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We report on an extensive experiment to compare an iterative solver preconditioned
by several versions of incomplete LU factorization with a sparse direct solver using LU
factorization with partial pivoting. Our test suite is 24 nonsymmetric matrices drawn
from benchmark sets in the literature.
On a few matrices, the best iterative method is more than 5 times as fast and more
than 10 times as memory-efficient as the direct method. Nonetheless, in most cases the
iterative methods are slower; in many cases they do not save memory; and in general
they are less reliable. Our primary conclusion is that a direct method is currently more
appropriate than an iterative method for a general-purpose black-box nonsymmetric
linear solver.
We draw several other conclusions about these nonsymmetric problems: pivoting is
even more important for incomplete than for complete factorizations; the best iterative
solutions almost always take only 8 to 16 iterations; a drop-tolerance strategy is superior
to a column-count strategy; and column MMD ordering is superior to RCM ordering.
The reader is advised to keep in mind that our conclusions are drawn from experi-
ments with 24 matrices; other test suites might have given somewhat different results.
Nonetheless, we are not aware of any other studies more extensive than ours.

1 Introduction

Black-box sparse nonsymmetric solvers, perhaps
typified by the Matlab backslash operator, are
usually based on a pivoting sparse LU factoriza-
tion. Can we design a more efficient black-box
solver that is based on an iterative solver with an
incomplete LU preconditioner? This paper shows,

1This research was supported in part by DARPA con-
tract number DABT63-95-C-0087 and by NSF contract
number ASC-96-26298.

using extensive experimental analysis, that the
answer is no. An iterative solver with an incom-
plete LU preconditioner can sometimes be much
more efficient than a direct solver in terms of both
memory and time. But in most cases, the iterative
solver is less less reliable and less efficient than a
direct solver.

These conclusions are novel and correct, but
one must keep in mind that they are drawn from
a finite set of experiments. The conclusions are
novel in the sense that no prior paper presented
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a systematic study that supports these conclu-
sions. We are aware that our conclusions coincide
with long-held viewpoints of some researchers,
but these viewpoints were never substantiated by
systematic study before. Hence, the novelty lies
not in the conclusions themselves, but in the fact
that they are supported by evidence. Other re-
searchers hold opposite viewpoints—that precon-
ditioned iterative solvers are more reliable and
efficient that direct solvers. These viewpoints
are typically based on some theoretical justifica-
tion and/or on experimental results. We point
out that there is not much theory on the conver-
gence rates of nonsymmetric preconditioned iter-
ative solvers, and that success with some matri-
ces does not invalidate our conclusions, since our
claim that that iterative solvers are less effective
in most cases, not in all cases. To summarize,
we present an experimental study, and we draw
conclusions from our data. It is conceivable that
a different test suite would have suggested some-
what different conclusions.

Large sparse linear solvers can be classified into
three categories. Some solvers are problem spe-
cific and are often built into applications. Such
solvers exploit structural and numerical proper-
ties that typify linear systems arising from a nar-
row application domain, and many of them use
information about the problem that is not part
of the linear system (for example, geometric in-
formation). The second category of solvers can
be described as toolkits (see, for example, [10]).
These solvers, often in the form of numerical li-
braries that are designed to be called from appli-
cation programs, offer a choice of algorithms that
can be combined to create linear solvers. The user
must decide which algorithms to use and how to
set tuning parameters that these algorithms may
have. Typical toolkits provide several iterative
solvers and several preconditioners. The third
category of solvers are black-box solvers. These
solvers solve linear systems using few assumptions
on the origins of the systems and little or no guid-
ance from the user. Most sparse direct solvers
fall into this category. Problem-specific solvers
often achieve high performance but require con-
siderable effort from experts. Black-box solvers
cannot always achieve the same level of perfor-
mance, but are robust and easy to use. Toolk-
its are somewhere in-between. This paper evalu-

ates incomplete-LU preconditioners only as can-
didates for inclusion in black-box solvers; it is by
now clear that nonsymmetric incomplete-LU pre-
conditioners should be included in toolkits and in
some problem-specific applications.

Large sparse nonsymmetric linear systems are
often solved by direct methods, the most popular
of which is based on a complete sparse LU factor-
ization of the coefficient matrix. Iterative solvers,
usually preconditioned Krylov-space methods, are
sometimes more efficient than direct methods. It-
erative solvers can sometimes solve linear systems
with less storage than direct methods, and they
can sometimes solve systems faster than direct
methods. The efficiency of iterative methods, in
terms of both space and time, depends on the pre-
conditioner that is used. In this paper we focus on
a popular class of so-called general-purpose pre-
conditioners, those based on incomplete LU fac-
torization with or without partial pivoting. We
do not consider other classes of general-purpose
preconditioners, such as those based on sparse
approximate inverses (see, for example, Grote
and Huckle [8]), and algebraic multilevel solvers
(see, for example, Shapira [12]). We also do not
consider domain-specific preconditioners, such as
domain-decomposition preconditioners for linear
systems arising from discretizations of PDE’s.

Incomplete-factorization preconditioners are
constructed by executing a sparse factorization al-
gorithm, but dropping some of the fill elements.
Elements can be dropped according to numerical
criteria (usually elements with a small absolute
value), or structural criteria (e.g., so-called lev-
els of fill)2. Since some of the fill elements are
dropped, the resulting factorization is sparser and
takes less time to compute than the complete fac-
torization. If this factorization preconditions the
linear system well, it enables the construction of
an efficient iterative solver. We have implemented
an algorithm that can construct such precondi-
tioners. On some matrices, the resulting precon-
ditioners are more than 10 times sparser than a
complete factorization, and the iterative solution

2We did not include level-of-fill dropping criteria for two
reasons. First, we felt that the resulting preconditioners
would be less effective and robust than those based on nu-
merical dropping criteria. Second, level-of-fill criteria are
more difficult and computationally expensive to implement
in a pivoting factorization than numerical criteria since the
level of every fill element must be kept in a data structure.
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is more than 5 times faster than a direct solution.
We plan to make our implementation, which can
be used alone or as part of PETSc (a portable
extensible toolkit for scientific computation [1]),
publicly available for research purposes.

