
The Design and Implementation of SOLAR,
a Portable Library for Scalable Out-of-Core Linear Algebra Computations

Sivan Toledo Fred G. Gustavson

IBM T.J. Watson Research Center

Abstract

SOLAR is a portable high-performance library for out-of-core dense
matrix computations. It combines portability with high performance
by using existing high-performance in-core subroutine libraries and
by using an optimized matrix input-output library. SOLAR works on
parallel computers, workstations, and personal computers. It supports
in-core computations on both shared-memory and distributed-memory
machines, and its matrix input-output library supports both conven-
tional I/O interfaces and parallel I/O interfaces. This paper discusses
the overall design of SOLAR, its interfaces, and the design of several
important subroutines. Experimental results show that SOLAR can
factor on a single workstation an out-of-core positive-definite symmet-
ric matrix at a rate exceeding 215 Mflops, and an out-of-core general
matrix at a rate exceeding 195 Mflops. Less than 16% of the running
time is spent on I/O in these computations. These results indicate
that SOLAR’s portability does not compromise its performance. We
expect that the combination of portability, modularity, and the use of
a high-level I/O interface will make the library an important platform
for research on out-of-core algorithms and on parallel I/O.

1 Introduction

This paper describes the design and implementation of SOLAR, a
high-performance portable library for out-of-core dense matrix com-
putations. SOLAR is designed to meet three main objectives. First,
the library should deliver as much of the functionality of LAPACK [2],
a public domain library for in-core matrix computations, as possible.
Second, the library should be portable across a wide variety of ar-
chitectures. Third, the library should deliver high performance. The
paper explains how the design allows us to achieve our objectives, and
demonstrates that the implementation is indeed portable and achieves
high performance. Our current implementation does not yet include
the full functionality of LAPACK for out-of-core matrices, but it does
include both sequential and parallel solvers for general and positive-
definite symmetric linear systems as well as several support routines.

Although current computers, especially parallel computers, have
large amounts of memory, there is still a need for software for out-

of-core matrix computations. Since DRAM is about 100 times more
expensive than disk [18] and since out-of-core software for dense ma-
trix computations can run at almost the rate of in-core software (see
Section 4), out-of-core software can solve problems at a much lower
cost-performance ratio than in-core software. Out-of-core solvers can
be used for the overnight solution of very large problems on work-
stations, for the solution of large problems in easy-to-use modeling
environments such as Matlab, as well as for solving huge prob-
lems that do not fit within the primary memory of any existing
computer. A testimony for the need for out-of-core software is the
steady stream of implementations of such codes over the last 45
years [3, 4, 11, 12, 13, 14, 15, 20, 21, 19, 22, 25], including a number
of recent implementations (for example, [4, 12, 13, 15, 25]). Unfor-
tunately, none of these codes appears to be portable, and all of them
provide only a few subroutines that the implementors needed, rather
than a full set of dense solvers. Consequently, many users cannot take
advantage of these codes.

Ubiquitous parallel computing in the form of scalable parallel
computers, symmetric multiprocessors and networks of workstations
provides two new incentives to use out-of-core algorithms. First, it
is often more cost-effective to speed up a computation that does not
fit in core by adding processing units and continuing to use an out-
of-core solver than by than by adding enough memory to run it in
core. Second, it is now possible to increase the performance of the I/O
system using parallel I/O with disk arrays and parallel file systems.

But parallel computing and parallel I/O also pose new challenges
to out-of-core software. Current computer systems offer many dif-
ferent computing and I/O environments. The processing unit can be
a uniprocessor, a symmetric multiprocessor with a shared memory,
or a parallel computer with a distributed memory. The I/O can be
performed by a conventional file system or a parallel file system, and
some of these file systems can use disk arrays or disks installed on
several server nodes. A portable out-of-core library that aims to sup-
port all of these environments should therefore use flexible interfaces
that can work in all of these environments. The interfaces should also
enable the use of multiple alternative external software modules, such
as multiple file systems and multiple in-core subroutine libraries.

Besides providing users and application developers with a much-
needed functionality, SOLAR will serve as a research tool for two
communities. The authors plan to use the library in research on out-
of-core numerical algorithms, and we hope that others will use it for
research in algorithms as well. The history of linear algebra software
indicates that libraries that support new architectures often advance
the state of the art. We expect novel developments to emerge from
SOLAR as well. Researchers working on I/O issues, such as parallel
file systems and I/O-subsystem architecture will be able to use the
library for empirical performance evaluations. Using a full-featured

library as a benchmark is preferable to using a “toy” application since
it is more likely to represent real workloads. We believe that the
main reason for using toy applications in past research on I/O has
been the lack of portable out-of-core software, and our library should
eliminate this problem. The high-level I/O interface that SOLAR
uses is compatible with current research on parallel I/O (see [16, 23],
for example) and the library should therefore provide a convenient
platform for research on I/O optimization.1

Our library uses two main mechanisms to achieves our design
objectives:

1. The library combines high performance with portability by sep-
arating the generic software that can be used on any machine
from a small set of functions that should be reimplemented
by vendors to achieve high performance on their platforms.
The platform dependent layer of the library consists of a set of
functions that perform I/O on submatrices, as well as of high-
performance in-core subroutines that are already implemented
on most platforms. The in-core subroutines consist of the so-
called Basic Linear Algebra Subroutines [9, 10, 17] (BLAS),
the parallel BLAS [5], LAPACK [2], and ScaLAPACK [6].
The generic components of the library consist of subroutines
that schedule I/O operations and call the in-core subroutines to
manipulate submatrices stored in in-core buffers.

2. The library will provide a large set of solvers by following a
traditional layered approach to linear algebra software. In this
approach, which is used by LAPACK and ScaLAPACK, a large
set of solvers is implemented in terms of a small set of BLAS.
Our library uses BLAS that can operate on matrices stored in or
out of core. These BLAS speed up the construction of solvers in
two ways. First, it is often relatively easy to implement a solver
using only calls to the BLAS. Second, since LAPACK already
uses this approach, it is easy to translate the in-core subroutines
in LAPACK into new out-of-core subroutines.

The rest of the paper describes the design and implementation
of SOLAR and its performance and portability records. Section 2
describes the overall design of the library and its internal and exter-
nal interfaces. Section 3 describes design decisions that were made
during the detailed design and implementation of individual modules
and subroutines. Section 4 presents the performance and portability
records of SOLAR. Performance results show that SOLAR achieves
high performance by efficiently utilizing both the processor or proces-
sors and the available I/O bandwidth. A porting experiment shows
that SOLAR is portable. Our conclusions are presented in Section 5.

2 Software Organization and Interfaces

This section describes the overall design of the SOLAR and some
of its internal and external interfaces. The discussion focuses on the
interaction between the design of the interfaces and the performance
of the resulting software. In particular, we describe the specification
of matrices stored in core and out of core, the specification of I/O
operations, the interaction between internal interfaces and software
pipelining, and the choice of external interfaces.

SOLAR consists of three main modules: subroutines for out-of-
core computations, interface subroutines for in-core computations, and
subroutines for input-output operations on submatrices. The role of the
out-of-core subroutines, both solvers and BLAS, is to schedule input-
output operations and to manage the in-core memory. These subrou-
tines must store and load submatrices to and from secondary memory
and anticipate the need for submatrices during the computation so that

1SOLAR’s source code is freely available from the authors for research purposes. To
receive a copy, send email to toledo@watson.ibm.com.

they can be prefetched. The role of the interface subroutines for in-
core computations is to allow a single out-of-core subroutine to work
on several kinds of matrices by providing runtime type resolution.
For example, the in-core interface subroutine for matrix multiply-add
calls a sequential or parallel subroutine for real or complex matrix
multiply-add in single or double precision based on runtime type in-
formation. The role of the matrix input-output subroutines (MIOS),
is to read and write submatrices from and to secondary storage. We
expect that vendors will implement versions of the MIOS optimized
to their platforms.

Matrix Storage and the

Matrix Input-Output Subroutines (MIOS)

SOLAR uses two forms of matrix storage, in-core and out-of-core.
A matrix, whether in-core or out-of-core, is described by a matrix
descriptor that specifies its data mapping and the type of its elements.
A set of subroutines known as the matrix I/O subroutines is responsible
for transferring submatrices of out-of-core matrices to and from main
memory.

In-core matrices come in two main flavors: shared-memory matri-
ces that can be manipulated by the sequential BLAS and by LAPACK,
and distributed matrices that can be manipulated by the parallel BLAS
and by ScaLAPACK. The library design completely specifies the struc-
ture of an in-core matrix descriptor. This specification is used by
in-core subroutines, by the MIOS to determine the address of specific
matrix elements, and by user programs when they access blocks of
out-of-core matrices.

