
ON THE LONG-TERM BEHAVIOR OF THE LANCZOS PROCESSALEXANDER ALPEROVICH, ALEX DRUINSKY, AND SIVAN TOLEDOAbstract. We investigate the long-term behavior of the classical Lanczos process inan attempt to pave the way to an e�cient and robust eigensolver that can �nd all theeigenvalues of large sparse symmetric matrices. We are interested in the convergenceof classical Lanczos (i.e., without re-orthogonalization) to the point where there is acluster of Ritz values around each eigenvalue of the input matrix A. At that point,convergence to all the eigenvalues can be reliably detected if the matrix has no mul-tiple eigenvalues. To ensure that this is the case, we disperse multiple eigenvaluesby adding to A a random matrix with a small norm; using high-precision arithmetic,we can perturb the eigenvalues by an amount that does not a�ect the accuracy ofdouble-precision computed eigenvalues. Our main results are that Lanczos reliablyforms clusters around all the eigenvalues of A and that the speed of cluster formationdepends on the local density of eigenvalues and on the unit roundo�. The depen-dence on the unit roundo� allows us to accelerate convergence by using high-precisionarithmetic in computations involving the Lanczos iterates. Clusters form around alleigenvalues after roughly twice the number of iterations required for a single Ritz valueto converge to each eigenvalue; therefore, waiting for clusters to form is reasonable.Our detailed experiments reveal additional interesting behaviors, some already known(e.g., misconvergence) and some new (slow divergence of Ritz clusters).Keywords: Lanczos, mixed precision arithmetic, Ritz clusters1. IntroductionThe Lanczos process is an old and well-known eigensolver [10] (see also [5, 11, 16,17, 20]). It takes as input an n-by-n Hermitian matrix A and produces sequence ofmatrices T (m) and Q(m) such that
AQ(m) = Q(m)T (m) + r(m)e∗m ,where Q(m) is n-by-m orthonormal matrix, T (m) is an m-by-m tridiagonal matrix, emis the last unit vector of dimension m, and r(m) is some n-vector. The sequences Q(m)and T (m) are nested: each iteration of the Lanczos process adds one column to Q and arow and a column to T . The process is a short-recurrence Krylov-subspace iteration; ineach iteration, the algorithm multiplies one vector by A and performs a small numberof vector operations on vectors of size n.In exact arithmetic, the residual vector r(m) vanishes after at most k iterations, where

k is the number of distinct eigenvalues of A. When r(m) vanishes, T (m) is an orthonormalprojection of A onto the column space of Q, and therefore every eigenvalue of T (m) is aneigenvalue of A. For all the starting vectors except for a set of measure 0, r(m) vanishesafter exactly k iterations and all the eigenvalues of A appear in T (k).Date: November 2011. 1



ON THE LONG-TERM BEHAVIOR OF THE LANCZOS PROCESS 2Practitioners quickly discovered that the behavior of Lanczos in �oating-point arith-metic di�ers signi�cantly from that predicted by the theoretical results. In particular,the columns of Q quickly lose orthogonality, and r never vanishes in practice. Re-searchers mostly explored two families of techniques for addressing this di�culty. Oneset of techniques attempts to prevent the loss of orthogonality in Q. This can be doneusing a full orthogonalization process or using selective orthogonalization and relatedtechniques [14, 6, 19, 18]. The other set of techniques [1, 21] attempts to extract use-ful spectral information from the process after a relatively small number of iterations;this rarely results in the identi�cation of all the eigenvalues, but it can result in usefulapproximations to a subset of the eigenvalues that are important in a given applica-tion (e.g., the smallest). These families of techniques are not mutually exclusive; manyLanczos codes use both.However, around 30 years ago a group of researchers explored the use of Lanczoswithout sophisticated orthogonalization for �nding all the eigenvalues of A [2, 4, 13]; werefer to such methods as classical Lanczos methods. This line of research was based ona deep numerical analysis of the Lanczos process that eventually showed that in �oatingpoint, the eigenvalues of T eventually approximate all the eigenvalues of A [3]. (Thisfact was recognized years before it was actually proved; see, for example, [2]). Theseresearchers produced two Lanczos codes, both in the 1980s. These codes had to addresstwo major problems: how to decide which of the eigenvalues of T are approximateeigenvalues of A (many are not), and how to decide when to terminate; we describelater how they did it. It appears that there has been no progress in classical Lanczoscodes since 1985, although there are some reports about the behavior of these methodsin practice [8], as well as some numerical analyses (see [11] and the numerous referencestherein).The literature on classical Lanczos does not include a detailed characterization ofits convergence behavior. Some papers state that all the eigenvalues of A appear in
T within cn iterations for some small constant c > 1[8]. Others have observed that cgrows with n, but very slowly [4].. The classical-Lanczos literature does not containextensive experimental results, probably due to the limited computational resourcesthat were available when the codes were written in the 1980s.The aim of this paper is to explore in more details the long-term behaviors of theclassical Lanczos process in the real case. In particular, we address the following ques-tions:

• What factors a�ect the convergence of the classical Lanczos process, when wetake convergence to mean identi�able convergence to all the eigenvalues of A?By identi�able convergence we mean that the fact that an eigenvalue of T isgenuine (is an accurate approximate eigenvalue of A) can be algorithmically ande�ciently identi�ed.