This strategy, however, can also fail. The al-
gorithm can fail to compute a factorization due
to a zero pivot, or it can compute a factorization
that is unstable or inaccurate, which prevents the
solver from converging. In other cases, the pre-
conditioner can enable the iterative solution of the
system, but without delivering the benefits that
we expect. The running time can be slower than
the running time of a direct solver, either because
the iteration converges slowly or because the in-
complete factorization is less efficient than a state-
of-the-art complete factorization. The solver may
need more space than a direct solver if the al-
gorithm fails to drop many nonzeros, especially
since an iterative solver cannot release the stor-
age required for the matrix and needs storage for
auxiliary vectors.

We have conducted extensive numerical experi-
ments to determine whether incomplete factoriza-
tions can yield preconditioners that are reliable
and efficient enough to be used in a black-box
nonsymmetric linear solver. Our test cases are
nonsymmetric linear systems that have been used
to benchmark sparse direct solvers; all of them
can be solved by complete sparse LU factoriza-
tion with partial pivoting. The matrices range in
size from about 1,100 to 41,000 rows and columns,
and from about 3,700 to 1,600,000 nonzeros. Our
main conclusion is that incomplete factorizations
are not effective enough to be used in black-box
solvers, even with partial pivoting. That is not
to say that incomplete factorizations never pro-
duce effective preconditioners. In some cases they
do. But in many cases state-of-the-art incomplete
factorizations do not yield efficient precondition-
ers. Furthermore, in many other cases the result-
ing preconditioner is effective only within a small
range of numerical dropping thresholds, and there
are currently no methods for determining a near-
optimal threshold. Therefore, current state-of-
the-art incomplete factorizations cannot be used
as preconditioners in iterative solvers that can be
expected to be about as reliable and efficient as
current direct solvers.

Our incomplete LU factorization algorithms

are quite similar to Saad’s ILTUP [11], but em-
ploy some additional techniques, which are de-
scribed in Section 2. We describe our experi-
mental methodology in Section 3. The discus-
sion explains the structure of the experiments,
the test matrices, and the hardware and software
that were used. A summary of our experimental
results is presented in Section 4. We discuss the
results and present our conclusions in Section 5.

2 Pivoting Incomplete LU
Factorizations

This section describes our algorithm for incom-
plete LU factorization with partial pivoting. The
algorithm is similar to Saad’s ILUTP [11], but
with some improvements.

Our algorithm is a sparse, left-looking, column-
oriented algorithm with row exchanges. The ma-
trix is stored in a compressed sparse-column for-
mat, and so are L and U . The row permutation
is represented by an integer vector.

At step j of the algorithm, sparse column j of
A is unpacked into a full zero column v. Updates
from columns 1 through j−1 of L are then applied
to v. These updates collectively amount to a tri-
angular solve that computes the jth column of U ,
and a matrix-vector multiplication that computes
the jth column of L. The algorithm determines
which columns of L and U need to update v, as
well as an admissible order for the updates, using
a depth-first search (DFS) on the directed graph
that underlies L. This technique was developed
by Gilbert and Peierls [7].

Once all the updates have been applied to v,
the algorithm factors v, using threshold partial
pivoting. Specifically, the algorithm searches for
the largest entry vm in vL, the lower part of v (we
use vU to denote the upper part of v). If |vd| >
τ |vm|, where 0 ≤ τ ≤ 1 is the pivoting threshold
and vd is the diagonal element in v, then we do
not pivot. Otherwise we exchange rows d and m.
(In the experiments below, we use either τ = 1,
which is ordinary partial pivoting, or τ = 0, which
amounts to no pivoting). The exact definition of
a diagonal element in this algorithm is explained
later in this section.

After the column is factored, we drop small
elements from vL and vU . We never drop ele-
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ments that are nonzero in A.3 The algorithm
can drop elements using one of two different crite-
ria: (1) the algorithm can drop all but the largest
k elements in vU and the largest k elements in
vL, or (2) the algorithm can drop from vU all
the elements that are smaller4 than δ maxi∈U |vi|,
and from vL the elements that are smaller than
δ maxi∈L |vi|, where δ is the drop threshold. When
we drop elements using a drop threshold δ, we use
the same value of δ for all the columns. When
we drop elements using a fill count k, we set k
separately for each column. The value of k for
a column j is a fixed multiple of the number of
nonzeros in the jth column of A. We refer to this
method as a column-fill-ratio method. After ele-
ments have been dropped, the remaining elements
of v are copied to the sparse data structures that
represent L and U and the algorithm proceeds to
factor column j + 1.

Our dropping rules differ somewhat from Saad’s
ILUT and ILUTP, in that we do not drop small el-
ements of U during the triangular solve. Doing so
would require us to base the drop threshold on the
elements of Aj rather than on the elements of Uj ,
which we prefer. Also note that we compute the
absolute drop threshold for a column separately
for vL and for vU . We expect separate thresholds
to give relatively balanced nonzero counts for L
and for U , which is difficult to guarantee other-
wise since their scaling is often quite different.

Our algorithm uses one more technique, which
we call matching maintenance that attempts to
maintain a trailing submatrix with a nonzero di-
agonal. The technique is illustrated in Figure 1.
Before we start the factorization, we compute a
row permutation that creates a nonzero diagonal
for the matrix using a bipartite perfect-matching
algorithm (this algorithm returns the identity per-
mutation when the input matrix has a nonzero di-
agonal). When the algorithm exchange rows (piv-
ots), the nonzero diagonal can be destroyed. For
example, if in column 1 the algorithm exchanges
rows 1 and i (in order to pivot on Ai1), and if A1i

(which moves to the diagonal) is zero, then we
may encounter a zero diagonal element when we

3We decided not to drop original nonzeros because we
felt that dropping them might compromise the robustness
of the preconditioner, but in some cases dropping original
nonzeros may improve the efficiency of the preconditioner.