Out-of-core matrices, on the other hand, can be stored in any
manner that the input-output module supports. While one MIOS
implementation might support only matrices laid out in column ma-
jor order in a conventional linear file, another MIOS implementation
might support matrices laid out in blocks on multiple disks in multiple
I/O nodes. There are two reasons to allow such diversity. First, it
seems too early to decide exactly which out-of-core data mappings are
necessary to achieve high performance in every possible dense matrix
computation. Second, the specification of out-of-core data mappings
depends on how I/O requests and file structures are specified to the
operating system or to the file system, and it seems that too early to
settle this issue [8]. Fortunately, it is possible to allow such diversity,
because only the MIOS need to know the details of the out-of-core data
mapping. Hence, the out-of-core storage descriptor can be viewed as
an opaque object accessible only to the MIOS. Information contained
in the descriptor about the matrix and its layout may be obtained by
calling a MIOS inquiry function. In contrast, it is not possible to de-
clare the in-core matrix descriptor an opaque object, because the data
mapping of in-core matrices is used not only by the MIOS, but also
by the in-core subroutines and by user programs.

The MIOS provide an I/O interface for user programs and for
the out-of-core subroutines. The services that the interface provides
include construction of descriptors, file open and close operations,
asynchronous reads and writes of submatrices, and inquiry subrou-
tines. There are several reasons to perform I/O in out-of-core sub-
routines through a matrix interface. First, such an interface allows an
out-of-core subroutine to use multiple out-of-core storage layouts and
multiple low-level I/O interfaces without explicit reference to all of
these options. Second, a high level interface allows for I/O optimiza-
tions such as two-phase I/O [23] and disk-directed I/O [16].

The contract between the out-of-core subroutines and the MIOS
is simple. The MIOS can transfer any rectangular block of a matrix
between primary and secondary memories. To enable the out-of-
core subroutines to request data-transfers that efficiently utilize the
I/O bandwidth of the machine, the MIOS provide an inquiry subrou-
tine that returns the dimensions of a primary block, the basic unit
in which an out-of-core matrix is stored. Data transfers of aligned

1 2 3
4 5 6

4 5 6
1 2 3

2 3 1
5 6 4
3 1 2
6 4 5

5 6 4
2 3 1
6 4 5
3 1 2

1 2 3
4 5 6

4 5 6
1 2 3

2 3 1
5 6 4
3 1 2
6 4 5

5 6 4
2 3 1
6 4 5
3 1 2

Figure 1: A 2-dimensional cyclically-shifted block layout of a 6-by-12
block matrix on a 2-by-3 disk grid. Each square in the figure represents
a block of the matrix. The digit in each block specifies which disk
owns the block. Any aligned block of size 2-by-3, 1-by-6, or 6-by-1
is evenly spread across the six disks.

and contiguous primary blocks should yield the best possible I/O
bandwidth. Thus, even though the out-of-core subroutines are not
designed with any specific data mapping in mind, they can achieve
high performance by using only aligned contiguous primary blocks in
data transfers. User programs whose performance is not critical, on
the other hand, can ignore the issue of primary blocks and transfer
submatrices of any shape. The primary block of an out-of-core matrix
is selected when the matrix is created. Choosing a large primary block
reduces the amount of time spent on moving the disk arm (seeking)
between primary blocks, but restricts the choice of a submatrix whose
transfer is efficient.

When a matrix is striped across several disks that allow inde-
pendent I/O (that is, access to a different block on each disk) each
disk stores one or more primary blocks. In such cases, loading or
storing a combination of primary blocks that load balances the disks
yields higher I/O bandwidth than a combination in which the load
is unbalanced. Although we can simply stripe each primary block
across the disks, this leads to larger primary blocks and less flexibility.
This flexibility can be valuable when different parts of an algorithm
use submatrices of different shapes. In LU decomposition with par-
tial pivoting, for example, factoring column blocks require reading a
group of entire columns, but I/O of square blocks is best for the update
of the trailing submatrix.

We have discovered a distributed matrix layout that supports ef-
ficient I/O transfers of submatrices of several important shapes. The
layout, called the 2-dimensional cyclically-shifted block layout, is
illustrated in Figure 1. Using this layout, an array of r-by-c disks
stores a matrix such that each aligned r-by-c, rc-by-1, and 1-by-rc
group of primary blocks is striped across all the disks. Such a layout
allows for efficient transfers of square or roughly square submatrices
as well as blocks of rows or columns. This layout is scalable in the
sense that all three block shapes are possible with a block size that
is only rc, the number of disks. A conventional block-cyclic layout
using an r-by-c disk grid might require loading more than rc primary
blocks to get an even load balance. SOLAR now uses a block-cyclic
layout for laying out matrices on parallel disks, but we plan to support
the 2-dimensional cyclically-shifted block layout in the future.

We present this new layout in order to demonstrate that it is not
wise to fix at this point the types of out-of-core matrix layouts that the
MIOS module should support. Since yet undiscovered layouts may
prove superior to conventional block-cyclic layouts, and because it
is not necessary to specify the layout in most of the MIOS module’s
interfaces (all except matrix creation), we leave the layout of out-of-
core unspecified in the specification of the MIOS.

Since the MIOS interface does not specify all the possible data
mappings for out-of-core matrices, the arguments to the descriptor
construction subroutine are not specified by the interface, and an im-
plementation can use any set of arguments. Likewise, the arguments
to the file open subroutines are implementation dependent. The main
implication of the design decision to leave the arguments to these
subroutines unspecified is that out-of-core subroutines in the library
cannot create temporary files in a portable way. Since LAPACK does
not allocate memory either, but relies instead on work areas supplied
by the caller, we felt that this restriction is not significant. Where
needed, our library can rely on work files supplied by the caller with-
out deviating from the calling sequences of LAPACK.

Pipelining Policies

SOLAR uses an asynchronous I/O interface in order to overlap I/O
and computation. The asynchronous I/O interface is used to pipeline
data to and from secondary memory. A subroutine that needs to read a
matrix from a file, for example, issues the request to read block i+1 (a
so-called prefetch), waits for the completion of the reading of block
i, then computes on block i. The reading of block i + 1 overlaps
the computation performed on block i. This 2-stage pipeline requires
two buffers per matrix. If the blocks are modified and must be written
back to secondary memory, then the writing of block i�1 overlaps the
computation performed on block i, and the 3-stage pipeline requires
three buffers per matrix.

Our design restricts the use of asynchronous I/O using two simple
policies. The first policy is that each subroutine must perform its own
I/O, including prefetching, and each subroutine must wait until the
data it writes has been accepted by the I/O system. Since a caller
cannot perform the first prefetching on behalf of a callee or wait for its
writes to complete, calling an out-of-core subroutine incurs a pipeline
startup cost and a pipeline shutdown cost.

The second policy is that a matrix argument is always passed
to a subroutine completely in core or completely out of core. In
other words, a subroutine that receives an out-of-core matrix A as
an argument cannot use a buffer that contains a submatrix of A if
the buffer was read before the invocation of the subroutine, or if the
buffer was computed in core before the subroutine was invoked. The
subroutine must issue read requests for the entire matrix, even though
it might mean that the program writes a buffer and then immediately
reads it again or reads the same submatrix twice in a row.

The two policies keep internal interfaces in SOLAR simple and
keep the implementations of different subroutines independent. If
a subroutine is allowed to prefetch on behalf of another, then the
first must use some assumptions on the implementation of the second.
Interfaces are kept simple because pending I/O requests,active buffers,
and matrices that are partially in-core are never passed as arguments
to subroutines.

Our pipelining policies, whose goal is to keep SOLAR’s design
simple and modular, do have several implications on the performance
of out-of-core subroutines. First, the performance of an iterative2

block algorithm can be better than the performance of a recursive
algorithm, since the recursive code incurs a pipeline startup cost after
every recursive call, whereas the iterative algorithm incurs this cost
only once. Second, increasing the block size in block algorithms
increases the cost of the pipeline startup. In level-3 algorithms, such
as matrix-matrix multiplication, it is best to choose a block size that
is large enough to hide the I/O latency but not much larger than that.
Our implementation takes these issues into account. While it might
be argued that using the BLAS also introduces some overhead, since

2We use the term iterative in this paper to describe algorithms that span an iteration
space using nested loops rather than using recursion. This use of the term should not
be confused with its use to describe the solution of numerical problems by successive
approximations.

each time a BLAS is called it must start its pipeline, we felt that this
is a small penalty compared to the advantages that the BLAS offer.
The advantages that the BLAS offer include modularity and ease of
conversion of in-core software that uses the BLAS into out-of-core
software. The last advantage is especially important since LAPACK’s
use of the BLAS is designed to enhance data locality on machines with
caches, and such a design is naturally suited to out-of-core algorithms.

