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Abstract

Benchmapping is a performance prediction method for data-
parallel programs that is based on modeling the performance
of runtime systems. This paper describes a benchmapping sys-
tem, called BENCHCVL, that predicts the running time of data-
parallel programs written in the NESL language on several
computer systems. BENCHCVL predicts performance using a
set of more than 200 parameterized models. The models quan-
tify the cost of moving data between processors, as well as the
cost of moving data within the local memory hierarchy of each
processor. The parameters for the models are automatically
estimated from measurements of the execution times of runtime
system calls on each computer system.

1 Introduction

Benchmapping is a performance prediction method for
data-parallel programs that is based on the following paradigm.
The runtime system of a data-parallel programming language
is modified so that it can automatically predict the running time
of every runtime system call. When a program that uses the
runtime systems runs, the modified runtime system generates
a running-time profile of the execution. The performance
predictions that the runtime system generates are based on a
detailed model, called a benchmap, of the performance of
a given computer system. The running-time profile is then
viewed by the programmer using an interactive performance
visualization tool.

The main benefit of the benchmapping method is that the
benchmap can model the performance of a computer system
other than the one the program is running on. For example,
when the user runs a program on a workstation, the runtime
system can generate the performance profile of the program
on a parallel computer if the runtime system has a benchmap
of the parallel computer.

A previous paper [14] described a benchmapping system
called PERFSIM that demonstrated the feasibility and useful-
ness of the method. PERFSIM used a benchmap of the Connec-
tion Machine CM-5 to predict the running time of CM-Fortran
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programs. PERFSIM was able to predict the performance of
compiler-generated subroutines as well as of runtime system
subroutines. The main issues that PERFSIM addressed were
accuracy and usability. Accuracy was achieved by using a
benchmap that modeled the hardware of the CM-5 in con-
siderable detail. The system was useful because it predicted
the performance of some programs on a workstation without
any programmer intervention, and it could predict the perfor-
mance of many other programs after the progmmer inserted a
few annotations into the program.

This paper addresses two more issues in the benchmap-
ping method. First, the paper shows that one parameterized
benchmap can model the performance of several computer
systems. The parameters are different for each computer sys-
tem, but the basic structure of the benchmap is the same for
all of them. Second, the paper shows that the parameters in
the benchmap of a computer system can be automatically es-
timated by a program. This program measures the execution
time of calls to the runtime system and uses the running times
of these experiments to estimate the benchmap’s parameters.

Addressing these issues requires a data-parallel program-
ming system that has been ported to several computer systems.
We chose NESL [5], an experimental data-parallel program-
ming language developed at CMU. The NESL programming
system uses a runtime system called CVL [6] to execute NESL
programs. CVL has been ported to several computers. Our
performance prediction system, called BENCHCVL, predicts
the performance of NESL programs on several computer sys-
tems by modeling the performance of CVL on each of them.

Several related systems have been described in the litera-
ture. They are briefly described in the next paragraph. All of
them support the claim that performance prediction is feasible
and useful. We present two contributions to this discourse.
First, we provide evidence that performance prediction is fea-
sible in relatively realistic settings. For example, we show that
it is possible to model data caches using non-linear models
and that it is possible to automatically estimate parameters for
benchmaps that include more than 200 individual models of
runtime system subroutines. In addition, we showed in a pre-
vious paper that it is possible to create models for a production
runtime system without access to its source code. Our sec-
ond contribution is the benchmapping method itself, which we
believe provides several advantages over other performance
prediction methods. A benchmapping system allows users to



predict the performance of a program on a given machine with-
out requiring them to run the program on that machine even
once. Benchmapping systems do not require a static analysis
of the program because the control thread of the program is
executed when its performance is being predicted.