4All comparisons discussed in this section are of abso-
lute values.

factor column i. The element A1i will certainly be
filled, since both A11 and Aii are nonzero. There-
fore, whether we encounter a zero diagonal ele-
ment or not depends on whether A1i is dropped
or not after it is filled. Since A1i will fill, our tech-
nique simply marks it so that it is not dropped
even if it is small. In effect, we update the per-
fect matching of the trailing submatrix to reflect
the fact that the diagonal of column i is now A1i

instead of Aii, which is now in U . If we exchange
row i with another row, say l, before we factor
column i, we will replace A1i by Ali as the diag-
onal element of column i. This marked diagonal
element is not dropped even if we end up pivoting
on another element in column i, say Aij , because
its existence ensures that the diagonal element in
column j will be filled in. The resulting diagonal
elements may be small, but barring exact cancel-
lation they prevent zero pivots, at the cost of at
most one fill per column.

The goal of the matching maintenance is to pre-
vent structural zero pivots at the cost of one fill
element per column. Our experiments show, how-
ever, that in very sparse factorizations such as
with τ = 1 (which we denote by ILU(0)), exact
numerical cancellations are common even when
this technique is employed. When we replace the
numerical values of the matrix elements with ran-
dom values, the factorizations do not break down.
This experiment shows that the technique does
indeed prevent structural breakdowns. We were
somewhat surprised that exact numerical cancel-
lations are so common in practice, even when
structural breakdown is prevented. It remains an
open problem to find a similarly inexpensive way
to guarantee against exact numerical breakdown.

Before concluding this section, we would like to
comment on two techniques that are employed in
state-of-the-art complete LU factorization codes
but that are not included in our incomplete LU
code. The first technique is called symmetric
pruning [6]. This technique exploits structural
symmetry by pruning the graph that the DFS
searches for updating columns. The correctness
of symmetric pruning depends on a complete fac-
torization, so we could not use pruning in our
code. The second technique is the exploitation
of nonsymmetric supernodes [3] to improve the
temporal locality in the factorization (and hence
reduce cache misses). Maintaining supernodes
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Figure 1: An example of the matching-maintenance method. Nonzero elements are represented by
full squares, and zero elements by empty squares. A row exchange places a zero on the diagonal (a).
This zero is marked as a diagonal element that must not be dropped, denoted by the enclosing (red)
square. Another row exchange moves another zero to the diagonal (b). The new nonzero is marked
and the previous one, which is now in U , is unmarked (c). The triangular solve fills in the first zero
element, which is not dropped since we do not drop elements in U before the column factorization is
complete (d). This fill element plus an original nonzero now cause the diagonal element to fill (e). A
row exchange is performed, moving the element just filled off the diagonal. But since it is marked, it
is not dropped (f), which ensures that the diagonal element in the last row will fill.

in an incomplete factorization requires a restric-
tion on the dropping rules (a supernodal algo-
rithm would need to drop or retain entire supern-
ode rows). This restriction would have increased
the density of the factors, and we estimated that
the increased density would offset the savings in
running time gained from supernodes. Still, this
technique could perhaps enhance performance on
some matrices.

We have implemented this algorithm as a mod-
ification to the GP code [7]. The modifications
are mostly restricted to the driver subroutine and
to the column factorization subroutine. The sub-
routines that perform the DFS and update the
current column are essentially unmodified. (We
had to slightly modify all the routines in order to
implement a column ordering mechanism). The
perfect-matching code is by Pothen and Fan [9].

3 Experimental Methodology

This section describes our experimental method-
ology. We describe the structure of the exper-
iments, the test matrices that we use, and the
software and hardware platforms that we used to
carry out the experiments. The experiments are
summarized in Table 1.

Structure of the experiments

Our experiments compare a direct sparse LU
solver with partial pivoting, SuperLU [3], with
an iterative solver. We used a transpose-free
quasi-minimum-residual (TFQMR) Krylov-space
method with the pivoting incomplete LU precon-
ditioner described above (see Saad [11], for exam-
ple, for background on the Krylov-space methods
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discussed in this paper). For each matrix A we
construct a random solution vector x (with el-
ements uniformly distributed between 0 and 1),
and multiply A by x to form a right-hand side
b. We then solve the resulting linear system us-
ing SuperLU, keeping track of the total solution
time and the norm of the residual Ax̂− b, where
x̂ is the computed solution. We do not use it-
erative refinement. We then solve the same sys-
tem several times using the Krylov-space iterative
method with an incomplete-LU preconditioner,
each time with a different value of the drop thresh-
old. When the incomplete factorization breaks
down due to zero pivots, we do not proceed with
the iterative solver at all.

We chose TFQMR based on initial experiments
that compared TFQMR, stabilized bi-conjugate
gradients (BICGSTAB), and generalized mini-
mum residual (GMRES), the last with restarts ev-
ery 10, 20, and 40 iterations. These experiments,
which are not reported here, showed that the over-
all performance and robustness of TFQMR and
BICGSTAB are quite similar, with GMRES be-
ing less efficient. Since our goal is to evaluate it-
erative solvers as candidates for general-purpose
black-box solvers, and not to compare different
Krylov-space methods, we picked one solver for
the experiments reported here.

The stopping criteria for the iterative solver are
as follows. Convergence is defined as a residual
whose 2-norm is at most 104 times the norm of
the solution computed by SuperLU. While arbi-
trary, this choice reflects the fact that the accu-
racy achieved by a direct solver is often not needed
in applications, while at the same time tying the
required solution to the condition number of the
system. Divergence is defined as a residual that
grows by a factor of more than 104 relative to
the initial residual. The solver also stops when
the total solution time is more than 10 times the
SuperLU solution time. We test for convergence
after one iteration, 2, 4, 8, 16, and then every
16 iterations. This procedure reduces the over-
head of convergence testing, while preventing the
solver from iterating too many times when con-
vergence is rapid. The convergence-testing sub-
routine computes true residuals.