External Interfaces

The main design goal of the external interface of SOLAR is com-
patibility with the BLAS, PBLAS, LAPACK, and ScaLAPACK. The
rationale behind this decision is to simplify the adaptation of user
code to out-of-core matrices as well as to simplify the translation
of LAPACK’s solvers into out-of-core solvers. One superficial dif-
ference between existing libraries and SOLAR is the polymorphism
in SOLAR. A single subroutine implements a given function for all
data types instead of eight in existing libraries (four sequential and
four parallel for single, double, complex, and double-complex data
types). Since out-of-core computations are typically time consuming,
the overhead caused by runtime type resolution is insignificant.

We have therefore decided that the calling sequences of SOLAR
should be identical to the calling sequences of the parallel BLAS and
ScaLAPACK. In the calling sequences, a matrix or a submatrix is
specified by four arguments: the address of the beginning of an array,
two integer indices, and an integer array containing a matrix descriptor.
In ScaLAPACK and the parallel BLAS, the descriptor describes the
layout of a distributed matrix, the array contains the the portion of the
matrix that is stored on the processor, and the two indices determine the
row and column in the matrix where the specified submatrix begins.
In SOLAR, the descriptor describes either an out-of-core matrix or an
in-core matrix. An in-core matrix can be stored in shared memory
(or the memory of a uniprocessor) or in distributed memory, in which
case the SOLAR descriptor contains a ScaLAPACK descriptor. The
indices determine the beginning of the specified submatrix. The array
whose address is passed contains the local portion of the in-core matrix
when the descriptor indicates that the matrix is indeed in core, and it
is not used at all when the matrix is out of core.

It is legal to pass to a subroutine with two or more matrix arguments
some arguments in core and other arguments out of core. A solver,
for example, can be called with an out-of-core coefficient matrix and
a single in-core right hand side in some cases and with an out-of-core
coefficient matrix and an out-of-core matrix of multiple right-hand
sides in other cases. A Fortran program that uses SOLAR to solve a
large linear system is shown in Figure 2.

3 Detailed Design and Implementation

We have so far implemented the matrix I/O subroutines module, three
of the level-3 BLAS (each for four elementary data types), and factor
and solve subroutines for general as well as positive-definite symmet-
ric matrices. The MIOS module supports both conventional I/O and
parallel I/O and supports in-core matrices stored in block-cyclic dis-
tributed layouts. All the computational subroutines except the general
LU factorization work in both sequential and parallel environments.
The LU factorization currently only has a sequential version and we
are working on a parallel version.

This section describes the current implementation of SOLAR. The
section focuses on the most important decisions that were made during
its design and implementation. We start by describing the process by
which we chose the source implementation language. Although the
choice of a language is inessential in many projects, we feel that
our decision to use C requires some justification given the excellent
portability record of numerical software written in Fortran and the
capabilities of Fortran 90. We then turn to the algorithmic design issues

that arose during the design of the out-of-core subroutines in SOLAR.
The section concludes with a description of the MIOS module.

Source Language

After weighing several factors and implementing one subroutine in C,
Fortran 77, and Fortran 90 we decided to implement SOLAR mostly C
in order to simplify the use of pointers. Fortran 77 subroutines can be
incorporated into the library, and the in-core components that we use
are written entirely (BLAS and LAPACK) or partially (PBLAS and
ScaLAPACK) in Fortran 77. The library is callable from Fortran 77
and all our test programs are written in Fortran.

The deciding factor to use mostly C was the ability to alias arrays
conveniently in C, a feature missing from both Fortran variants. Con-
sider a two-stage pipelining in an our-of-core subroutine. When the
subroutine computes on a submatrix stored in an in-core buffer another
submatrix is read into a second buffer. When the computation and the
read operation terminate, the submatrix that was just read moves to
the compute stage. It is inefficient, however, to copy it to the other
in-core buffer. It is more efficient to use the buffer where that subma-
trix is stored as the compute buffer in the next stage in the algorithm
and to read a new submatrix into the buffer that was previously used
for computation. This strategy can be easily realized by defining two
in-core buffer and two pointers to such buffers. One pointer always
points to the compute buffer and the other always points to the read
buffer. When a stage in the algorithm ends, the pointers are swapped.

Another situation in which aliasing is important occurs when an
out-of-core subroutine passes an in-core buffer to an in-core subrou-
tine. In SOLAR, the in-core buffer can be either an array argument
of the out-of-core subroutine or a dynamically declared array if the
argument was an out-of-core matrix. If we wish to have a single call to
the in-core subroutine, then we must pass to it a pointer that points to
either one of the two arrays. Using a separate call for each case makes
coding awkward when the call passes two or three such arguments.

It is easy to implement aliasing strategies in C using pointers. It
is impossible to implement such strategies in Fortran 77 if the in-core
buffers are not allocated as a single array. Fortran 90 supports pointers,
but they cannot point to subroutine arguments that are assumed-sized
arrays. Therefore the argument cannot be passed by a Fortran 77 or C
program, but only by a Fortran 90 program. Since it is important that
the SOLAR can be called from Fortran 77 and C, we could not use
Fortran 90 pointers.

Implementing SOLAR in C causes two difficulties. First, it is more
time consuming to convert a in-core Fortran subroutine from LAPACK
into an out-of-core C subroutine than it is to convert the in-core code
into a Fortran out-of-core subroutine. Second, C lacks complex data
types, and the correspondence between real (and integer) data types in
Fortran and in C is machine dependent. To circumvent this potential
portability problem we developed a small module with data-type defi-
nitions and auxiliary functions that isolate all the dependencies on the
Fortran-to-C data-type mappings. For example, this module defines
I type to be the C data type that correspond to the FortranINTEGER
data type. This module also allows SOLAR to work on complex data.
SOLAR creates a complex variable with the value 1, for example, by
calling a function that returns a pointer to a complex datum with a
given initial value, F77types get value("C",1.0).

Subroutines for Out-of-Core Computations

We have already implemented three out of the nine level-3 BLAS [9],
namely general matrix multiply-add, symmetric rank-k update, and
triangular solve, as well as factor and solve subroutines for positive-
definite symmetric and general matrices.

The BLAS use block-iterative algorithms. As explained above,
an iterative block algorithm starts its pipeline only once, whereas a

program solar_example

integer R,C ! Number of rows and columns in the out-of-core matrix A.
parameter (R=12288,C=12288)

integer BR,BC ! Number of rows and columns in the in-core submatrix of A.
parameter (BR=1024,BC=1024)

double precision Aij(BR,BC) ! An in-core buffer that will store a submatrix of A.
double precision v(C) ! An in-core column vector.
integer ipiv(C) ! Vector of pivot indices.

integer A_desc(64) ! Out-of-core matrix descriptor.
integer Aij_desc(64) ! In-core submatrix descriptor.
integer v_desc(64) ! An in-core descriptor for v.

integer request(8) ! Asynchronous request descriptor.

integer i,j,info ! Indices and error information.

call mios_init() ! Initialize the MIOS module.

call mios_make_desc_ooc_aio(A_desc,’D’, ! Create a descriptor for an out-of-core
$ 128,128,R/128) ! double-precision matrix with 128-by-128

! primary block and R/128 blocks per column.

call mios_open_many_aio(A_desc,1,2,1, ! Open a matrix stored on a 2-by-1 disk
$ ’/dev/hdisk0\0’,0, ! Grid. The matrix starts at offset 0 on
$ ’/dev/hdisk1\0’,0) ! both disks.

call mios_make_desc_ic_shared(Aij_desc,’D’,BR,BC,0) ! Create 2 in-core matrix descriptors.
call mios_make_desc_ic_shared(v_desc,’D’,C,1,0) ! Both are marked by 0 as non-dedicated.

do j=1,C,BC
do i=1,R,BR

c
c Fill in Aij with the submatrix of A starting in location (i,j) (omitted).
c

call mios_iwrite_all(A_desc, ! Write Aij into the BR-by-BC submatrix
$ Aij,Aij_desc,i,j,BR,BC,request) ! of A that starts at location (i,j).

call mios_wait(request) ! Wait for the write to complete.
end do

end do

call ooc_getrf(R,C, ! Factor the R-by-C submatrix starting at
$ Aij,1,1,A_desc, ! (1,1) of the global out-of-core matrix.
$ ipiv,info) ! Aij is passed but not used.

c
c After checking the error code, Fill b with a vector of unknowns and solve v = Aˆ(-1)*v (omitted).
c

call ooc_getrs(’No transpose’,R,1, ! Solve for a single right hand side.
$ Aij,1,1,A_desc, ! Out-of-core matrix containing the factors.
$ ipiv, ! Vector of pivot indices.
$ v,1,1,v_desc, ! The right hand side is overwritten by
$ info) ! the solution.

c
c After checking the error code we can use the solution v (omitted).
c

call mios_close(A_desc) ! Close the files.
call mios_finalize() ! Shut down the MIOS module.

end program

Figure 2: A Fortran program that solves a general linear system out of core. The code shows the calls that create the required descriptors, store the
matrix in blocks, factor the matrix out-of-core, and use the factors to solve a single linear system. The portions of the program in which submatrices
are generated, the right hand side is initialized, and the solution vector is used are all omitted.

recursive algorithm starts the pipeline in every recursive call. Each
BLAS uses only a single pipeline, even if it is implemented using
multiple nested loops. Using a single pipeline complicates the index
calculations required for prefetching, but it ensures that the pipeline
startup cost is incurred only once per subroutine invocation.