Brewer [7, 8] demonstrated that a single set of parameter-
ized models can predict the performance of the services of a
small runtime-system that he wrote and that runs on multiple
architectures. The number models in his system, however, is
quite small, and they do not model data caches. Balasundaram
et al. [3] propose a performance modeling system designed
to guide compiler optimizations. Fahringer and Zima [11]
describe a more comprehensive system for guiding compiler
optimization, which is a part of the Vienna Fortran Compila-
tion System. They use a simple model with a few parameters to
describe a computer system and claim that the predictions are
accurate. Atapattu and Gannon [2] describe an interactive per-
formance prediction tool for single-threaded Fortran programs
running on a bus-based shared memory parallel computer. Per-
formance prediction in their tool is based on a static analysis of
the assembly language code of the compiled program. Crovella
and LeBlanc [10] describe an interactive performance tuning
tool that tries to fit the behavior of the program to a model
taken from a library of performance models. Their tool fits
a model to the performance of the program based on several
executions of the program. To use their tool, a user must
run the program several times on the target machine. To use
PERFSIM or BENCHCVL the user does not have to run the pro-
gram on the target architecture at all. It is necessary to run
experiments on the target architecture in order to estimate pa-
rameters in the benchmap, but this is not done by the user of the
benchmapping system. Some researchers have tried to predict
the running time of a program based on source-code constructs
rather than on constructs in the compiled program [4, 13]. In
both of these papers the prediction was done by hand. In
all the other cases, including ours, a software system predicts
performance automatically.

The rest of the paper is organized as follows. Section 2
describes the models that BENCHCVL uses. Section 3 explains
how our system estimates parameters in benchmaps. Section 4
examines the accuracy of BENCHCVL. We conclude the paper
with a discussion of our results in Section 5.

2 Portable Benchmaps in BENCHCVL

This section describes the models that BENCHCVL uses to
predict the running time of calls to the CVL runtime system.
All the models are based on an abstract models of a parallel
computer. Each model in the benchmap maps a small set
of quantities that we shall call performance determinants,
such as the length of a vector, to a performance measure, for
example, the running time of a vector summation subroutine.
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Figure 1 A schematic diagram of the model that underlies
BENCHCVL’s benchmap. The model describes the computer as a
collection of nodes connected by a communication channel, where
each node contains a processing unit and up to three levels of local
memory. The benchmap describes the cost of interprocessor commu-
nication across the communication network, the sizes of caches, and
the cost of random and sequential data transfers between levels of the
local memory hierarchy.

We begin the discussion with a brief description of CVL, and
then turn to a description of the models themselves.

The CVL runtime library [6], which is the runtime sys-
tem for NESL programs, implements operations on entire and
segmented one-dimensional vectors. A segmented vector is
partitioned into segments of arbitrary lengths. Vector opera-
tions in CVL include element-wise operations, such as adding
two vectors, scans, or parallel prefix operations, reductions of
vectors to scalars, such as summations, vector permutations,
ranking (sorting) vectors, and packing of sparse vectors. On
parallel computers, every processor “owns” a section of each
vector and is responsible for operating on that section.

The performance determinants that BENCHCVL uses to pre-
dict the running time of CVL subroutines are the number of
elements per processor in each argument vector and the num-
ber of segments in argument vectors. The content of vectors
is not used to predict performance. The length of individual
segments is not used either, because the number of segments
can be arbitrarily large. Using the contents of vectors could
degenerate benchmapping into a simulation and slow down the
prediction process.

BENCHCVL’s benchmap is based on a model of parallel
computers in which a collection of nodes are connected by
a communication channel. Each node has a processing unit
and a local memory hierarchy, as shown in Figure 1. The
benchmap describes the cost of interprocessor communication
across the communication network, the sizes of caches, and the
cost of random and sequential data transfers between levels in
the local memory hierarchy. Sequential access to data creates
better spatial locality of reference than random access and
therefore the performance of sequential accesses is often better



than that of random accesses.
As in most performance models, the basic building block

of BENCHCVL’s benchmap is the linear model. A linear model
is an affine function that maps a set of basis functions, such
as the length of an input vector, to a performance measure,
for example, the running time of the subroutine. The basis
functions can be performance determinants or functions of
performance determinants. Consider the running time of a
subroutine for sorting a vector of length n, for example. If the
running time of the subroutine is proportional to n, a linear
model with a single basis function n can predict the its running
time. If, on the other hand, the growth of the running time is
proportional to n logn, then the model must use n logn as the
basis function. The performance determinant in both cases is
n, but the basis functions are different.

BENCHCVL’s models include basis functions that represent
five cost categories:

� A fixed cost that represents the subroutine call overhead.

� A cost proportional to the diameter of the interprocessor
communication network. Currently, all the models use a
log(P ) term to represent this cost, whereP is the number
of processors.

� Costs for sequentially operating on the section of arrays
owned by one processor.

� Costs for random accesses to sections of arrays owned by
one processor.