Our time limit criterion and our convergence
criterion cannot be implemented in applications,
since they require the direct solution of the sys-

tem. But they allow us to compare the iterative
solver to the direct solver effectively without wast-
ing too much computer time. (Even so, the ex-
periments took about two weeks of computer time
to complete.)

For each linear system, we ran four sets of ex-
periments, two with partial pivoting (in both the
complete and incomplete factorization), and two
with no pivoting (sometimes called diagonal piv-
oting). The reference residual and running time
used in the stopping criteria are always the ones
from the SuperLU solver with partial pivoting. In
two sets of experiments, one with and one with-
out pivoting, we tested the drop-threshold pre-
conditioner. In each set, we ran a direct solver
and 33 iterative solvers, in which the drop thresh-
old τ in the incomplete factorizations is set at
2−32, 2−31, . . . , 2−1, 1. In the other two sets, also
one with and one without pivoting, we tested
column-fill-ratio preconditioners. We tested fill
ratio 32, 16, 8, 4, 2, and 1. (A fill ratio r means
that when a column of A has n nonzeros, the cor-
responding columns of L and U each retain their
largest rn elements plus the diagonal element and
all the original A elements. Because the original
nonzeros are never dropped, and because some
columns may not fill by a factor of r, the total
number of nonzeros in U + L may be somewhat
smaller or larger than rNNZ(A).)

Most of the experiments were carried out us-
ing a column multiple-minimum-degree (MMD)
ordering of the matrices, but we did run one
set of experiments using a reverse-Cuthill-McKee
(RCM) ordering. In this set, whose goal was to
allow us to compare different orderings, we tested
each matrix with two column-fill-ratio precondi-
tioners, with ratios of 1 and 2.

We also ran three sets of experiments us-
ing symmetric-positive-definite (SPD) matrices.
The first set was identical to the pivoting drop-
threshold experiments carried out with nonsym-
metric matrices. The other two sets compared an
iterative solver specific to SPD matrices, denoted
in Table 1 as CG+ICC, with a nonsymmetric it-
erative solver. These experiments are described
more fully in Section 4.

Test Matrices

We performed the bulk of the experiments on a
set of 24 test matrices, listed in Table 2. The ta-



EVALUATION OF NONSYMMETRIC INCOMPLETE LU Informatica 17 page xxx–yyy 7

Ex
pe

rim
en

t

Fi
gu

res

Method
Num

be
r of

M
at
ric

es

Ty
pe

of

M
at
ric

es

Ordering Pi
vo

tin
g

Drop thresholds Col fill ratios
I 2,3 TFQMR+ILU 24 NS MMD on AT A Y 2−32, 2−31, . . . , 2−1, 1
II — TFQMR+ILU 24 NS MMD on AT A Y 32, 16, 8, 4, 2, 1
III 2,3 TFQMR+ILU 24 NS MMD on AT A N 2−32, 2−31, . . . , 2−1, 1
IV — TFQMR+ILU 24 NS RCM on A Y 2, 1
V 4 TFQMR+ILU 12 SPD MMD on AT A Y 2−32, 2−31, . . . , 2−1, 1
VI 4 TFQMR+ILU 12 SPD MMD on AT A N 2−32, 2−31, . . . , 2−1, 1
VII — QMR+ILU 6 SPD RCM on A N 2−16, 2−15, . . . , 2−1, 1
VIII — CG+ICC 6 SPD RCM on A N 2−16, 2−15, . . . , 2−1, 1

Table 1: A summary of the experiments reported in this paper. The table shows the iterative and
preconditioning methods that are used in each set of experiments, the number of matrices and their
type (general nonsymmetric, NS, or symmetric positive definite, SPD), the ordering of the matrices,
whether pivoting was used, and the parameters of the incomplete-LU preconditioners. The first six
sets of experiments were carried out using our own incomplete-LU implementation. The last two
experiments, VIII and IX, were carried out using Matlab.
Figures 2, 3, and 4 give detailed data from some of the experiments, the other results are described
in the main text.

ble also lists the most important structural and
numerical characteristics of the matrices, as well
as whether pivoting was necessary for the com-
plete and incomplete factorizations. The matri-
ces are mostly taken from the Parallel SuperLU
test set [4], where they are described more fully.
The most important reason for choosing this set
of matrices (except for availability) is that this is
essentially the same set that is used to test Su-
perLU, which is currently one of the best black-
box sparse nonsymmetric solvers. Therefore, this
test set allows us to fairly assess whether precon-
ditioned iterative methods are appropriate for a
black-box solver.

We have also used a set of 12 symmetric
positive-definite matrices in some experiments.
Six of these matrices are from the Harwell-Boeing
matrix collection and were retrieved from Matrix-
Market, an online matrix collection maintained by
NIST5. These include four structural engineering
matrices (bcsstk08, bcsstk25, bcsstk27, bcsstk28),
a power system simulation matrix (1108 bus), and
a finite-differences matrix (gr 30 30). The other
six matrices are image processing matrices con-
tributed by Joseph Liu (den090, dis090, spa090,
den120, dis120, spa120).

5Available online at http://math.nist.gov/

MatrixMarket.

Software and Hardware Platforms

We used several mathematical libraries to carry
out the experiments. The experiments were per-
formed using calls to PETSc 2.06, an object-
oriented library that implements several iterative
linear solvers as well as numerous sparse ma-
trix primitives [1]. PETSc is implemented in
C and makes calls to the Basic Linear Algebra
Subroutines (BLAS) to perform some operations
on dense matrices and on vectors. PETSc in-
cludes several preconditioners, but it does not
include a pivoting incomplete-LU preconditioner.
We therefore added to PETSc two interfaces that
call other libraries. The first interface enables
PETSc to use the SuperLU library to order and
factor sparse matrices. The second interface en-
ables PETSc to use our modified version of the
GP library to compute complete and incomplete
LU factorizations.