• What is the asymptotic number of iterations required for identi�able conver-gence? Is it O(n), as suggested in some of the literature? We note that onceLanczos performs Θ(n2) iterations, it has done more work and has used morememory than dense eigensolvers, so there is little reason to use it. We areinterested in cases where convergence occurs much sooner.
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• How does the precision of the �oating-point arithmetic (the unit roundo� εmachine)a�ect the convergence of the process? We are particularly interested in e�ectsthat might mitigate slow convergence or non-convergence.Our long-term goal is to develop a robust classical-Lanczos eigensolver. To do that, weneed to know how to set thresholds (e.g., for determining convergence of an eigenvalue),when to use high-precision arithmetic, and how to estimate the running time early on.These design decisions depend on the insights presented in this paper.The rest of this paper is organized as follows. Section 2 explains how Lanczos algo-rithms decide that they have found all the eigenvalues of a matrix. This discussion isnecessary in order to give a precise meaning for the iteration counts that we presentlater in the paper. Section 3 starts the exploration of the convergence of the Lanczosprocess, focusing on matrices with �xed inter-eigenvalues gap. As the Lanczos processprogresses, more and more Ritz values cluster around each eigenvalue; we explore thisclustering behavior in Section 4. We begin the exploration of more complex spectra inSection 5, where we show that tight clusters in an otherwise nicely-spaced spectrumslow down convergence. In Section 6 we show that the slowdown can be mitigatedthrough the use of high-precision arithmetic. Section 7 studies the asymptotic com-plexity of the Lanczos process, using carefully constructed spectra, using the insightsgained in earlier sections. Our conclusions from this study are presented in Section 9.2. Detecting TerminationA robust Lanczos eigensolver needs to terminate once it found all the eigenvalues.This may seem obvious, but the literature does not describe reliable ways to do that.We believe that a Lanczos eigensolver that reliably �nds all the eigenvalues of A andterminates can be designed using a combination of two techniques. To e�ectively usethese techniques, we need to know more about the convergence of the Lanczos process;this paper is an e�ort to generate this knowledge. This section outlines these twotechniques and discusses what we need to know about Lanczos convergence to usethem. The actual investigation of the two techniques is beyond the scope of this paper.The �rst technique is eigenvalue dispersal. We add a random matrix P with a smallnorm to the input matrix A in order to transform every multiple eigenvalue of A andevery tight eigenvalue cluster into a not-so-tight cluster of simple eigenvalues of A+P .We run the classical Lanczos algorithm on A+P , which has exactly n simple eigenvalues.The other technique uses the spectrum of T (m) to reliably locate eigenvalues of A+P .Once we �nd n disjoint intervals that each contain an eigenvalue, we have found all theeigenvalues of A to within an error determined by the size of the interval and the normof P , and we terminate.We begin by explaining the dispersion idea.2.1. Eigenvalue Dispersal. Independently of how the code determines which Ritzvalues are genuine, it also needs to decide when to stop. The Lanczos process provides noinformation on the multiplicity of the eigenvalues of A. Therefore, when some number

k < n of eigenvalues have been found, they might constitute the entire spectrum of A(if A has multiple eigenvalues), or they might be a proper subset, with some eigenvaluesof A still to be found. This problem has plagued all the classical Lanczos codes.