� Costs for interprocessor transfers of array elements.

We distinguish between sequential access and random access
to vectors because when vectors do not fit in data caches,
sequential access cause a cache miss at most once every cache
line size (ignoring conflicts), whereas random accesses can
generate a miss on almost every access.

The model for permuting a non-segmented vector of sizeN
into another vector of sizeN on a computer withP processors,
for example, has the following structure:
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The first term represents the fixed cost, the second the latency,
which is proportional to the diameter of the communication
network, the third the number of elements that each proces-
sor owns, and the last the expected number of elements each
processor must send and receive from other processors. The
number of messages used by the model is an approximation
for the expected number in a random permutation.

BENCHCVL models both the temporal locality and spatial
locality in data accesses. The spatial locality in vector op-
erations is modeled by using separate terms for for random
accesses and for sequential accesses, where spatial locality is

guaranteed. The cost of random accesses is represented by two
basis functions, one that represents the cost of a cache miss
times the probability of a miss, and another that represents the
cost of a cache hit times the probability of a cache hit. The
probability of a cache hit depends on the size of the cache
relative to the size of the vector owned by a processor (assum-
ing a cache for every processor). For example, the model for
permuting the elements of a vector of size N
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The number of random accesses in the operation is N
1

=P .
The probability of a cache hit in one of those accesses, when
N

2

=P is larger than the size � of the cache, is approximated
by �=(N

2

=P ), the fraction of the target vector’s elements that
can reside in the cache. The parameter � is left unspecified in
the basis function, and is estimated by the parameter estimation
algorithm.

BENCHCVL’s benchmap models temporal locality in data
caches using piecewise-linear models. A piecewise-linear
model decomposes the space of performance determinants,
such as array sizes, into regions and predicts performance in
each region using a linear model. Consider, for example, the
running time of a subroutine that computes the inner product
of two vectors. A piecewise-linear model can decompose the
space of vector sizes into a region of small sizes, where the
input vectors fit within the cache, and a region of large vector
sizes, where the input vectors must be stored in main memory.

BENCHCVL assumes that vectors that fit within the cache are
indeed in the cache. A piecewise-linear model uses separate
linear models to describe the performance of a subroutine when
argument vectors fit within the cache and when they do not.
BENCHCVL does not specify the size of caches. Rather, an
automatic parameter estimation algorithm estimates the size
of the cache based on apparent “knees” in the running time,
which we call breakpoints. Figure 2 shows two models with
breakpoints generated by BENCHCVL’s parameter estimation
module.

Architectures with more than one level of caches are mod-
eled with piecewise-linear models with more than one break-
point and more than two regions. In such cases, the benchmap-
per specifies the ratios between the sizes of caches in the sys-
tem. The specification of these ratios enables BENCHCVL to
search for only one breakpoint in the running time, and ensures
a robust estimation of cache sizes.
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Figure 2 The execution times of a summation function and a prefix
sum function, represented by circles, on a Sun SPARCstation 10
workstation. The lines represent the models estimated from these
data points. The running time of the two functions is clearly not
linear, and the breakpoints occur on different input sizes, because one
function handles only one vector, while the other handles two.

3 Estimating the Parameters of A Benchmap

The models in a benchmap are parameterized. The param-
eters are chosen so as to minimize the estimation error in some
norm. These parameters can be estimated automatically from
the results of experiments using a variety of algorithms. We
have written a program called CARTOGRAPHER, which is now
in its second version, that conducts experiments and estimates
parameters in a benchmap.

Although most of the parameter estimation techniques that
CARTOGRAPHER uses are well known, some of them deserve
special attention. We have already mentioned the capability to
estimate parameters in a piecewise-linear model that predicts
the effects of data caches. Other interesting techniques include
the use of the singular value decomposition (SVD), the min-
imization of the maximum error, and the creation of models
that bound performance from above or below. This section
presents an overview of these techniques. For a complete
description of the techniques, see [15].