SuperLU is a state-of-the-art library for sparse
LU factorization with partial pivoting [3]. Su-
perLU achieves high performance by using a su-
pernodal panel-oriented factorization, combined
with other techniques such as panel DFS with
symmetric pruning [6] and blocking for data
reuse. It is implemented in C and calls the level 1

6Available online from http://www.mcs.anl.gov/

petsc.
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gre 1107 1107 5664 0.20 0.20 -1.0e+00
orsirr 1 1030 6858 1.00 0.50 2.9e-04 Y Y
mahindas 1258 7682 0.03 0.01 -1.0e+00 Y
sherman4 1104 3786 1.00 0.29 2.0e-04 Y Y
west2021 2021 7310 0.00 0.00 -1.0e+00
saylr4 3564 22316 1.00 1.00 -6.1e-07 Y Y
pores 2 1224 9613 0.66 0.47 -1.0e+00 Y Y
extr1 2837 10969 0.00 0.00 -1.0e+00
radfr1 1048 13299 0.06 0.01 -1.0e+00
hydr1 5308 22682 0.00 0.00 -1.0e+00
lhr01 1477 18428 0.01 0.00 -1.0e+00
vavasis1 4408 95752 0.00 0.00 -1.0e+00
rdist2 3198 56834 0.05 0.00 -1.0e+00
rdist3a 2398 61896 0.15 0.01 -1.0e+00
lhr04 4101 81067 0.02 0.00 -1.0e+00
vavasis2 11924 306842 0.00 0.00 -1.0e+00
onetone2 36057 222596 0.15 0.10 -1.0e+00
onetone1 36057 335552 0.10 0.07 -1.0e+00
bramley1 17933 962469 0.98 0.73 -1.0e+00 Y Y
bramley2 17933 962537 0.98 0.78 -1.0e+00 Y Y
psmigr 1 3140 543160 0.48 0.02 -1.0e+00
psmigr 2 3140 540022 0.48 0.00 -1.0e+00 Y
psmigr 3 3140 543160 0.48 0.01 -1.0e+00
vavasis3 41092 1683902 0.00 0.00 -1.0e+00

Table 2: The nonsymmetric matrices that are used in our experiments. The table shows the order
N and number of nonzeros (NNZ) of the matrices, structural and numerical symmetry, diagonal
dominance, and whether the matrices require pivoting in direct and iterative factorizations. The
structural symmetry is the fraction of nonzeros whose symmetric matrix elements are also nonzeros,
the numerical symmetry is the fraction of nonzeros whose symmetric elements have the same numerical
value, and the diagonal dominance is defined as mini=1...N (|Aii|/ ∑

j 6=i |Aij |) − 1, so a matrix with
nonnegative diagonal dominance is diagonally dominant, and a matrix with diagonal dominance −1
has a zero on the diagonal.
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and 2 BLAS to perform computations on vectors
and on dense submatrices. GP is a library for
sparse LU factorization with partial pivoting [7].
GP is column oriented (that is, it does not use su-
pernodes or panel updates). It uses column DFS,
but no symmetric pruning. We modified GP to
add the capability to compute incomplete factor-
izations with partial pivoting as explained in Sec-
tion 2. GP is written in Fortran 77, except for
some interface routines that are written in C.

We used the Fortran level-1 and level-2 BLAS.
We used PETSc version 2.0.15. In SuperLU, we
used the following optimization parameters: pan-
els of 10 columns, relaxed supernodes of at most 5
columns, supernodes of at most 20 columns, and
2D blocking for submatrices with more than 20
rows or columns.

We ran the experiments on a Sun ULTRA
Enterprise 1 workstation running the Solaris
2.5.1 operating system. This workstation has a
143 MHz UltraSPARC processor and 320 Mbytes
of main memory. The processor has a 32 Kbytes
on-chip cache, a 512 Kbytes off-chip cache, and a
288-bit-wide memory bus.

We used the Sunpro-3.0 C and Fortran 77
compilers, with the -xO3 optimization option for
C and the -O3 optimization option for Fortran.
Some driver functions (but no computational ker-
nels) were compiled with the GCC C compiler ver-
sion 2.7.2 with optimization option -O3.

4 Experimental Results

This section summarizes our results. This sum-
mary is quite long, and it is supported by many
graphs that contain substantial amounts of in-
formation. This is a result of the complexity of
the underlying data. We found that it was not
possible to summarize the experiments concisely
because each matrix or small group of matrices
exhibited a different behavior. This complexity
itself is part of our results, and we attempt to
include enough information for readers to gauge
it.

We begin with a broad classification of the ma-
trices into those that require pivoting and those
that do not. We then discuss each group sepa-
rately. While most of the experiments were car-
ried out with a column multiple-minimum-degree
(MMD) ordering, we describe one set of experi-

ments whose goal is to compare MMD to reverse-
Cuthill-McKee (RCM) ordering. We also com-
pare drop-threshold and column-fill-ratio factor-
izations with similar amounts of fill. We conclude
the section with a discussion of two sets of exper-
iments with symmetric-positive-definite matrices,
whose goal is to determine whether the difficul-
ties we encountered with the nonsymmetic matri-
ces were due to the properties of the matrices, of
the more general nonsymmetric solver, or of the
incomplete-factorization paradigm itself.

General Classification of Matrices

In our experiments, matrices that are more than
50% structurally symmetric did not require piv-
oting for either the direct or the preconditioned
iterative solvers. Matrices that are less than 50%
structurally symmetric generally require pivoting
for both the direct and the preconditioned iter-
ative solvers, with two exceptions: mahindas and
psmigr 2 (3% and 48% structurally symmetric, re-
spectively). A nonpivoting direct solver worked
on these two matrices (although the solutions pro-
duced were significantly less accurate than solu-
tions obtained with pivoting factorizations), but
the iterative solvers converged only with pivoting
preconditioners. In both cases the nonpivoting
iterative solver detected divergence and stopped.
The 2-norms of the forward errors were about
7 orders of magnitude larger with the nonpivot-
ing direct solver than with the pivoting solver for
mahindas, and 5 orders of magnitude larger for
psmigr 2. The 2-norms of the residuals were also
larger by similar factors.

