaling experiments, the fill
in the LU factors in the fretsaw-forest method is close to linear, and
in the direct-method is clearly not linear; in most cases it is an or-
der of magnitude higher. The slightly nonlinear behavior of the fill
in the fretsaw-forest method may be due to the fact that the rigid-
ity graph is not connected, which makes the fretsaw sparsification
less effective.
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Fig. 4.5. Performance of industrial experiments set with constraints. Part (a) shows t
breakdown of the null space computation times. Part (b) shows the total number of non
We now direct our attention to the running times breakdown
graphs in Fig. 4.4c and d. The factorization times in both figures
are consistent with the data in the fill graphs. The inverse itera-
tions time is also related to the size of the fill, but is not always
monotone and smooth as in the scaling experiments. A closer
inspection reveals that the nonmonotonicity is caused by differ-
ences in the null space dimensions and in the number of inverse
iterations. Models with larger null space dimensions demand more
time in every iteration and more iterations to converge.

Finally, the overall performance of the fretsaw-forest method,
shown in Fig. 4.4c, demonstrates that this new method is faster
than the direct method, especially on large models.

Fig. 4.5 shows the performance of the methods with constraints.
The added constraints increase the fill in the LU factors and in-
crease the running times. See, for example, the bump around
2 � 106, which corresponds to the matrix ’nxn_plm’, which has
a large number of constraints. On one matrix, ’vl0d’, the direct
method ran out of memory whereas the fretsaw-forest method
ran to completion. The graphs in this figure do not include the re-
sults for this matrix. Nevertheless, the qualitative behavior is sim-
ilar to the behavior in Fig. 4.4: even with constraints, the fretsaw
method is faster and requires less memory (especially on larger
models).

Table 3 presents the accuracy and the relative errors of the
methods, with and without constraints. The table indicates that
the fretsaw-forest method returned a null space with the same
dimension as that returned by the direct method in all but four
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Table 3
Computed null space sizes and relative errors in the industrial experiments set. The relative error (rel-err) is kKC Nk2=maxi;jjKC ði; jÞj. In cases where the computed null space size
was 0, the relative error is irrelevant and marked with a hyphen. In cases there was inconsistency between the returned results of the methods the result is marked with double
asterisks.

Without constraints With constraints

Fretsaw-Forest Direct Fretsaw-Forest Direct

Size Rel-err Size Rel-err Size Rel-err Size Rel-err

plan10g 6 4.4e�10 6 1.4e�12 0 – 0 –
cyl 5** 4.2e�7 6 3.6e�14 0 – 0 –
sm0d 6 6.3e�7 6 6.1e�10 No constraints available
lg0q 1 2.1e�11 1 9.5e�13 1 2.1e�11 1 9.5e�13
lg0d 12 1.7e�35 12 1.8e�10 0 – 0 –
md0c 36 1.2e�7 36 5.9e�10 3 1.4e�10 3 3.9e�14
lg0r 8 2.3e�18 8 4.5e�18 5** 2.6e�8 4 3.7e�8
lg0m 6 3.3e�7 6 5.3e�11 0 � 0 �
vl0r 4 5.9e�18 4 1.7e�18 0 – 0 –
vl0g 6 8.3e�8 6 2.3e�9 0 – 0 –
vl0d 10** 4.1e�7** 6 7.6e�10 11 2.3e�1 Out of memory
nxn_plm 1 3.5e�22 1 3.5e�22 8** 1.1e�5 0 –
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cases. The relative errors behaved in a similar way to the relative
errors in the scaling experiments; in most cases the method loses
2–5 digits of accuracy relative to the direct method.

We now explore the four cases where the fretsaw-forest meth-
od and the direct method computed different number of null space
basis vectors (marked with double asterisks in the table). In all the
cases, the relative error that was achieved by both methods was
very small. Therefore, the inconsistency is clearly a threshold
setting issue. The output of the inverse iteration method is highly
sensitive to the threshold. Further experiments with different
inverse iteration thresholds produced different numbers of null-
space vectors both in the direct and fretsaw-tree methods, all with
small relative errors.

On ’nxn_plm’ we obtained consistent results in the case without
constraints, but the results varied when we changed the inverse-
iteration threshold from 10�8 to 10�6 and to 10�4. This is another
example for the difficulty with the inverse-iterations method.
Moreover, when we added constraints we got more null vectors
which is really not what one expects. We explored the computa-

tion of null KT CT
� �

Q T bN
 �
. The singular values there are all very

small (and indeed the relative error is small) and singular vectors
with very small residuals where detected as null vectors. It is con-
sistent with the inverse-iteration sensitivity to thresholds that we
saw in the experiments with this matrix with no constraints.

The last experiment that we discuss is ’vl0d’ with constraints.
This is the only experiment with significantly large relative error.
Further experiments with different thresholds for this matrix, with
and without constraint revealed that the computed null space is
very sensitive to the threshold. In the case without constraints,
the direct method exhibited the same behavior.

We note that when the dimension of the computed null space is
too large, this can be easily identified by calculating the relative er-
ror. A practical system can automatically detect this error and then
try to run the same inverse iteration method with a different
threshold.

We also note that the loss of 2–5 digits of accuracy in the com-
puted null vectors is inherent in the fretsaw-forest approximation,
but the reliability issues are due to the iterative solver that we use,
which is based on inverse iteration. We comment on this further
below.

5. Conclusions

We presented a novel method for computing the null space of
finite element models, including models with equality constraints.
The method is purely algebraic (but requires access to the element
matrices, not just to the assembled matrix). It does not require ac-
cess to the geometry of the model.

Our definition of rigidity relationship, which lies at the core of
the new method, might be useful in generalizing the methods of
[11,29,8,22,23] by eliminating the need for geometric or domain
specific knowledge, but we did not check this in detail.

Our experiments show that the method scales extremely well
on 3-dimensional model problems, leading to work and memory
requirements that are linear in the size of the model. On this model
problem, the new method outperforms two established methods,
one based on inverse iteration the factors of the matrix, and the
other based on a preconditioned iterative eigensolver (LOB–PCG
with a Schwarz preconditioner). The method performs well and
outperforms an established method (inverse iteration) on indus-
trial models as well, including models with many equality
constraints.

The computed null vectors are 2–5 decimal digits less accurate
than those computed by established methods, which are computa-
tionally more expensive. Both the new method and one of the
established methods are somewhat sensitive to a threshold param-
eter in the iterative solver that we use, which is based on inverse
iteration.

We believe that an iterative solver that is more sophisticated
than the simple inverse iteration solver may be more robust. Such
a solver would use the fretsaw approximation as a preconditioner,
but would use true residuals (whereas the inverse iteration solver
that we use now uses residuals with respect to bK , not K). We leave
this to future research.
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