Linear models that predict performance on multiple archi-
tectures must have terms that correspond to factors that deter-
mine performance on any of the architectures. For example, a
model might have a term that describes the cost of sending mes-
sages on parallel computers. On uniprocessor workstations no
messages are sent, so the term is zero in all the experiments
that are used to estimate parameters. The zero terms cause a
phenomenon known as rank deficiency, which creates numer-
ical problems in some popular least-squares algorithms. We
cannot eliminate this term from the models since it is required
for other architectures. Instead, we use the SVD algorithm for

linear least-squares, which can cope with rank deficiency.
Several norms can be used to assess the choice of parame-

ters in a model. One popular norm is the least-squares norm, or
the sum of the squares of the errors (in performance modeling
the relative error is used, rather than the absolute error). In per-
formance modeling, minimization of least squares sometimes
leads to poor models, because it can practically disregard a few
experiments. When there are no outliers, that is, when all the
experiment are valid, minimizing the maximum relative error
is a better strategy. This optimization problem is a linear pro-
gramming problem, and algorithms for its solution are readily
available.

No model can always predict performance exactly. There-
fore, the prediction should consist of a range of possible out-
comes. The standard estimates of confidence intervals are
based on several statistical assumptions, most of which are
often invalid in performance modeling, such as normality and
independence. (For quantitative data supporting this claim,
see [15].) Instead, we use models that bound performance
from above and below. From a given set of experiments, CAR-
TOGRAPHER can choose parameters for a linear model that
minimize the norm of the error under the constraint that the re-
sulting model under- or over-estimates all the experiments. If
all the data collected represent actual performance, this proce-
dure yields two models that is likely to bound the performance
of future runs. The mathematical formulation of these parame-
ter estimation criteria leads to quadratic or linear programming
problems, depending on the error norm chosen. Again, readily
available optimization packages can solve these problems.

4 BENCHCVL’s Accuracy

This section exhibits, by examining BENCHCVL’s accuracy,
the feasibility of automatic performance modeling on multiple
architectures. Since the same models are supposed to predict
performance on multiple architectures, the discussion focuses
on the structure of models on different architectures.

BENCHCVL’s models were developed on a Sun SPARC-
station 10. Subsequently, four computer systems were auto-
matically surveyed and modeled with CARTOGRAPHER: a Sun
SPARCstation 10, a Sun SPARCstation 1+, a 32-node Con-
nection Machine CM-5, and a Cray C90 (CVL uses only one
processor on Cray vector computers). A test suite composed
of the larger programs in the NESL distribution plus one other
large program was used to evaluate BENCHCVL. Table 1 show
the actual and predicted running times in seconds of the pro-
grams in the test suite. Reported running times are averages of
at least 3 executions. Bugs in the two CM-5 implementations
of CVL prevent some of the test program from running. A bug
in the CVL implementation and a bug in BENCHCVL prevented
some of the test programs from running on the C90.

The tables show that BENCHCVL is accurate. The relative



SPARCstation 10 SPARCstation 1+ CM-5 Cray C90
Actual Time Pred. Actual Time Pred. Actual Time Pred. Actual Time Pred.

Program Total CVL CVL Total CVL CVL Total CVL CVL Total CVL CVL

Geometric Separator 5.49 1.67 1.42 15.88 5.52 6.71 N/A N/A N/A N/A N/A N/A
Spectral Separator 74.68 64.50 76.56 268.06 270.81 361.07 28.93 19.92 17.03 N/A N/A N/A
Convex Hull 9.06 6.90 8.48 35.42 29.12 37.19 N/A N/A N/A 0.703 0.134 0.109
Conjugate Gradient 88.07 83.41 110.81 339.50 326.20 451.98 15.09 6.07 7.75 5.38 2.15 1.86
Barnes Hut 269.48 175.65 193.59 917.96 652.08 655.05 N/A N/A N/A N/A N/A N/A

Table 1 Measured and predicted running times of NESL programs on four different computer systems. The NESL programming system
executes programs by interpreting an intermediate representation of the program. The total time reported includes both the time spent in CVL
subroutines and the time spent by the interpreter. BENCHCVL only models the time spent in CVL subroutines. We were unable to run some of
the experiments that are marked N/A due to technical difficulties.

Conjugate Spectral
Gradient Separator

Sun 10/CM-5 (Actual) 14 3.2
Sun 10/CM-5 (Predicted) 14 4.4

Sun 1+/CM-5 (Actual) 54 13
Sun 1+/CM-5 (Predicted) 58 21

Table 2 The actual and predicted speedups between Sun worksta-
tions and a CM-5, on two different programs. The ratios represent
the running time on a workstation divided by the running time on the
CM-5.

errors are 33% or better, except for one experiment in which
the error is 39%. BENCHCVL’s accuracy enables meaningful
comparisons between computer systems. Table 2 shows that
the predictions can be effectively used to compare the per-
formance of computer systems on specific programs. Such
comparisons are more meaningful to users of the programs
being compared than comparisons based on the performance
of benchmark programs.