Since LAPACK was designed specifically for computers with data
caches, many its algorithms can be used in SOLAR and deliver accept-
able performance. But an algorithm that works well on a computer
with data cache can be slow when executed out-of-core, since the
cost of a cache miss is typically much smaller than the cost of an
I/O transfer. The level of data reuse required to achieve high per-
formance in out-of-core computations is higher than the level of data
reuse required to achieve high performance in data caches. Indeed,
an experiment reported in Section 4 shows that an out-of-core imple-
mentation of LAPACK’s right-looking LU decomposition algorithm
can more than 3.75 times slower than an LU decomposition algorithm
that is designed specifically for out-of-core execution. To achieve
high-performance, we therefore modified LAPACK’s algorithms or
used other factorization algorithms.

The Cholesky factorization subroutine for positive-definite sym-
metric matrices uses a recursive algorithm, which is different from the
iterative partitioned algorithms used by LAPACK and ScaLAPACK.
An iterative algorithm would not allow pipelining either, because the
iterative algorithm calls the BLAS, so pipelining could create read-
before-write hazards. A recursive algorithm calls the BLAS on very
large out-of-core matrices, which allows the BLAS flexibility in choos-
ing block sizes.

We have implemented two algorithms for LU factorization with
partial pivoting. One algorithm is a left-looking iterative algorithm
and the other is a recursive algorithm. The left-looking algorithm is
efficient when there is ample main memory,but the recursive algorithm
is more efficient when main memory is small, as demonstrated by
Table 4.

The basic left-looking algorithm uses two nested loops. In each
iteration j of the outer loop a block of r columns is loaded from disk.
In the each iteration k < j of the inner loop a block of r columns
which are all to the left of the current j block is loaded. The row
exchanges that were necessary to pivot the k block are now applied to
the j block so that their rows are stored using the same permutation,
and then the k block is used to update the j block. The update consists
of solving a triangular linear system with multiple right hand sides
and of a matrix-matrix multiplication. When the updates from all the
blocks to the left of block j have been applied to block j, it is factored.
When the factorization is complete, each block is read again, the row
exchanges that were generated after it was factored are applied, and
it is written back. This algorithm, which was first proposed in [11],
has two desirable features. First, the amount of I/O required for row
exchanges is only one read and one write for every element in the
strictly block-lower-triangular part of the matrix. Second, except for
these writes, each element is written only once.

We have implemented a modified version of this algorithm, illus-
trated in Figure 3. The first modification, which was suggested to us
by Bowen Alpern, is to use blocks with a different number of columns
for the inner and outer loop. The number of times a matrix element
is used before it is discarded is determined in this algorithm by the
number of columns in j block. Increasing the width r

j

of the j block
by a factor of 2 reduces the number of elements read from disk by
almost a factor of 2. To maximize r

j

, we choose the width r
k

of the k
blocks to be as small as possible in order to conserve memory for the
j blocks. Our implementation sets the number of columns r

k

in the
k block to be the number of columns in a primary block and allocates
all the remaining memory to the j block. The second modification is
to use pipelining on the k blocks. We do not use pipelining on the j
blocks since this would reduce the size of r

j

, because more in-core
buffers are necessary. Since most of the I/O in this algorithm involves

Aj,1

Aj,2Lk,2

Lk,1

rjrk

Figure 3: A schematic diagram of the left-looking out-of-core LU
decomposition algorithm. The matrix is factored in blocks of r

j

columns. Before a block is factored, it is updated by all the blocks of
r

k

columns to its left. In each update A
2;j

is replaced by L�1
2;k

A

2;j

and then L
3;k

A

2;j

is subtracted from A

3;j

.

reading k blocks and not j blocks, the decision not to pipeline the j
blocks does not impact performance significantly.

The recursive algorithm works by factoring the left half of the
matrix, applying the row exchanges from this factorization to the right
half of the matrix, updating the right half using a large triangular solve
and a large matrix-matrix multiply, factoring the updated right half,
and finally applying row exchanges to the left half. Each half is fac-
tored using the same strategy. Toledo [24] recently proved that this
algorithm uses only �(n3=

p

M) words worth of I/O in a simple two
level memory hierarchy, wheren is the order of the matrix andM is the
size of main memory. In comparison, the left-looking algorithm uses
�(n

4

=M) words worth of I/O. Therefore, the recursive algorithm
transfers a factor of �(n=

p

M) fewer words between main mem-
ory and disk. Toledo also demonstrated that the recursive algorithm
outperforms the right-looking algorithm that is used by LAPACK on
several workstations because it generates fewer cache misses.

The main advantage of the recursive algorithm is that is uses
blocked BLAS to update very large submatrices. The updates can
achieve high performance with a constant amount of main memory that
is not related to the size of matrix columns. The disadvantage of the
recursive algorithm is that it perform row exchanges on all the columns
in the matrix in every level of the recursion. Our implementation limits
the cost of performing row exchanges by stopping the recurrence when
the number of columns in the matrix to be factored is 1024 or less (this
number is system-dependent). On matrices with at most 1024 columns
the left-looking algorithm is used. Table 4 shows that this algorithm
outperforms the left-looking algorithm when both are constrained to
run in a small main memory.

We stress that the differences between the out-of-core algorithms
in SOLAR and the algorithms in LAPACK and ScaLAPACK are only
in the order that independent operations are performed, and therefore
the numerical stability of SOLAR is equivalent to the stability of
LAPACK.

Matrix Input-Output Subroutines

We currently have one main implementation of the matrix input-output
module. It is used in both the parallel and the sequential version of
SOLAR. It supports asynchronous I/O operations to matrices that are
stored on one or more files or devices. It supports matrices stored in
block-cyclic distributions on disks, in shared memory in-core buffers,
and in block-cyclic distributions in distributed in-core buffers. There

is only one temporary restriction on matrix layouts, which is that either
the primary block size must divide the block size of the block-cyclic
in-core data layout, or vice versa. (The condition applies to both
the row dimension and the column dimension.) We plan to lift this
restriction in the future. Our implementation can use a variety of
low-level I/O interfaces, including low-level synchronous POSIX.1
system calls, low-level asynchronous POSIX.4 system calls, and di-
rect asynchronous requests to an AIX device driver through a kernel
extension (we use the term raw I/O to refer to this last interface). The
POSIX system calls can be used to access files stored in PIOFS, IBM’s
parallel file system.

We illustrate how the MIOS module works by tracing an asynchro-
nous read request and its associated wait request. A grid of processors
reads a submatrix into a distributed in-core buffer, called the applica-
tion buffer, in the following way:

1. Each processor decides which primary blocks of the submatrix
it will read. The distribution of primary blocks to processors is
a simple block distribution.

2. Each processor allocates a buffer to store all the primary blocks
that it will read, determines the address of each one of them,
and issues one low-level read request for each block. The buffer
that stores the incoming data is called a transfer buffer. The
address of a primary block is composed of the identity of the
file or device that holds the block and the offset of the block
within that file.

3. Each processor creates a pending-request structure and returns
it to the caller. The pending-request structure identifies each
pending low-level read request and specifies the data distribu-
tion of the application and transfer buffers.

4. When the application calls the wait subroutine in the MIOS
and passes the pending-request structure, the MIOS waits for
all low-level read requests to complete and then calls a data-
redistribution subroutine.

5. The data-redistribution subroutine in the MIOS permutes the
data in the transfer buffer into the requested layout in the appli-
cation buffer.

The redistribution subroutine permutes a submatrix from a block
layout with packed primary blocks into a block-cyclic layout with
blocks arranged as subarrays in a Fortran array, or vice versa. The
fact that primary blocks are packed, or contiguous in memory, implies
that when the read or write request is for more than one row of pri-
mary blocks, data redistribution is necessary even on a uniprocessor.
The subroutine permutes small submatrices rather than moving single
elements in order to save on index calculation and in order to utilize
optimized block copy subroutines in the BLAS. The size of these sub-
matrices is usually either the primary block size or the block size of
the block-cyclic data layout.

In the early development stages of SOLAR we have implemented
another version of the MIOS module with support for debugging out-
of-core algorithms that use asynchronous I/O. This version used syn-
chronous I/O using calls to the stream-I/O subroutines in the standard
C library. The feature that assists in debugging is the ability to per-
form reads and writes either when they are first requested or when
the out-of-core algorithm waits for their completion. For example, by
setting the appropriate flags so that reads are performed immediately
but writes are performed as late as possible, it is possible to catch a
read-before-write condition because the read returns incorrect data.