ON THE LONG-TERM BEHAVIOR OF THE LANCZOS PROCESS 4Our code will use a conceptually simple solution that we call dispersion. Instead ofrunning Lanczos on A itself, we will run it on A+ P , where P is a random symmetricmatrix (from some appropriate distribution) with a small norm ‖P‖2 ≤ δ. We chose Pso that it is cheap to apply to vectors; this results in Lanczos iterations that are aboutas cheap as those performed on A alone. The perturbation P perturbs the eigenvalues,but only by δ or less. Hopefully, A+P has no multiple eigenvalues; multiple eigenvaluesof A are transformed into clusters of close but distinct eigenvalues of A+P . The choiceof P determines how close the eigenvalues of A + P are; we do not have a completetheory that guarantees good separation with high probability, but experiments haveshown that dispersion works well. We omit these experiments from this paper, andfocus instead on the convergence for a given operator (which the reader can take to be
A+ P ).We note that if the user would like to determine the eigenvalues to within a smalltolerance ε near εmachine, the norm δ of the perturbation P will need to be even smaller,which implies that multiple eigenvalues of A will be transformed into very tight clustersin A + P ; these clusters will behave in �oating point exactly like multiple eigenvalues.The solution in this case is to shrink εmachine by resorting to high-precision arithmetic.This technique essentially widens the gap between the desired accuracy ε and the unitroundo� εmachine so that a convenient value of δ in between them can be chosen.2.2. Locating Eigenvalues. A growing body of results suggest that non-trivial clus-ters of Ritz values are only found very close to eigenvalues of A. That is, if we �nd twoor more eigenvalues of T (m) that are very close to each other, they normally indicatethe location of an eigenvalue of A; we call such Ritz values doubly-converged. Thisphenomenon was known to Cullum and Willoughby [2] and to Parlett and Reid [13],but back then there were no provable bounds on the location of eigenvalues relative tonon-trivial Ritz clusters. Furthermore, both groups aimed to detect convergence evenbefore clusters form, so their codes also used more poorly justi�ed eigenvalue-locationestimates.In the years that followed, double convergence was analyzed more rigorously, and wenow know that clusters of Ritz values normally indicate the location of eigenvalues. Wesay normally because all the results in the literature are conditioned on properties ofthe spectrum of A and/or T (m) which might not hold. However, exceptions seem veryrate, and some conditions are easily tested (in particular, conditions that only involveRitz values are easy to test).In the rest of this section, we describe two such results and we explain what kind ofexperimental analysis is required to understand them more fully.We begin with a result of Wülling [22]. Assume that the Lanczos process (in �oating-point) for m > n iterations and compute the eigendecomposition of T (m) = XRXT .The matrix X is unitary and its columns are the eigenvectors of T (m), and R is diagonaland its diagonal entries are the eigenvalues of T (m) (Ritz values of A). The eigende-composition of a tridiagonal symmetric matrix costs Θ(m2) arithmetic operations, canbe done sequentially within a memory of size Θ(m) (if X is computed one column at atime), and can be easily parallelized to at least m processors.



ON THE LONG-TERM BEHAVIOR OF THE LANCZOS PROCESS 5It is well known that when Xm,j is small, then Rj,j is close to an eigenvalue of A [12,p. 249],
min
1≤k≤n

|λk − Rj,j| ≤ 2.5T
(m)
m+1,mXm,j + ‖A‖O (εmachine) .This bound gives us m intervals that contain all the eigenvalues of A. If we �nd amongthem n disjoint intervals, we are done; we have located all the eigenvalues.Will we always �nd n disjoint intervals and will they always be small enough forsome reasonable iteration count m? Wülling [22] showed that each tight cluster ofRitz values that is well separated from all other clusters corresponds to at least onesmall Xm,j (where j is part of the cluster); this implies that the cluster is close to some

λk. Wülling's result depends on the cluster remaining non-trivial (with 2 or more Ritzvalues) for two consecutive iterations (say m and m−1); he shows an example in whichsymmetry causes the size of one cluster to oscillate between 1 and 2, but this seems todepend on both symmetry in the spectrum and on a particular choice of the Lanczosstarting vector. We have found that �oating-point errors quickly destroy the symmetryeven in this example, leading to two consecutive iterations in which the cluster has 2Ritz values.Wülling's bounding interval depends on both the cluster size, its diameter, and theseparation from other Ritz values. A large well separated and tight cluster leads to asmall bound on Xm,j ; a small cluster or one that is not well separated or one that isfairly spread out yields a large, perhaps useless bound on Xm,j. Wülling's bound ismuch sharper if the cluster size grows or shrinks between iterations m and m− 1, butwe can't expect to �nd more than one such cluster if we decompose T (m) and T (m+1)for just one value of m.Knizhnerman [9, Theorem 2], sharpening an earlier result of Greenbaum [7], providesa di�erent kind of guarantee on Ritz clusters. Knizhnerman showed that if there areno Ritz values that are close but not very close to eigenvalues of A, then every Ritzcluster is close to an eigenvalue. More speci�cally, Knizhnerman's result assumes thatthere are no Ritz values within distance
Ω(m3εmachine‖A‖) ≤ d ≤ max

(

O(m3εmachine‖A‖), O(mε
1/3machine‖A‖))of an eigenvalue of A, where the constants within the big-O and big-Ω notation dependon n (linearly) and on ‖|A|‖/‖A‖.Our approach in this paper is to simply assume that a doubly-converged Ritz valueindicates the location of an eigenvalue; the results of Wülling, Paige, Knizhnerman andGreenbaum suggests that this is usually the case. Once we found n distinct clusters,the code can compute X to ascertain that we have indeed found all the eigenvalues of

A. Our experiments aim to demonstrate the validity of this approach by examining thefollowing aspects:
• We show that Ritz values do cluster around eigenvalues and that the diameterof the cluster is a function of εmachine. This implies that codes can use high-precision arithmetic to force clusters to be tight.