The relative errors of the models on the experiments that
were used to estimate parameters are generally small. On a Sun
SPARCstation 10, the errors in most of the elementwise vector
operations are 5% and smaller, with a few exceptions where
the errors are up to 8%. The errors in reductions and scans
(including segmented operations) are 7% and smaller, except
for segmented operations involving integer multiplication and
bitwise and, where the errors are up to 20%. The reason for
the larger errors in these operations is that the running time of
individual operations is value dependent, and therefore cannot
be accurately modeled by value independent models. This is
a good example of the importance of upper and lower bounds
rather than a single model. The errors on data movement
operations, such as permutations, gathers, and scatters were
below 37%, with many of the operations being modeled to
within 15% or less.

Results on the CM-5 were similar, except for large relative
errors in the subroutines that transform ordinary C arrays to

and from distributed vectors. This uncovered a latent “bug” in
the models’ structure: the models lacked a term to account for
a large sequential bottleneck on the processor which owns the
C array. This problem is easily fixed, but it may be typical of
latent deficiencies in models, which are discovered only when
a model fails on a certain architecture.

Relative errors on the C90 were larger than on Sun work-
stations and the CM-5. The most likely reason for the larger
errors is that the C90 timers are oblivious to time sharing,
so some of the timings probably include some outliers that
include other users’ time slices. The problem can be fixed
by taking the minimum of several measurements as the actual
time, rather than the average of the measurements.

Modeling the performance of CVL on a Silicon Graphics
Indigo2 workstation revealed that cache conflicts make per-
formance virtually unpredictable. BENCHCVL revealed that
conflicts in the two levels of direct mapped caches degrade
performance on certain vector sizes. Conflicts in the onchip
virtually indexed cache degrade performance of operations
such as vector copy by a factor of about 1:75, and conflicts
in the offchip physically indexed cache degrade performance
by a factor of about 14. Since BENCHCVL does not model
memory-system conflicts, the models cannot predict perfor-
mance on this machine with any degree of accuracy. Modeling
conflicts in the physical address space is particularly difficult,
because only the virtual addresses of vectors are known to
the runtime system. (We have found however that conflicts
of virtual addresses usually translates to conflicts of physical
addresses on this machine, so conflicts in the virtual address
space cannot be ignored.)

BENCHCVL performed its job: it indicated that performance
on this workstation is not predictable to within less than a factor
of about 15, at least for NESL programs (we have duplicated
this behavior in simple C programs as well). This is a valid
input for decision makers who must assess the expected per-
formance of machines before they are purchased.



5 Conclusions

Our experience, as well as other research cited in the In-
troduction, shows that performance prediction is both feasible
and important for software development on parallel systems.
What sets our work apart is the recognition that complex sys-
tems must be described by complex models (but most of the
complexity is represented by parameters that can be automat-
ically estimated) and in the insight that modeling the perfor-
mance of data-parallel runtime systems allows for automatic,
accurate, and very fast prediction of the performance of entire
programs.

Limiting the scope of the benchmapping systems to data-
parallel programs allows us to achieve accuracy and speed
while still encompassing a large number of scientific codes.
There is plenty of evidence that the data-parallel program-
ming model is suitable for many scientific applications.
Data-parallel programming includes not only traditional data-
parallel languages such as High Performance Fortran [12], but
also sequential and parallel programs that extensively use nu-
merical libraries such as the BLAS, LAPACK [1], and ScaLA-
PACK [9]. Benchmaps that model the performance of these
numerical libraries should enable accurate prediction of the
running time of such programs.

Neither PERFSIM nor BENCHCVL predicts performance ex-
actly, but both are accurate enough to be used for program
tuning. Some papers in the literature suggest that simple mod-
els are enough to accurately predict performance on current
computer systems. We believe that such claims are overly
optimistic and result from too little testing of the models with
large-scale programs.

Consequently, we believe that the most important open
question in performance prediction today is how to assess
and verify the accuracy of performance models. Without the
means to assure the accuracy of models it is difficult to put
them in production use.
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