4 Experimental Results

This sections presents three sets of experimental results that substan-
tiate our main claims. The first set of experiments was performed on a
high-end workstation. These experiments show that SOLAR delivers
high performance, and they therefore enable us to justify some of our
design decisions. The second set of experiments was performed on a
parallel computer. These experiments show that SOLAR can achieve
high performance on parallel computers and that it can efficiently uti-
lize multiple compute and I/O nodes. The third part of this section
describes how we ported SOLAR to a laptop computer using public
domain compilers and libraries. The success of this port supports our
claim that SOLAR is indeed portable.

Experiments on a Workstation

The first set of experiments were performed on an IBM RS/6000
workstation with a 66.7 MHz POWER2 processor, 128 Kbytes 4-way
set associative level-1 data-cache, a 1 Mbytes direct mapped level-2
cache, a 128-bit-wide main memory bus, and 256 Mbytes of main
memory. The POWER2 processor is capable of issuing two double-
precision multiply-add instructions per clock cycle. The operating
system was AIX version 3.2.5 (AIX is IBM’s version of UNIX). We
used an IBM 2 Gbytes disk connected by a 16-bit channel to a 16-bit
fast/wide SCSI-2 adapter. The disk was configured as one logical
volume in one volume group, and was used only for storage of out-
of-core matrices. (Volume groups and logical volumes are two disk
abstractions that are used by AIX.) The logical volume was used by
the program as a random access block device with no file system
installed, in order to eliminate possible influences of the file system
on the results. The SCSI-2 adapter was not used by any other devices
during the experiments. We used the BLAS and Cholesky factorization
subroutines from IBM’s Engineering and Scientific Subroutine Library
(ESSL). We used a non-shared POWER2-specific version of ESSL.
We used the LU factorization and row exchange subroutines from
LAPACK.

We chose to use the disk as a random-access block device rather
than through a file system for two reasons. First, the I/O bandwidth
achieved through a file system is often smaller than the bandwidth
that can be achieved by performing I/O to a block device. Second,
whereas the time it takes to perform an I/O operation in a file system
is usually unpredictable due to caching and prefetching within the file
system, in our experience the time it takes to perform I/O to a block
device is usually quite consistent. In the context of this paper, using a
file system would make the results of the experiments less repeatable
and harder to analyze, so we chose not to use a file system. We also
recommend that users attempt to use I/O to a block device whenever
possible in order to improve performance. Our implementation of
the MIOS allows several matrices to be stored on the same device by
associating each out-of-core matrix with an absolute offset within the
device.

Table 1 shows that the I/O bandwidth achieved by the raw I/O
interface (I/O requests made directly to a device driver) can be more
than twice the bandwidth achieved by low-level system calls. The
rest of the workstation experiments therefore use raw I/O. Table 1 also
demonstrates that there is essentially no difference in I/O performance
between sequential I/O requests and requests that require a seek every
2 Mbytes. The bandwidth achieved by the asynchronous I/O low-
level system calls degrades significantly when several operations are
requested before any wait request is made. The slowdown probably
occurs because several operating system processes, each one respon-
sible for completing one I/O request, compete for the disk and cause
poor scheduling of the disk-arm.

Table 2 documents SOLAR’s performance on a typical out-of-core
algorithm, the solution of a positive-definite symmetric linear system

Factor Solve (single right hand side)
Matrix Total Compute I/O Blocks Blocks Total Compute I/O Blocks Blocks
Order Time Time Time Read written Time Time Time Read written

2048 34.8 12.0 22.8 (0.90) 156 60 10.9 0.13 10.7 (0.32) 80 0
4096 179 95.5 83.4 (4.7) 944 224 39.0 0.55 38.6 (1.1) 288 0
6144 511 322 189 (13) 2844 476 84.7 1.26 83.0 (2.5) 624 0
8192 1091 763 328 (29) 6416 848 147 2.2 145 (4.3) 1088 0
10240 2012 1489 522 (53) 12076 1276 228 3.6 224 (6.6) 2496 0
12288 3344 2571 769 (89) 20448 1840 327 5.4 321 (9.5) 2400 0
14336 5141 4081 1055 (138) 31640 2476 443 6.9 435 (13) 3248 0

Factor Solve (single right hand side)
Matrix Total Compute I/O Blocks Blocks Total Compute I/O Blocks Blocks
Order Time Time Time Read written Time Time Time Read written

2048 36.1 11.8 24.3 (0.70) 112 64 13.0 0.18 12.8 (0.31) 96 0
4096 168 94.0 73.0 (3.5) 624 240 43.0 0.64 43.0 (1.2) 320 0
6144 452 319 133 (8.9) 1728 496 90.0 1.40 89.0 (2.6) 672 0
8192 960 757 202 (19) 3776 896 155 2.5 153 (4.5) 1152 0
10240 1753 1477 274 (32) 6832 1312 239 3.8 234 (6.9) 1760 0
12288 2924 2554 369 (53) 11376 1904 337 5.5 331 (9.8) 2496 0
14336 4509 4051 457 (79) 17504 2544 453 7.3 445 (13) 3360 0

Table 2: The performance characteristics of the out-of-core solution of a double-precision positive-definite symmetric linear system. The
dimensions of the primary block are 256 by 256. The out-of-core linear algebra subroutines use blocks of dimensions 512 by 512 (upper table)
or 1024 by 1024 (lower table). The program uses 16 Mbytes for in-core buffers when the block size is 512 and 64 Mbytes when the block size
is 1024. That is, each block transfer moved 4 or 16 primary blocks. Times are reported in seconds and the numbers of blocks transferred is the
number of primary blocks. The I/O time reported is the time spent in I/O which is not overlapped by computation. The times in parentheses are
the redistribution times, which are also included in the overall I/O time.

Factor (Left Looking) Solve (single right hand side)
Matrix Total Compute I/O Blocks Blocks Total Compute I/O Blocks Blocks
Order MB Time Time Time Read written Time Time Time Read written

2048 20 56.1 29.9 26.1 (1.1) 636 352 13.1 0.29 12.8 (0.43) 384 0
4096 40 330 219 111 (6.1) 3992 1472 43.6 0.89 42.7 (1.4) 1280 0
6144 60 961 702 259 (17) 12116 3360 93.0 1.90 81.0 (3.0) 2688 0
8192 80 2119 1646 472 (37) 27056 6016 158 3.5 155 (5.2) 4608 0
10240 100 3897 3140 754 (68) 50860 9440 238 5.0 233 (8.0) 7040 0
12288 120 6521 5408 1108 (112) 85576 13632 346 7.1 331 (11) 9984 0
14336 140 10023 8480 1537 (172) 133252 18592 461 9.6 451 (15) 13440 0

Left Looking Recursive
Matrix Total Comp. I/O Blocks Blocks Total Comp. I/O Blocks Blocks
Order MB Time Time Time Read written MB Time Time Time Read written

4096 12 694 215 478 (15) 12432 1520 16 557 210 356 (34) 9760 3392
6144 18 2194 695 1497 (48) 40280 3432 18 1904 685 1218 (300) 32176 9456
8192 24 5041 1629 3410 (110) 93472 6116 24 3840 1608 2230 (537) 68288 16896
10240 30 9629 3128 6497 (211) 180200 9560 30 7241 3092 4145 (1124) 131632 31160
12288 36 16439 5395 11039 (358) 308656 13776 36 10577 5320 5251 (1092) 205784 45024
14336 42 25790 8466 17317 (559) 487032 18760 42 16783 8404 8367 (2255) 326081 61432

Table 4: The performance characteristics of out-of-core algorithms for the LU factorization of a double-precision general matrix. The upper table
shows the performance of the left-looking algorithm and of the solution of a linear system with a single right hand side using the factorization. The
block sizes are r

k

= 128 and r
j

= 512 and pipelining is used on the j blocks. The lower table compares the performance of the left-looking and
the recursive algorithms when both use a minimal amount of main memory. The left-looking algorithms use block sizes r

k

= r

j

= 128 and no
pipelining. The recursive algorithm use a block size r = 512. The recursive algorithm switches to a left-looking algorithm with r

k

= r

j

= 128

and no pipelining when the number of columns in the matrix are 1024 or less. The dimensions of the primary block are 128 by 128. Times are
reported in seconds and the numbers of blocked transferred is the number of primary blocks. The I/O time reported is the time spent in I/O which
is not overlapped by computation. The times in parentheses are the redistribution times, which are also included in the overall I/O time.