• We also show that additional Ritz values cluster around each eigenvalue peri-odically, with a periodicity that changes from eigenvalue to eigenvalue. This



ON THE LONG-TERM BEHAVIOR OF THE LANCZOS PROCESS 6implies that clusters always form around eigenvalues; perhaps slowly, but theyalways form.
• Finally, we show that the periodicity of each cluster depends on both the shapeof the spectrum and on εmachine. High-precision arithmetic reduces the variabilityamong the periods of the di�erent clusters, reducing the risk of some clustersforming very slowly.2.3. Termination Conditions in Early Codes. The results that we cited above arerelatively new; they were not known when the Cullum-Willoughby and Parlett-Reidcodes were written. Both codes used heuristics to locate eigenvalues and to terminate.Both codes reported approximate eigenvalues early (perhaps too early). Cullum andWilloughby assumed that when a Ritz value is almost an eigenvalue of a matrix obtainedfrom T (m) by deleting the �rst row and column, it is close to an eigenvalue of A. Theyhave an argument that supports this criterion but no formal proof. Parlett and Reidkeep track of intervals with no Ritz values and at some point declare them as beingoutside the spectrum of A, also heuristically. Both codes take a cluster of size 2 toindicate an eigenvalue of A. None of the codes attempt to �nd n eigenvalues becausethey assume that the matrix might have multiple eigenvalues.3. Convergence when the Eigenvalues of A are Regularly SpacedWe now begin the exploration of the convergence behavior of Lanczos. In order toexplore it systematically we begin with very simple cases and then progress to morecomplex ones. This strategy allows us to understand individual behaviors in isolation.Long-term behavior: regularly spaced eigenvalues and a regular starting vector. As we'llsee later, clustered Eigenvalues have a signi�cant e�ect on convergence, and so does thestarting vector. We begin the exploration with matrices that have no clusters at all:their eigenvalues are regularly spaced in the spectrum. The matrices are diagonal. Thestarting vector has 1/√n in all the entries. Because the eigenvectors are unit vectors,the projection of the starting vector on all the eigenvectors is the same.Figure 3.1 shows the location of Ritz values over 5000 iterations of the Lanczos algo-rithm on a matrix of dimension n = 200 with regularly spaced eigenvalues. (Figure 3.2visualizes the same Lanczos process di�erently.) The horizontal lines fall on eigenvalues.The darker areas in the �gure are areas in which Ritz values have not yet converged,so they move from iteration to iteration.The main artifact that we see is that Ritz values converge �rst at the outer edges ofthe spectrum. As the algorithm continues, Ritz values converge to eigenvalues in theinterior of the spectrum. When there is a converged Ritz value near every eigenvalue,new Ritz values start to appear at the outer edges again. They do wander a bit andthen converge, leading eventually to two Ritz values near every eigenvalues. The processcontinues.Ritz values converge faster near the edges of the spectrum; the crescent-shaped areasof non-converged Ritz values are thinner at the edges and thicker in the center of thespectrum.