We believe that the 50% structural symmetry
cutoff point for the need to pivot is significantly
influenced by the set of test matrices that we used.
We believe that there are matrices that arise in
applications with more than 50% structural sym-
metry that do not require pivoting and matrices
with less than 50% structural symmetry that do
require pivoting.

Nonpivoting Factorizations

Figure 2 summarizes the results of experiments I
and III the 6 matrices did not require a pivot-
ing preconditioner. On 5 of these 6 matrices, the
iterative solver with the best drop-threshold pre-
conditioner was faster than SuperLU. On 3 of the
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Figure 2: Experiments I and III. Running times (factorization+iteration) and nonzero counts for
matrices that can be incompletely factored without pivoting, as a function of the drop threshold. The
running times with pivoting are denoted by diamonds, and the running times without pivoting by
squares. The nonzero counts are denoted by (red) x’s for factorizations with pivoting, and by (red)
crosses without pivoting. The y-axes are scaled so that the running time and nonzero count of the
complete GP factorization with pivoting (and triangular solution, for time) would fall on the middle
hash marks. The scale on both axes is logarithmic. The time limit for iterative solutions is 10 times
the total factor-and-solve time for SuperLU.
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6, even a pivoting preconditioner was faster than
SuperLU. On the other 2 matrices in which a non-
pivoting preconditioner was faster than SuperLU,
bramley1 and bramley1, the pivoting precondition-
ers were not able to reduce the running time over
either GP or SuperLU. On one matrix, sherman4,
all the preconditioners converged, but none re-
duced the running time below either GP or Su-
perLU.

On 4 of the 6 matrices that did not require a
pivoting preconditioner, the iterative solver con-
verged with very sparse factorizations. On 3 of
the 4, a factorization with no fill at all (ILU(0))
converged. On saylr4, factorizations with no fill
or very little fill did not converge to an accurate
solution. They did converge to a less accurate so-
lution. The sparsest factorization that converged
had only 117% of the fill of ILU(0) and only 5%
of the fill of the complete factorization. On the
two remaining matrices, bramley1 and bramley2,
even the sparsest (ILU(0)) nonpivoting precondi-
tioners converged, but all the pivoting precondi-
tioners that converged were almost complete fac-
torizations.

Generally speaking, the only failure mode for
all 8 matrices that did not require a pivoting di-
rect solver was exceeding the time limit. There
were essentially no numerically zero pivots or un-
stable factorizations. In some cases we believe
that a higher time limit would allow convergence;
in some cases the solver has converged to a so-
lution that was not accurate enough and could
not further reduce the residual; and in some cases
the solver exceeded the time limit without signif-
icantly reducing the residual at all. In two cases
a single drop-threshold value produced an unsta-
ble factorization, once when pivoting (on pores 2),
and once when not pivoting (on bramley2).

Pivoting Factorizations

We now discuss the results of experiments I
and III with the 16 matrices that required piv-
oting for both complete and incomplete factor-
izations, as well as with the 2 matrices that
did not require pivoting for a complete factor-
ization, but did require pivoting incomplete fac-
torizations. The results of these experiments are
summarized in Figures 3a, 3b, and 3c.

On 7 of the 18 matrices, the iterative solver
(with the best preconditioner) was faster than

both SuperLU and GP (in 2 of these 7 cases the
improvement over SuperLU was less than 20%).
On 3 more matrices, the iterative solver was faster
than GP but not faster than SuperLU (in one of
the 3 cases the improvement over GP was less
than 20%). On the remaining 8 matrices, the iter-
ative solver did not reduce the solution time over
either SuperLU or GP.

Twelve of the matrices converged with a pre-
conditioner with 50% or less of the fill of a com-
plete factorization. Only 7 converged with 40% or
less, only 5 with 20% or less, and 2 with less than
10%. Only 2 matrices, psmigr 1 and psmigr 3,
converged with an ILU(0) factorization.

Failure modes in the pivoting preconditioners
on 12 of the 18 matrices included unstable factor-
izations that were detected as either numerically
zero pivots during the factorization or divergence
during the iterations (the 2-norm of the residual
grows by a factor of 104 or more). Zero pivots
were detected on 11 matrices, and divergence on
6. On the remaining 6 out of the 18 matrices, 2
matrices always converged, and on the other 4 the
only failure mode was exceeding the time limit.

The Effect of Ordering on Convergence

Since RCM ordering produces significantly more
fill than MMD in complete and nearly com-
plete factorizations, we only tested RCM or-
derings on relatively sparse incomplete factor-
izations, namely, column-fill-ratio factorizations
with ratios of 1 and 2. We now compare these
RCM preconditioners, from experiment IV, with
column-fill-raio MMD preconditioners with the
same ratios from experiment II.

In only 18 of the 48 experiments (24 matrices
with 2 fill ratios each), both orderings converged.
In 7 more the MMD-ordered preconditioner con-
verged but the RCM-one exceeded the time limit
(which was identical for both orderings and based
on the SuperLU time with an MMD ordering).
There were no other cases.

When both converged, MMD was faster in 8 ex-
periments and RCM in 10. But when MMD was
faster, the RCM preconditioner took on average
207% more time to converge (that is, RCM was
on average 3 times slower), whereas when RCM
was faster, MMD took on average 47% more time
(1.5 times slower). The MMD and RCM precon-
ditioners had similar numbers of fill elements, but
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Figure 3a: Experiments I and III. Running times and nonzero counts for matrices that cannot be
incompletely factored without pivoting, as a function of the drop threshold. The running times are
denoted by vertical bars. The low end of the bar denotes the factorization time, and the high end
shows the entire solution time (factorization+iteration). The nonzero counts are denoted by (red) x’s.
The y-axes are scaled so that the running time and nonzero count of the complete GP factorization
with pivoting (and triangular solution, for time) would fall on the middle hash marks. The scale on
both axes is logarithmic. The time limit for iterative solutions is 10 times the total factor-and-solve
time for SuperLU.
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Figure 3b: Experiments I and III. Running times and nonzero counts for matrices that cannot be
incompletely factored without pivoting (continued).
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Figure 3c: Experiments I and III. Running times and nonzero counts for matrices that cannot be
incompletely factored without pivoting (continued). SuperLU ran out of memory on vavasis3, so no
SuperLU time is shown. The time limit for the iterative solution of vavasis3 was arbitrarily set at
10, 000 seconds.
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the MMD preconditioners were a little sparser on
average in both cases.