Primary Block! 256� 256 1024� 1024

I/O Interface # Read Write Read Write
POSIX.1 Synchronous 234 374 232 375
POSIX.4 Asynchronous 1210 857 233 375
AIX Raw 140 143 139 142

Table 1: The time in seconds to read and write a double-precision
8192-by-8192 matrix using three different low-level I/O interfaces
and two choices of primary block dimensions. The total size of the
matrix is 8� 8192� 8192 = 512Mbytes. The matrix is written and
read in 1024-by-1024 blocks. When the order of the primary block
is 1024, the matrix is read and written sequentially. When the order
of the primary block is 256 the disk must seek once per 2 Mbytes
transferred.

Block MB Total Comp. I/O Blocks Blocks
Order MB Time Time Time Read Written

256 4 1770 766 995 (53) 11808 816
512 16 1091 763 328 (29) 6416 848
1024 64 960 757 202 (19) 3776 896

Table 3: The impact of increasing the block size on the main memory
requirements and the running time of the out-of-core factorization of
an 8192-by-8192 matrix. When the block size is 256, the amount of
I/O is too large to be hidden by overlapping computation.

by factorization and triangular solution. The factorization algorithm
is a recursive implementation of the Cholesky factorization. The most
important fact that emerges from the table is that on large matrices
SOLAR spends only 15–20% of the running time in I/O operations,
even when the amount of main memory that is used is only 16 Mbytes.
Quadrupling the amount of main memory that is used reduces the
amount of I/O by almost one half. But since most of the I/O is
already overlapped with computation, the effect on the running time
is small. Table 3 shows that if the amount of memory is reduced to
4 Mbytes, the amount of I/O grows to the point where there is not
enough computation to hide the I/O time.

Table 2 also shows that the solution time is small compared to the
factorization time, even though almost all the solution time is spent in
I/O operations.

The results reported in Table 2 show that the impact of unpipelined
I/O in the recursive factorization and in the startup and shutdown of
pipelines is small. The I/O bandwidth indicated in Table 1 is about
3.6 Mbytes/second. The total amount of I/O in the factorization of
the matrix of order 14336 using blocks of order 1024 can therefore
be performed in about 3000 seconds. More than 4000 seconds of
computation give ample opportunity to hide the 3000 seconds of I/O.
The results in the table show that 457 seconds were spent in I/O
operations, including 79 seconds of data-redistribution time. Even
if all of the 457 � 79 = 378 seconds represent time spent in I/O
operations that are not overlapped with computation due to the design
of SOLAR (in the recursive factorization algorithm and in startups and
shutdowns of pipelines in the out-of-core BLAS), that overhead still
accounts for less than 10% of the overall running time.

Table 4 shows that SOLAR achieves high performance on a more
difficult problem, the out-of-core LU factorization with partial pivoting
of a general matrix. The algorithm that is used is the left-looking
factorization algorithm described in Section 3. On the largest matrix
almost 85% of the running time is spent in in-core computations.
The amount of main memory that is required increases with the matrix

order because the algorithm stores blocks of entire columns in memory
in order to perform row exchanges efficiently.

Table 4 demonstrates that the recursively-partitioned algorithm
outperforms the left-looking algorithm when both are tuned to use
as little memory as possible. The amount of memory used by the
left-looking algorithm can be reduced by not using pipelining and by
choosing both block sizes r

j

and r

k

to be equal to the number of
columns in a primary block, 128 in our matrices. (The size of the
primary block, 128 Kbytes, was chosen to ensure high I/O bandwidth
through the raw I/O interface.) The recursively-partitioned algorithm
uses this variant of the left-looking algorithm when the number of
columns in the matrix is 1024 or less, but uses a recursive strategy
with calls to the BLAS to factor larger matrices. Since the amount of
memory used by BLAS depends only on the block size in the algorithm
but not on the order of the matrix, we choose a block size of 512 for the
BLAS. This choice leads to a memory requirement of only 16 Mbytes,
but allows most of the I/O to overlap computation. The table shows
that the use of the BLAS in the recursively-partitioned improves per-
formance without increasing the amount of memory required to factor
large matrices. Specifically, the number of writes is larger and the
number of reads is much smaller in the recursive algorithm. The total
number of I/O operations is smaller in the recursive algorithm. The
smaller amount of I/O together with the overlapping of some of the
I/O with computation leads to smaller running times for the recursive
algorithm.

To assess the usefulness of LAPACK’s algorithms for out-of-core
computation we translated LAPACK’s right-looking LU decomposi-
tion algorithm into a SOLAR out-of-core subroutine. Factoring a
10240-by-10240 general matrix took 14730 seconds, out of which
3110 were spent in in-core computations and 11617 were spent in
I/O (including 4843 for data redistributions). The factorization read
172080 primary blocks of size 128-by-128 and wrote 109760. The
algorithm factored blocks of 512 columns and used 80 Mbytes of main
memory. The factorization rate is 49 Mflops,which is acceptable given
the small amount of effort we invested in the coding of the subroutine.
The running time is large when compared to the 3897 seconds it took
the left-looking algorithm to factor the same matrix (see Table 4). We
conclude that whereas LAPACK’s block-iterative algorithms can de-
liver acceptable performance, specialized out-of-core algorithms can
run several times faster.

Experiments on Parallel Computers

The experiments were performed on two IBM SP2 parallel comput-
ers [1] which we denote by machine T and machine W. Machine T was
configured with so-called thin nodes with 128 Mbytes of main mem-
ory as both the compute and I/O nodes and ran AIX version 4.1.3.
Machine W was configured with wide-2 nodes having 512 Mbytes
of main memory for both the compute and the I/O nodes, and ran
AIX version 3.2.5. Thin nodes have a 66.7 MHz POWER2 proces-
sor, 64 Kbytes 4-way set associative level-1 data-cache, no level-2
cache, and a 64-bit-wide main memory bus. They also have smaller
data-paths between the cache and the floating-point units than other
POWER2-based SP2 nodes. Wide-2 nodes have a 77 MHz POWER2
processor, 256 Kbytes 4-way set associative level-1 data-cache, no
level-2 cache, and a 256-bit-wide main memory bus. Thin nodes are
the slowest SP2 nodes and wide-2 nodes are currently the fastest. We
used IBM’s parallel file system [7] (PIOFS) version 1.1. On machine T
PIOFS used 4 I/O nodes. The parallel file system used 1 Gbytes on
each node, allocated on a 2.2 Gbytes 16-bit SCSI disk. On machine W
PIOFS used 4 I/O nodes. On each node, 1916 Mbytes were allocated
for PIOFS on a 2.2 Gbytes 16-bit SCSI disk. On machine W the com-
pute and I/O nodes are always distinct, but on machine T in some of
the experiments some of the nodes may have served as both compute
and I/O nodes. All the experiments use PIOFS through synchronous

b Read Write
256 20.2 19.9
128 20.7 20.3

64 21.4 21.0
32 22.6 22.3
16 25.7 25.7

8 32.8 33.2

Table 6: The time it takes, in seconds, to redistribute data when reading
and writing a double-precision 8192-by-16384 matrix on Machine W
as a function of the block size b in the block-cyclic data distribution.
The primary block size is 256-by-256. The matrix was read and
written in 1024-by-1024 blocks by 4 processors. The matrix was
striped across 4 I/O nodes.

low-level POSIX.1 system calls. In all the experiments the message
passing layer used the network interface in user-space mode and did
not use interrupts. For in-core computations on distributed arrays we
used IBM’s Parallel Engineering and Scientific Subroutine Library
(PESSL) version 1.1, which based on and completely compatible with
ScaLAPACK [6], a public domain linear algebra package for linear
algebra computations.3 For in-core computations on arrays that are
local to a processor we used IBM’s Engineering and Scientific Subrou-
tine Library (ESSL) version 2.2. We used POWER2-specific versions
of all the libraries.

Table 5 shows the I/O bandwidths of the parallel file systems on
the two machines. In all cases we used the default striping unit,
32 Kbytes, which means that every primary block was striped across
all the I/O nodes. The I/O bandwidth improves when more I/O nodes
are used, but the improvement is less than linear. For example, using
4 I/O nodes instead of 1 improves the read bandwidth by a factor of
3 on machine W. Using additional compute nodes improves the total
bandwidth when there are several I/O nodes but can reduce the total
bandwidth when there is only one I/O node. At least on the examples
in the table, the differences in bandwidth due to the number of compute
nodes are not large.

Caching of data on the I/O nodes is an important factor that affects
performance in some of the experiments. The I/O bandwidths in some
of the experiments reported in Table 5 is higher than the bandwidth
that can be sustained on 4 disks, which is at most 4 Mbytes/second per
disk. The effect of caching is much more pronounced on machine W,
because its I/O nodes have larger main memories than the I/O nodes
of machine T. We could not eliminate the effect of caching by the
file system in our experiments because the amount of free disk space
available to us was not large enough compared to the size of the main
memories of the I/O nodes. We expect that in production environments
the ratio of disk space to main memory on the I/O nodes will be much
higher, and that caching by the file system will therefore not be able to
significantly improve the performance of SOLAR. The improvement
in performance due to caching shows, however, that the performance
of PIOFS is limited by the performance of the disks and not by the
performance of other components of the SP2 system.