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Figure 3.1. The evolution of the Ritz values as the number of Lanczositerations grows. Each blue dot represents an eigenvalue of T . The purplecircles show points of double convergence (a Ritz cluster growing to size
2).Over time, it takes less time for Ritz values to converge. This phenomenon manifestsitself on the graph by the disappearance of the crescent-shaped bands of non-convertedRitz values.A closer inspection of the graph in Figure 3.1 shows that the curvature of the crescentsgrows. After, say, 1500 iterations, there are more Ritz values near eigenvalues at theedges of the spectrum than near eigenvalues at the center. Figure 3.3 quanti�es thismore clearly. For a matrix of dimension 200 the ratio is around 3.5 to 3.75 and it isstable as the number of iterations grows.As the matrix dimension grows, the ratio between the number of converted Ritzvalues at the edges and converged Ritz values at the center grows. Figure 3.4 shows thenumbers for a matrix of dimension n = 2000; the ratio is about 5. The ratio remainsstable as the number of iterations grows. We also see that the behavior at the centeris valid over a larger part of the spectrum than for the smaller matrix in Figure 3.3;here the number of converged Ritz values is fairly �at in most of the spectrum; it risesdramatically only close to the edges of the spectrum.The e�ect of the starting vector. When the projection of the starting vector on a par-ticular eigenvector is small, convergence to the corresponding eigenvalue is slower thanwhen the projection is large. However, Figure 3.5 shows that the e�ect is not neces-sarily dramatic. When half the projections are large and half are small, convergence
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Figure 3.2. The projection of the Lanczos basis vectors on the eigen-vectors of the matrix (the same matrix as in Figure 3.1). The color scaleis logarithmic with base 10.to the eigenvalues associated with small projections is slower, but not dramatically so.Even when the small projections were smaller by a factor of 1016 (they were near theunit roundo� εmachine), a Ritz value converged to each eigenvalue after fewer than 2niterations. 4. The Behavior of Ritz ClustersAs the number of iterations grows, more and more Ritz values converge to eacheigenvalue. In general, this is a good thing; two very close Ritz values indicate thatthey must be close to an eigenvalue.We discovered two behaviors of these Ritz clusters that were not previously observed.These behaviors are important for the design of Lanczos codes.The �rst behavior, shown in Figure 4.1, is a divergence of the clusters. As the numberof Ritz values in the cluster grows, the cluster widens. Each widening even grows thecluster only by a small amount, but it does not appear that this process has a limit.The scale of the divergence is determined by the unit roundo�. Figure 4.2 shows thatwhen the Lanczos code is implemented in double-double precision (128-bit �oating-point numbers) the divergence looks similar qualitatively but the scale of the divergenceshrinks by about 16 decimal digits.The divergence of Ritz clusters has two implications for the design of Lanczos codes.The �rst is that eigenvalues should be extracted from Ritz values as soon as possible.
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Figure 3.3. The number of Ritz values (for n = 200) near each eigen-value after 10,000 to 40,000 iterations. The graph only count convergedRitz values (closer than 10−13 to an eigenvalue).
If the iteration continues for a long time because Ritz values failed to converge to someeigenvalue (we will see below that this happens when the eigenvalues themselves areclustered), the code should estimate the other eigenvalues from early Ritz values, notfrom the Ritz values at the end of the iterations. The other implication is that contin-uous ranges of Ritz values do not necessarily imply the discovery of new eigenvalues;they may indicate a divergence from one eigenvalue.The second behavior of clusters is a dependence of the widening on the location inthe spectrum. Figure4.3 shows that in the middle of the spectrum, Ritz values in acluster are spaced much more widely than at the edges of the spectrum. In both caseswe see clusters of Ritz values near eigenvalues, but the clusters are tighter at the edges.We also see that when the cluster grows by one Ritz value, old Ritz values are replacedby new ones; Ritz values never seem to be completely converged.Spectrum with Gaps. Ritz values tend not to fall within large gaps in the spectrum, asshown in Figure 4.4. The density of Ritz values within the gap is much smaller thantheir density outside the gap, and they do not exhibit any convergence behavior in thegap. No Ritz values fall outside the spectrum, except perhaps for small deviations nearthe extreme eigenvalues.