Our experiments show that pivoting incomplete
factorizations with column ordering based on an
MMD ordering of AT A usually converge faster
than pivoting incomplete factorizations with col-
umn ordering based on an RCM ordering of A.

One possible reason for the difference in per-
formance is that the MMD preconditioners retain
a larger fraction of the fill of a complete factor-
ization than the RCM ones. We expect an MMD
ordering to yield a sparser complete factorization
than an RCM ordering. Since the column-fill-
ratio preconditioners had about the same num-
ber of fill elements with both orderings, more fill
was dropped from the RCM preconditioners than
from the MMD ones.

Column-Fill-Ratio Incomplete
Factorizations

To compare the quality of drop-tolerance pre-
conditioners and column-fill-ratio precondition-
ers, we matched each column-fill-ratio precondi-
tioner from experiment II with a drop-tolerance
preconditioner with a similar number of nonzeros
from experiment I. Specifically, we paired with a
column-fill-ratio preconditioner with k nonzeros a
drop-tolerance preconditioner with between 0.9k
and k nonzeros, if there was one. We broke ties
by choosing the preconditioner with the largest
number of nonzeros among all admissible ones.

Out of 144 drop tolerance preconditioners, 108
were paired. In 15 of the pairs neither precondi-
tioner converged within the time limit. In 16 pairs
only the drop-tolerance preconditioner converged.
Among the 77 pairs in which both precondition-
ers converged, the column-fill-ratio precondition-
ers required, on average, factors of 21.7 more it-
erations and 2.67 more time to converge (time in-
cluding both factorization and iterations). There
were only 6 pairs in which the column-fill-ratio
preconditioner converged faster. Among these 6,
the column-fill-ratio preconditioners, required on
average a factor of 0.87 less time to converge. We
conclude that for a given number of nonzeros, a
drop-tolerance preconditioner is usually dramati-
cally better, and never much worse.

Symmetric Positive Definite Matrices

Although this paper only focuses on nonsymmet-
ric matrices, we did perform some experiments
on symmetric-positive-definite matrices. The goal
of these experiments was not to assess iterative
solvers for SPD matrices, but to answer two spe-
cific questions: (a) does our iterative solver per-
form better on SPD matrices than on nonsym-
metric matrices, and if not, (b) can an iterative
solver that exploits the properties of SPD matri-
ces perform better?

We ran two sets of experiments. In the first
set, consisting of experiments V and VI, we used
exactly the same Krylov-space method and the
same preconditioner, nonsymmetric LU with and
without partial pivoting, to solve 12 SPD matri-
ces. Our goal in this first set was to determine
whether the behavior of our solver is significantly
better when the matrices are SPD.

The results, which are described in Figures 4a
and 4b, show that even SPD matrices can cause
the solver difficulties. Out of the 12 matrices, only
4 can be solved with large drop tolerances. There
is only one case (bcsstk08) of spectacular reduc-
tion in running time relative to the direct solver.
Most of the failures are caused by exceeding the
time limit, but in a few cases the factorization is
unstable and causes the solver to diverge. There
is no significant difference in performance between
pivoting and nonpivoting factorizations.

In the second set, consisting of experiments VII
and VII, we compared a symmetric and a non-
symmetric solver on 6 of the matrices (bc-
sstk08, bcsstk25, bcsstk27, bcsstk28, 1138 bus, and
gr 30 30). We compared a conjugate gradient
(CG) method using a drop-tolerance incomplete
Cholesky preconditioner to a QMR method using
a drop-tolerance incomplete LU preconditioner.
The first solver exploits the fact that the matri-
ces are SPD, while the second is quite similar to
our nonsymmetric iterative solver, except that it
does not pivot. We used Matlab 5.0 for this ex-
periment, and symmetrically permuted the ma-
trices using RCM ordering. We again set the re-
quired residual to be 104 times less accurate than
a residual obtained by direct solution. We set the
maximum number of iterations to 512.

The results of this experiment show no signifi-
cant qualitative differences between the symmet-
ric and the nonsymmetric solver. The symmet-
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ric solver was able to solve the matrices bcsstk08,
bcsstk27, gr 30 30, and 1138 bus even with very
large drop tolerances (more than 512 iterations
were required on 1138 bus with the two sparsest
factorizations). The symmetric solver failed to
converge in 512 iterations with most of the values
of the drop tolerance on the other two matrices.
Reduction in running time relative to the direct
solver was obtained only on bcsstk08. This behav-
ior is similar to the behavior of our nonsymmetric
solver.

5 Conclusions

The primary conclusion from our experiments is
that iterative solvers with incomplete LU precon-
ditioners can be very effective for some nonsym-
metric linear systems, but they are not robust
enough for inclusion in general-purpose black-box
linear solvers.

Iterative solvers sometimes save a factor of
about 10 in both time and space relative to a
state-of-the-art direct sparse solver. But in most
cases even the best drop-threshold value does not
produce a very effective preconditioner. Also,
to our knowledge there are no known techniques
for determining an optimal or near-optimal drop-
threshold value. Therefore, a black-box solver
is likely to operate most of the time with sub-
optimal drop thresholds, which can lead to slow
convergence or no convergence. Out of hundreds
of iterative solutions, few were more than 10 times
faster than a direct solver, but many were more
than 10 times slower.