Table 6 shows that the data redistribution subroutine is not sensitive
to the granularity of block-cyclic distributions. Table 5 shows that
the data redistribution times are higher when the block size is small
because there are more index calculations when the block size is small
and because more calls to the vector copy subroutine in the BLAS
is made when the block size is small. The data-redistribution times
are higher when the parallel version of SOLAR is used on a single

3PESSL also contains routines for Fourier transforms and related computations that
are not part of ScaLAPACK.

Subroutine p = 1 p = 4 p = 16

PDGEMM 213 163 143
PDSYRK 206 87 76
PDTRSM 206 46 21
PDPOTRF 195 66 48

Table 9: The performance in millions of floating-point operations per
second per processor of 4 parallel in-core subroutines in PESSL. All
the matrices are square with a 512-by-512 submatrix per processor.
The processor grid is always square. PDGEMM is the general matrix
multiply-add subroutine, PDSYRK is the symmetric matrix multiply-
add subroutine, PDTRSM is the triangular solver, and PDPOTRF is
the Cholesky factorization subroutine. The times were measured on
an SP2 with thin nodes. The number of processors used is denoted
by p. We used a 2-dimensional block layout for PDGEMM and
PDSYRK and a 2-dimensional clock-cyclic layout with block size 64
for PDTRSM and PDPOTRF.

processor than when the sequential version is used. This is caused
by copying the data three times within SOLAR in the parallel version
versus copying the data only once in the sequential version. (The
sequential version copies the data twice when the I/O is done directly
from an application buffer without using a transfer buffer, but this case
is not reported in the tables.)

Tables 7 and 8 show the performance characteristics of the out-of-
core factorization of a positive-definite symmetric matrix. The data
shows that using more I/O nodes improves performance and that using
more compute nodes improves performance. Additional I/O nodes
improve performance because they improve the total I/O bandwidth.
Doubling the number of I/O nodes can improve the effective I/O
bandwidth for the application, including data redistributions, by a
factor of about 1.5. Additional compute nodes improve performance
in two ways. First, they reduce the time for in-core computations. The
speedup is by more than a factor of 2 when 4 nodes are used instead
of 1. The reason that the speedup is not closer to 4 is mainly the poor
performance of the triangular solve subroutine in PESSL that does not
scale well. Second, additional compute nodes increase the size of the
available main memory and they therefore allow us to use larger block
sizes in the algorithms. Since the number of I/O’s is almost halved
when the order of the blocks doubles, using 4 processors instead of 1
almost halves the total amount of I/O the factorization requires. This
too, of course, improves performance.

Table 9 shows that some of the in-core matrix subroutines in
PESSL, especially the triangular solver, do not scale well. The four
subroutines whose performance is reported are the ones that are used
by the out-of-core Cholesky factorization. Other experiments, not
reported here, show that the low performance is not caused by the
power-of-2 order of the matrices. The performance of the triangular
solver improves when the message passing layer of the SP2 uses
interrupts, but this causes the overall performance of the out-of-core
factorization to degrade because other operations slow down. While
this performance problem has nothing to do with the design of SOLAR,
it impacts the performance that SOLAR delivers because SOLAR uses
these subroutines. The impact decreases as the problem size increases,
because the fraction of matrix multiplications within the total operation
counts increases when the problem sizes increases. For example, the
in-core computation time on Machine W in the factorization of a
matrix of order 8192 is 147 Mflops/processor, but the rate increases to
175 Mflops/processor when the order of the matrix increases to 14336.

Machine W (Wide-2 Nodes) Machine T (Thin Nodes)
I/O Nodes! 1 2 4 2 4
IC Buffer # p Read Write Read Write Read Write Read Write Read Write
Shared 1 186 (4.1) 168 (4.2) 108 (4.1) 89 (4.2) 66 (4.1) 67 (4.2) 259 (15) 359 (15) 192 (16) 241 (16)
Distributed 1 181 (12) 168 (12) 105 (12) 90 (12) 72 (12) 74 (12) 278 (43) 410 (43) 217 (44) 287 (43)
Distributed 2 202 (18) 182 (18) 117 (18) 99 (18) 68 (18) 70 (18) 276 (40) 315 (38) 194 (38) 215 (38)
Distributed 4 209 (20) 184 (20) 124 (20) 101 (20) 51 (21) 64 (20) 268 (31) 360 (31) 188 (32) 223 (30)

Table 5: The time it takes, in seconds, to read and write a double-precision 8192-by-16384 matrix on two SP2 computers. The matrix is written
and read in 1024-by-1024 blocks. Distributed buffers have a 2-dimensional block distribution. The dimensions of the primary block are 256 by
256. The table shows how the I/O time depends on the number of I/O nodes and on the number p of compute nodes. When only one compute node
is used, the table shows the time to read and write the matrix using both a shared memory buffer and a distributed memory buffer. Even though
the two cases produce exactly the same result, the redistribution code that is used is different. There was not enough space in the file system on
Machine T to store the matrix on a single I/O node. The times in parentheses are the redistribution times, which are also included in the overall I/O
time.

1 Processor 4 Processors
Matrix Total Comp. I/O Blocks Blocks Total Comp. I/O Blocks Blocks
Order Time Time Time Read written Time Time Time Read written

2 I/O Nodes
8192 1823 866 953 6416 848 956 460 479 944 244
10240 3433 1695 1729 12076 1276 1723 833 875 1708 328
12288 5818 2923 2882 20448 1840 2838 1364 1453 2844 476

4 I/O Nodes
8192 1596 866 726 6416 848 808 455 338 944 224
10240 3023 1690 1323 12076 1276 1430 831 579 1708 328
12288 5132 2919 2198 20448 1840 2340 1364 957 2844 476
14336 8045 4633 3389 31964 2476 3560 2083 1452 4376 636

Table 7: The performance characteristics of the out-of-core Cholesky factorization on an SP2 computer with thin nodes. The matrix was stored
on 2 or 4 nodes of the parallel file system. The block size in the algorithm was 512-by-512 per processor. The dimensions of the primary block are
256 by 256. There was not enough disk space to factor a matrix of order 14336 on 2 I/O nodes. The number of primary blocks read and written is
per processor. The times in parentheses are the redistribution times, which are also included in the overall I/O time.

1 Processor 4 Processors
Matrix Total Comp. I/O Blocks Blocks Total Comp. I/O Blocks Blocks
Order Time Time Time Read written Time Time Time Read written

4 I/O Nodes
8192 813 630 183 3776 896 381 311 69 624 240
10240 1551 1230 321 6832 1312 670 565 105 1056 336
12288 2650 2124 525 11376 1904 1098 924 174 1728 496
14336 4161 3373 788 17504 2544 1687 1407 240 2592 656

Table 8: The performance characteristics of the out-of-core Cholesky factorization on an SP2 computer with wide-2 nodes. The matrix was stored
on 2 or 4 nodes of the parallel file system. The block size in the algorithm was 1024-by-1024 per processor. Block size in block cyclic is 64 for
trsm, syrk, block for gemm. The dimensions of the primary block are 256 by 256. The number of primary blocks read and written is per processor.
The times in parentheses are the redistribution times, which are also included in the overall I/O time.

Porting Experience

We ported SOLAR to a laptop computer to demonstrate its portability.
Specifically, we ported the system, which was initially developed on an
IBM RS/6000 workstation running AIX to an IBM ThinkPad 755CX
running OS/2 version 3.0. The target machine had a 75 MHz Intel
Pentium processor with a 256 Kbytes level-2 cache, 24 Mbytes of
main memory, and an 810 Mbytes disk. We used only public domain
software and tools on this system in order to demonstrate that SOLAR
can be ported without any proprietary tools. We used the EMX 0.9a
port of GCC 2.6.3 (the GNU C compiler), the F2C Fortran to C trans-
lator, and CBLAS and CLAPACK, which are C versions of LAPACK
and the BLAS that are based on a translation by F2C. All of these
tools are available from online archives of public domain software.
Downloading and installing these packages on the ThinkPad took a
few hours.

One person ported SOLAR in the course of one day. At the end
of the day, we were able to factor a general double-precision matrix
of order 2048, whose total size is 32 Mbytes using 8 Mbytes of main
memory. In this environment, the MIOS module uses the low-level
synchronous POSIX.1 I/O interface. We had to make three small
changes in SOLAR, one of which was anticipated, in order to get it to
compile and run. The anticipated change was the replacement of an
RS/6000-specific timing routine by a more generic routine based on the
System V ftime system call. This timing routine is used by SOLAR
for profiling only, and both versions are less than 25-lines long. The
second change was necessary because F2C adds an underscore to the
names of all subroutines. We therefore had to create include files
with macros that add an underscore to the names of subroutines in
LAPACK and the BLAS. We also had to remove the underscores from
the translated version of our test program, which is written in Fortran.
These underscores were removed using a single search and replace
operation with a regular expression in EMACS. Following these two
changes SOLAR compiled and passed some of the tests. It failed
to pass the rest of the tests since file read operations returned too
few bytes. This caused SOLAR to abort with an appropriate error
message. The problem was caused by the fact that in this version of
GCC, the open system call should be called with a nonstandard flag
that indicates that the file contains binary rather than text data. Adding
the flag solved the problem and enables SOLAR to pass all our test.