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Figure 3.4. The number of converged Ritz values for a larger matrix(n = 2000) after 100,000 and 200,000 iterations.On the other hand, even when the gap is large, eigenvalues on the far side of thegap in�uence convergence. Ritz values converge more quickly at the outer edges of thespectrum than near the inner edges adjacent to the gap.We conclude that gaps in the spectrum do not appear to slow down convergence; wewill see below that this is not true for clusters the in spectrum.5. The Effects of Clusters of EigenvaluesClusters of eigenvalues a�ect the convergence of Lanczos in ways that are importantfor the design of Lanczos codes. Parlett [15] showed that a Ritz value can convergeto a value between two eigenvalues and hold there for a number of iterations beforemoving to an eigenvalue. In this section we study this phenomenon, which Parlett callsmisconvergence, as well as several other cluster-related behaviors.A small cluster (10 eigenvalues out of 200) does not a�ect much convergence out-side the cluster, as shown in Figure 5.1; the overall behavior is similar to the one inFigure 3.1.On an eigenvector/Lanczos-vector projection map, the cluster is easily visible, as canbe seen in Figure 5.2; the behavior in the cluster is clearly di�erent from the behavioroutside the cluster.Tight clusters cause severe misconvergence. Figure 5.3 shows that a Ritz value thatshows up in a cluster tends to wander around near and between eigenvalues and thentypically settles for a long time in-between eigenvalues. As more Ritz values show
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Figure 3.5. The evolution of the Ritz values as the number of Lanczositerations grows. The matrix has dimension n = 200 and regularly-spacedeigenvalues. The projection of the starting vector (before normalization)on the smallest n/2 eigenvalues is random between 1 and 2 and the pro-jection on the largest eigenvectors is between 1× 10−k and 2× 10−k, for
k = 8 (top left), k = 12 (top right), and k = 16 (bottom).up, a misconverged eigenvalue tends to shift closer to an eigenvalue, until it actuallyconverges. If we inspect the eigenvalue at 5 × 10−12, for example (the top most one),we see a misconverged Ritz value that shifts between 3 or 4 stable locations beforeconverging. The bottommost Ritz value in the cluster shows a symmetric behavior.The periods of misconvergence tends to be similar to each other; they are probablydictated by the periodicity of the appearance of new Ritz values in the cluster.The most important e�ect of clusters is on the periodicity of the appearance of Ritzvalues near eigenvalues. In a cluster, the periodicity is longer; a Ritz value appears neara speci�c eigenvalue less often than near non-clustered eigenvalues. This is shown inthe left plot of Figure 5.4. This phenomenon causes Lanczos to converge more slowly toall the eigenvalues when there are clusters than when the the eigenvalues are regularlyspaced. If we examine the raw density of Ritz values, ignoring the distribution of
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Figure 4.4. The evolution of Ritz values when the eigenvalues are reg-ularly spaced in two intervals, from [−1,−0.5] and [0.5, 1]. The startingvector is random and n = 200.
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Figure 5.1. The evolution of the Ritz values as the number of Lanczositerations grows for a matrix with a cluster of 10 eigenvalues (spaced 10−12apart) located in the center of the spectrum. Each blue dot represents aRitz value.6. The Effects of High-Precision Arithmetic on the Lanczos ProcessIncreasing the precision of the �oating-point arithmetic reduces the adverse e�ect ofclusters, as shown in Figure 6.1. As we increase the precision, the number of Ritz valuesin a cluster increases, speeding up the convergence. This phenomenon was alreadyobserved by Edwards et al. [4], but it does not appear that Lanczos codes used thisinsight.Figure 6.2 shows that high precision only helps if the cluster is not too tight. If thecluster is tight relative to εmachine, it attracts too few Ritz values even if εmachine is small;what matters is the spacing of eigenvalues in the cluster relative to εmachine.The high precision is important only for the Lanczos iteration vectors, from whichthe tridiagonal matrix T is constructed. Once computed, T can be rounded to a lowerprecision (double precision in our experiments) and its eigenvalues computed in thatprecision without a�ecting the overall convergence behavior. This is signi�cant sincecomputing the eigenvalues of T is typically more expensive than producing it, at leastwhen A is reasonably sparse.As the size of an eigenvalue cluster grows, its e�ect on convergence becomes devas-tating, even in high precision. Figure 6.4 shows that as the size of a cluster grows, thenumber of Ritz values in it increases, but not nearly fast enough to obtain convergenceon all eigenvalues. When the cluster is small, say containing 10 eigenvalues, there are
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Figure 5.2. The projection of the Lanczos basis vectors on the eigen-vectors of the matrix (the same matrix as in Figure 5.1). The color scaleis logarithmic with base 10.more than 3 Ritz values per eigenvalue after 20n iterations, even in 64-bit arithmetic(and more Ritz values in higher precision). When the cluster contains 100 eigenvalues,there is not even a single Ritz value per eigenvalue after 20n iterations; we cannotexpect convergence in that many iterations. Things get much worse as the cluster sizecontinues to grow.The distribution of Ritz values within the cluster is typically not uniform, just likewithin the spectrum as a whole. When eigenvalues in the cluster are distributed uni-formly, more Ritz values appear at the edges of the cluster than near its center, asshown in Figure 6.5. This implies that even once there are on average 2 or 3 Ritz val-ues per eigenvalue in the cluster, we may be very far from convergence, because thereare not enough Ritz values near eigenvalues in the center of the cluster.7. The asymptotic complexity of the Lanczos processTo assess the asymptotic convergence of the Lanczos process, we ran it on two familyof synthetic matrices. In both families, all the eigenvalues belong to two equal-sizeclusters, one at 1 and the other at −1. In the �rst family, we kept the inter-eigenvalueseparation δ within a cluster �xed, at δ = 10−8. This allows us to determine the e�ectof growing matrix dimension without causing the eigenvalues to get closer to each other.In the second family, we kept the matrix dimension at n = 1000 while shrinking theinter-eigenvalue distance within each cluster.