Our experiments on SPD matrices, while lim-
ited, suggest that our primary conclusion remains
valid even if we restrict our attention to SPD ma-
trices, and perhaps even to SPD matrices solved
by symmetric methods. These experiments, how-
ever, are limited in scope, and were only meant to
indicate whether the nonsymmetry of the matri-
ces or of the solvers caused the difficulties that we
have reported. They were not meant to provide
an evaluation of iterative solvers for SPD matrices
and should not be used as such.

We also draw some secondary conclusions from
the data on nonsymmetric matrices.

– First, pivoting in incomplete LU is neces-
sary in many cases, even though we always
begin by permuting the matrices to create

a nonzero diagonal. Pivoting is necessary
whenever pivoting is required for the direct
solution, and it is necessary even for some
systems that can be directly solved without
pivoting. In other words, pivoting is more
important in the incomplete case than in the
complete case.

– Second, the best overall running times for
the iterative solution of single linear sys-
tems (as opposed to multiple systems with
the same matrix) are almost always achieved
with around 8 to 16 iterations.

– Third, drop-tolerance preconditioners are
more effective than column-fill-ratio precon-
ditioners with a similar amount of fill. This
is unfortunate, since column-fill-ration and
other fixed-fill strategies allow solvers to tai-
lor the preconditioner to the amount of avail-
able main memory.

– Fourth, MMD column ordering yields more
efficient preconditioners than RCM column
ordering. (Note that Duff and Meurant [5]
showed that for SPD matrices, RCM is of-
ten a more effective ordering for incomplete-
Cholesky preconditioners with no fill.)

Iterative solvers are suitable for toolkits for the
solution of sparse linear systems. Toolkits im-
plement multiple algorithms and enable the user
to construct a solver that can efficiently solve a
given problem. An iterative solver that works
well on one matrix may be inefficient or even
fail to converge on another. For example, Grote
and Huckle [8] switch from right to left precon-
ditioning in order to achieve convergence with
a sparse-approximate-inverse preconditioner on
pores2, and Chow and Saad [2] switch from row
to column-oriented factorization to achieve con-
vergence with lhr01. Chow and Saad also use a
variety of other techniques to solve other systems.
There are no established criteria that can guide an
automatic system as to which solver is appropri-
ate for a given matrix. Therefore, it is necessary
to give the user control over which algorithms are
used to solve a linear system, which is exactly
what toolkits do.

Direct solvers, on the other hand, are suitable
for black-box solvers. A single direct solver with a
single ordering was reliable and efficient on all of
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Figure 4a: Experiments V and VI. Running times and nonzero counts for SPD matrices ordered using
MMD on AT A, as a function of the drop threshold. The running times with pivoting are denoted
by diamonds, and the running times without pivoting by squares. The nonzero counts are denoted
by (red) x’s for factorizations with pivoting, and by (red) crosses without pivoting. The y-axes are
scaled so that the running time and nonzero count of the complete GP factorization with pivoting
(and triangular solution, for time) would fall on the middle hash marks. The scale on both axes
is logarithmic. The time limit for iterative solutions is 10 times the total factor-and-solve time for
SuperLU.
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Figure 4b: Experiments V and VI. Running times and nonzero counts for SPD matrices ordered using
MMD on AT A (continued).
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our test matrices. In comparison, our experiments
have not turned up any single iterative solver (say,
TFQMR with a specific drop-threshold precondi-
tioner) that can rival the overall reliability and
performance of this direct solver. While tun-
ing a direct solver—by changing the ordering,
for example—can sometimes improve its perfor-
mance, we believe that direct solvers, even “right
out of the box” with no tuning at all, are more
reliable and more efficient than iterative solvers.

The discussion in the preceding paragraphs sug-
gests that there are problems that can be solved,
but not by black-box solvers. We did not include
problems that are too large to be solved by a di-
rect solver on a high-end workstation in our test
set because we would not be able to compare di-
rect and iterative solvers on them. Our experi-
ments show that some problems can be solved by
an iterative solver with a drop-threshold precon-
ditioner with no or little fill, and that this solver
requires significantly less memory than the direct
solver. The direct solver would ran out of memory
trying to solve similar but larger problems, but
the iterative solver should be able to solve them.
This implies that black-box solvers can solve all
problems up to a certain size with reasonable ef-
ficiency, and that larger problems can sometimes
be solved by more specialized solvers.

One potentially useful technique is to adap-
tively search for an efficient preconditioner, hop-
ing not to waste too much time in the search. Two
facts can guide us in designing the search. Since
an efficient preconditioner usually yields a solu-
tion in 8–16 iterations, we can abort the solver
after about 20 iterations, or if we encounter a
zero pivot, and try to construct a new precondi-
tioner. Since most of the solution time is spent in
the factorization phase when the preconditioner is
relatively dense, one should start the search with
very sparse preconditioners, so that aborting and
refactoring is not too expensive. One flaw in this
idea is that some matrices do not fill very much
(e.g., west2021), so each aborted iterative solution
can be almost as expensive as a direct solution.

We believe that studying iterative solvers in the
context of the reliability and performance of a di-
rect solver is important. While comparisons of it-
erative solution techniques to one another can be
very informative, they do not provide practition-
ers with specific practical advice. Since practi-

tioners have the option to use direct solvers, which
are generally reliable and efficient, they need to
know whether the iterative solver under study
outperforms state-of-the-art direct solvers. The
knowledge that one iterative solver outperforms
another is usually not sufficient for deciding to
deploy it. We hope to see more direct/iterative
comparative studies in the future, at least for non-
symmetric matrices, especially since SuperLU is
freely available on NETLIB.

To summarize, we believe that incomplete LU
preconditioners with partial pivoting are useful
components in a toolkit for the iterative solution
of linear systems, such as PETSc. Such precon-
ditioners can be very effective in individual appli-
cations that give rise to a limited class of linear
systems, so that the drop threshold and other pa-
rameters (e.g., ordering) can be tuned and the en-
tire solver can be tested for reliability. But such
iterative solvers cannot currently rival the relia-
bility and performance of direct sparse solvers.

Finally, early responses to this paper convice us
that more such studies are needed.
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