The fact that we were able to quickly port SOLAR with few
difficulties to an environment with a different operating system, no
Fortran compiler, and using only public domain tools indicates that
SOLAR is indeed portable. The port enabled us to solve problems that
cannot be solved in-core on this system. Portability does not come at
the cost of performance. The performance of the out-of-core solver
was very good compared to the performance of in-core solvers. The
first system that we solved, whose order was 2048, took 4072 seconds
to factor and 53 seconds to solve for a single in-core right hand side.
The out-of-core factorization rate, 1.41 Mflops, is more than 85%
of the in-core factorization rate, which is about 1.65 Mflops. (The
utilization rate is high due to the design of SOLAR, but also due
to a the high ratio of I/O bandwidth to computation rate. The I/O
bandwidth of this machine is high, about 1 Mbytes per second, and the
computation rate is relatively low due to a processor with mediocre
floating-point performance and nonoptimized BLAS.)

5 Conclusions

This paper describes SOLAR, a portable library for high-performance
out-of-core dense matrix computations. SOLAR is designed to be
integrated into ScaLAPACK and to eventually provide much of the
functionality of LAPACK and ScaLAPACK for matrices stored on
disks.

We believe that the overall organization of SOLAR, the design of

its interfaces, and the design of key subroutines address the three main
goals of the library: portability, high-performance, and providing a
wide range of solvers. The overall organization helps to achieve these
goals by utilizing existing in-core dense linear algebra libraries and
by enabling us to reuse LAPACK’s algorithms. The design of the
interfaces helps to achieve the goals by simplifying and modulariz-
ing SOLAR. The interfaces do so in ways that do not significantly
impact the library’s performance. Key subroutines in SOLAR, in par-
ticular the out-of-core subroutines and the matrix I/O subroutines, are
designed to efficiently utilize both I/O bandwidth and computational
resources.

SOLAR works on distributed-memory parallel computers, work-
stations, and personal computers. The experiments that are reported
in the paper show that SOLAR achieves high performance in all of
these environments, in the sense that most of its running time is spent
in in-core computations rather than in I/O operations.

The portability of the library and the use of a high-level matrix
input-output interface makes the library a convenient platform for
research on out-of-core algorithms, I/O optimization, and parallel I/O
algorithms.

Acknowledgments

Thanks to Jack Dongarra for his suggestions regarding the design
of the library and for his support for incorporating the library into
ScaLAPACK. Thanks to Ramesh Agarwal, Bowen Alpern, and Rob
Schreiber for helpful discussions. Steve Watts of the IBM Santa Teresa
Lab wrote the kernel extension that we used for raw I/O in AIX. Thanks
to the anonymous referees for several helpful suggestions.

References

[1] T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M. Dias,
and M. Snir. SP2 system architecture. IBM Systems Journal,
34(2):152–184, 1995.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Os-
trouchov, and D. Sorensen. LAPACK User’s Guide. SIAM,
Philadelphia, PA, 2nd edition, 1994. Also available online from
http://www.netlib.org.

[3] D. W. Barron and H. P. F. Swinnerton-Dyerm. Solution of simul-
taneous linear equations using a magnetic tape store. Computer
Journal, 3:28–33, 1960.

[4] Jean-Philippe Brunet, Palle Pedersen, and S. Lennart Johnsson.
Load-balanced LU and QR factor and solve routines for scalable
processors with scalable I/O. In Proceedings of the 17th IMACS
World Congress, Atlanta, Georgia, July 1994. Also available as
Harvard University Computer Science Technical Report TR-20-
94.

[5] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and
R. C. Whaley. A proposal for a set of parallel basic linear
algebra subprograms. Technical Report CS-95-292, University
of Tennessee, May 1995.

[6] J. Choi, J. Dongarra, R. Pozo, and D. Walker. ScaLAPACK: A
scalable linear algebra for distributed memory concurrent com-
puters. In Proceedings of the 4th Symposium on the Frontiers
of Massively Parallel Computation, pages 120–127, 1992. Also
available as University of Tennessee Technical Report CS-92-
181.

[7] P. F. Corbett, D. G. Feitelson, J.-P. Prost, G. S. Almasi, S. J.
Baylor, A. S. Bolmarcich, Y. Shu, J. Satran, M. Snir, R. Colao,
B. D. Herr, J. Kavaky, T. R. Morgan, and A. Zlotek. Parallel
file systems for the IBM SP computers. IBM Systems Journal,
34(2):222–248, 1995.

[8] Thomas H. Cormen and David Kotz. Integrating theory and
practice in parallel file systems. Technical Report PCS-TR93-
188, Dept. of Math and Computer Science, Dartmouth College,
March 1993. Revised 9/20/94. An ealier version appeared in the
Proceedings of the 1993 DAGS/PC Symposium.

[9] Jack J. Dongarra, Jeremy Du Cruz, Sven Hammarling, and Ian
Duff. An set of level 3 basic linear algebra subprograms. ACM
Transactions on Mathematical Software, 16(1):1–17, 1990.

[10] Jack J. Dongarra, Jeremy Du Cruz, Sven Hammarling, and
Richard J. Hanson. An extended set of FORTRAN basic lin-
ear algebra subprograms. ACM Transactions on Mathematical
Software, 14(1):1–17, 1988.

[11] J. J. Du Cruz, S. M. Nugent, J. K. Reid, and D. B. Taylor. Solving
large full sets of linear equations in a paged virtual store. ACM
Transactions on Mathematical Software, 7(4):527–536, 1981.

[12] Charbel Farhat. Large out-of-core calculation runs on the IBM
SP2. NAS News, 2(11), August 1995.

[13] Nikolaus Geers and Roland Klees. Out-of-core solver for large
dense nonsymmetric linear systems. Manuscripta Geodetica,
18(6):331–342, 1993.

[14] Roger G. Grimes and Horst D. Simon. Solution of large,
dense symmetric generalized eigenvalue problems using sec-
ondary storage. ACM Transactions on Mathematical Software,
14(3):241–256, 1988.

[15] Kenneth Klimkowski and Robert van de Geijn. Anatomy of an
out-of-core dense linear solver. In Proceedings of the 1995 In-
ternational Conference on Parallel Processing, 1995. To appear.

[16] David Kotz. Disk-directed I/O for an out-of-core computation.
In Proceedings of the Fourth IEEE International Symposium
on High Performance Distributed Computing, pages 159–166,
August 1995. Also available as Dartmouth College Technical
Report PCS-TR95-251.

[17] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic
linear algebra subprogram for Fortran usage. ACM Transactions
on Mathematical Software, 5(3):308–323, 1979.

[18] David A. Patterson and John L. Hennessy. Computer Architec-
ture A Quantitative Approach, Second Edition. Morgan Kauf-
mann, San Francisco, 1995.

[19] Hans Riesel. A note on large linear systems. Mathematical
Tables and Other Aids to Computation, 10:226–227, 1956.

[20] J. Rutledge and H. Rubinstein. High order matrix computation
on the UNIVAC. Presented at the meeting of the Association for
Computing Machinery, May 1952.

[21] Joseph Rutledge and Harvey Rubinstein. Matrix algebra pro-
grams for the UNIVAC. Presented at the Wayne Conference
on Automatic Computing Machinery and Applications, March
1951.

[22] M. M. Stabrowski. A block equation solver for large unsym-
metric linear equation systems with dense coefficient matrices.
International Journal for Numerical Methods in Engineering,
24:289–300, 1982.

[23] Rajeev Thakur and Alok Choudhary. An extended two-phase
method for accessing sections of out-of-core arrays. Technical
Report CACR-103, Scalable I/O Initiative, Center for Advanced
Computing Research, Caltech, June 1995. Submitted to a special
issue of Scientific Programming on implementations of HPF.

[24] Sivan Toledo. Locality of reference in LU decomposition with
partial pivoting. Technical Report RC20344, IBM T.J. Watson
Research Center, Yorktown Heights, NY, January 1996.

[25] David Womble, David Greenberg, Stephen Wheat, and Rolf
Riesen. Beyond core: Making parallel computer I/O prac-
tical. In Proceeings of the 1993 DAGS/PC Symposium,
pages 56–63, Hanover, NH, June 1993. Dartmouth Institute
for Advanced Graduate Studies. Also available online from
http://www.cs.sandia.gov/~dewombl.