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Figure 5.3. Evolution of Ritz values near a cluster. The red lines repre-sents a cluster eigenvalues (they are 10−12 apart) and blue dots representRitz values. The purple circles show where double convergence �rst oc-curs. A numeral k shows the �rst time that there are k Ritz values nearan eigenvalue.The results, shown in Figure 7.1, show that for a given clustering of the eigenval-ues, the growth in iteration count is proportional to c(n) × n, where c(n) is a veryslowly growing function of n. The inter-eigenvalue separation has a very slight e�ecton convergence.The fact that the inter-eigenvalue gap does not in�uence much the convergence rateseems to contradict the results of Section 5, but it does not. A tight cluster in aspectrum with mostly wide inter-eigenvalue gaps attracts too few Ritz values and slowsdown convergence. In a spectrum in which all the eigenvalue gaps are small, the Ritzvalues do appear within the spectrum (but rarely in huge gaps, as shown in Figure 4.4),so convergence is not a�ected by the magnitude of the gaps. Figure 7.2 demonstratesthat this is indeed the case. When the eigenvalues at 1 are spaced 10−6 apart but theeigenvalues at −1 were spaced δ apart for δ = 10−10, . . . , 10−6, convergence dependsmore strongly on δ.When the eigenvalues are regularly spaced, larger matrices require more iterations toconverge, because their eigenvalues are closer together, as shown in Figure 7.3. Con-vergence to a �xed tolerance tends to occur after k × cn iterations for some constant
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Figure 5.4. The number of Ritz values within 10−12 (left) and 10−8(right) of each eigenvalue for a matrix of dimension n = 200 with acluster of size 10 in the center of the spectrum spaced 10−12. There arefewer Ritz values near each eigenvalue within the cluster than elsewhere,yet there are more Ritz values in the cluster area than if there was asingle eigenvalue there.
c ≈ 1.5, which is essentially the periodicity at which Ritz values appear near eigenvaluesat the center of the spectrum. On small matrices (n = 992 in our experiment), k = 2was almost always su�cient. For n = 1737, k = 2 was usually su�cient but sometimesconvergence required k = 3 or k = 4. At n = 5319, convergence required up to k = 5or k = 6. 8. Convergence on Real-World MatricesFigures 8.1 and 8.2 explore the behavior of Lanczos on a large set of real-worldmatrices. We ran our code on a set of 133 matrices from Davis' University of FloridaSparse Matrix Collection This set includes all the symmetric matrices of dimension2500 or less (and with numerical values; we omitted sparsity-pattern-only matrices). Wedid not attempt to disperse multiple eigenvalues; instead, we compared the eigenvaluescomputed by our code to those computed by lapack and counted how many agree towithin 10−11‖A‖ or better; this tells when our code fails to �nd isolated eigenvalues orentire clusters, not when it converges to all the eigenvalues in a tight cluster.The results show that Lanczos can compute all the eigenvalues of most of the matricesafter 16n iterations; over 60% or them with 64-bit arithmetic, and more than 70% ofthem with 128- and 256-bit arithmetics. After only 4n or 8n iterations, Lanczos can stillcompute all the eigenvalues of many matrices. As we perform more iterations, Lanczostends to resolve more eigenvalues that are far away from already converged ones. Theremaining non-converged eigenvalues tend to get closer and closer to converged ones.
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Figure 6.1. The number of Ritz values within 10−7 of each eigenvaluefor a matrix of dimension n = 200 with a cluster of size 10 in the center ofthe spectrum spaced 10−11 using di�erent �oating-point precision: IEEE-754 double precision (64 bits; top left), 128 bit �oating-point (top right)and 256 bit �oating point (bottom).9. ConclusionsOur experimental examination of the long-term behavior of the Lanczos process leadsus to several conclusions.First, as long as the distance between eigenvalues is large relative to εmachine, Lanczosconverges to all the eigenvalues (and converges twice in roughly twice the number ofiterations). If the minimal inter-eigenvalue distance is large relative to εmachine, thenumber of iterations m required for double convergence to all the eigenvalue grows veryslowly as a multiple of n. In other words, m/n grows very slowly. On the other hand, asthe distance between eigenvalues approaches εmachine, convergence slows down. Theseresults are consistent with theoretical worst-case convergence rate bounds [9].Large tight clusters of eigenvalues dramatically slow down the convergence of Lanczosto all the eigenvalues. Lanczos may be impractical for matrices with such spectra unless
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Figure 6.2. The number of Ritz values per unit length for a matrix ofdimension n = 200 with a cluster of size 10 in the center of the spectrumspaced 10−12 using 64-bit �oating-point arithmetic (left) for a matrixwith a size 10 cluster spaced 10−26 with 128-bit �oating point-precisionarithmetic (right). In both cases the spacing between eigenvalues in thecluster is around 104εmachine.
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Figure 6.3. The number of Ritz values within 10−7 of each eigenvaluefor a matrix of dimension n = 200 with a cluster of size 10 in the centerof the spectrum, with eigenvalues spaced 10−11 apart. The graph onthe left shows the behavior of Lanczos when the entire algorithm used128-bit arithmetic, and the graph on the right shows the behavior whenthe tridiagonal matrix T was constructed using 128-bit arithmetic but itseigenvalues computed in 64-bit arithmetic.measures are taken to address this issue. Initial experimentation on small matricessuggest that randomized dispersion is e�ective when the spectrum contains clusters but
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Figure 6.4. The number of Ritz values within a cluster of eigenvaluesthat are spaced 10−7 apart after 20n Lanczos iterations. Apart from thecluster, the spectrum contains 2000 eigenvalues spaced evenly between
−1 and 1. In both graphs, the X axis shows the number of eigenvaluesin the cluster, ranging from 1 to 5000. (The dimension of the matricestherefore ranged from 2000 to 7000). On the left, the Y axis shows thenumber of Ritz values in the cluster. On the right, the Y axis shows thesame number, but divided by the size of the cluster. Both graphs showthe results of computations in 64-bit arithmetic (double), 128-bit (DD),and 256-bit (QD).
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Figure 6.5. A histogram of the Ritz values within a cluster of 5000eigenvalues that are spaced 10−7 apart after 20n = 20 · 7000 Lanczositerations. The histogram on the left shows the results in 64-bit arithmeticand the results on the right in 128-bit.
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Figure 7.1. The number t of iterations required to achieve double con-vergence to all the eigenvalues for matrices with two clusters of eigenval-ues at 1 and −1. On the left, the dimension n of A changes while theinter-eigenvalue distance δ is kept �xed; on the right, the dimension n is�xed and the distance δ varies. In both graphs, the Y axes are iterationcounts t relative to the matrix dimension n. The black × symbols markthe average in 250 experiments with di�erent starting vectors, and theblue lines span the standard deviations.
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Figure 7.2. On the left, a graph from Figure 7.1. On the right, a similarexperiment, but where the cluster at 1 had eigenvalues spaced 10−6 apart.they are not too large, but ine�ective when clusters are very large (say an eigenvalueof multiplicity 3000 in a matrix of dimension 10000).We note that high-precision is not required to compute the Ritz values once T hasbeen computed, as long as they are computed to a precision that allows convergencedecisions to be made. If we are only interested in accelerating double convergence, it
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Figure 7.3. The number of runs out of 1000 in which there are at nRitz clusters with Ritz values closer than 10−13 (indicating double conver-gence and hence detection of an eigenvalue). The matrices have regularly-spaced eigenvalues between −1 and 1. The runs di�er only in the startingvector, which is random. As n grows, more iterations are required to ob-tain double convergence.is enough to use high-precision arithmetic only in computations involving the Lanczosbasis vectors. This observation is trivial given the perturbation theory of the eigenvaluesof symmetric matrices and the stability of tridiagonal eigensolvers, but it is still usefulin practice, since computing the Ritz values from T (m) (and computing X(m)) is acomputationally expensive part of Lanczos.We have also found that Ritz values �rst converge but then slowly diverge. Asfar as we can tell, this observation is completely new. Therefore, double convergence(perhaps any valid convergence criterion) becomes less useful if we apply it after toomany iterations.
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Figure 8.1. Convergence behavior on a set of 133 real-world matrices.The graphs show the percentage of matrices that have converged to allthe eigenvalues after 4n, 8n, and 16n iterations (in brown). The code didnot attempt to �nd the multiplicity of each eigenvalue. The graphs alsoshow, for matrices that have not converged, the minimum distance froma converged eigenvalue to a non-converged one. The graph on the rightshows results for 64-bit computations, and the graph on the left for 128-bit computations. In high precision, T was computed in high precisionbut its eigenvalues were computed in 64-bit arithmetic.
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Figure 8.2. Convergence behavior on real-world matrices, using 64-bitarithmetic (left) and 256-bit arithmetic (right). The setup is the same asin Figure 8.1.Finally, we have found that Lanczos can �nd all the eigenvalues of many large real-world matrices. References[1] D. Calvetti, L. Reichel, and D.C. Sorensen. An implicitly restarted Lanczos method for largesymmetric eigenvalue problems. Electronic Transactions on Numerical Analysis, 2:1�21, 1994.
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