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ABSTRACT. We investigate the long-term behavior of the classical Lanczos process in
an attempt to pave the way to an efficient and robust eigensolver that can find all the
eigenvalues of large sparse symmetric matrices. We are interested in the convergence
of classical Lanczos (i.e., without re-orthogonalization) to the point where there is a
cluster of Ritz values around each eigenvalue of the input matrix A. At that point,
convergence to all the eigenvalues can be reliably detected if the matrix has no mul-
tiple eigenvalues. To ensure that this is the case, we disperse multiple eigenvalues
by adding to A a random matrix with a small norm; using high-precision arithmetic,
we can perturb the eigenvalues by an amount that does not affect the accuracy of
double-precision computed eigenvalues. Our main results are that Lanczos reliably
forms clusters around all the eigenvalues of A and that the speed of cluster formation
depends on the local density of eigenvalues and on the unit roundoff. The depen-
dence on the unit roundoff allows us to accelerate convergence by using high-precision
arithmetic in computations involving the Lanczos iterates. Clusters form around all
eigenvalues after roughly twice the number of iterations required for a single Ritz value
to converge to each eigenvalue; therefore, waiting for clusters to form is reasonable.
Our detailed experiments reveal additional interesting behaviors, some already known
(e.g., misconvergence) and some new (slow divergence of Ritz clusters).
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1. INTRODUCTION

The Lanczos process is an old and well-known eigensolver [10] (see also |5, 11, 16,
17, 20]). It takes as input an n-by-n Hermitian matrix A and produces sequence of
matrices 7™ and QU™ such that

AQU™ — QUmT(m) y plm)gr

where Q™ is n-by-m orthonormal matrix, 7™ is an m-by-m tridiagonal matrix, e,
is the last unit vector of dimension m, and ™ is some n-vector. The sequences Q™
and T0™ are nested: each iteration of the Lanczos process adds one column to @ and a
row and a column to 7. The process is a short-recurrence Krylov-subspace iteration; in
each iteration, the algorithm multiplies one vector by A and performs a small number
of vector operations on vectors of size n.

In exact arithmetic, the residual vector 7" vanishes after at most k iterations, where
k is the number of distinct eigenvalues of A. When 7™ vanishes, 7™ is an orthonormal
projection of A onto the column space of @, and therefore every eigenvalue of 70" is an
eigenvalue of A. For all the starting vectors except for a set of measure 0, 7™ vanishes
after exactly k iterations and all the eigenvalues of A appear in T'*),
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Practitioners quickly discovered that the behavior of Lanczos in floating-point arith-
metic differs significantly from that predicted by the theoretical results. In particular,
the columns of () quickly lose orthogonality, and r never vanishes in practice. Re-
searchers mostly explored two families of techniques for addressing this difficulty. One
set of techniques attempts to prevent the loss of orthogonality in (). This can be done
using a full orthogonalization process or using selective orthogonalization and related
techniques [14, 6, 19, 18]. The other set of techniques [1, 21| attempts to extract use-
ful spectral information from the process after a relatively small number of iterations;
this rarely results in the identification of all the eigenvalues, but it can result in useful
approximations to a subset of the eigenvalues that are important in a given applica-
tion (e.g., the smallest). These families of techniques are not mutually exclusive; many
Lanczos codes use both.

However, around 30 years ago a group of researchers explored the use of Lanczos
without sophisticated orthogonalization for finding all the eigenvalues of A [2, 4, 13]; we
refer to such methods as classical Lanczos methods. This line of research was based on
a deep numerical analysis of the Lanczos process that eventually showed that in floating
point, the eigenvalues of T eventually approzimate all the eigenvalues of A [3|. (This
fact was recognized years before it was actually proved; see, for example, [2]). These
researchers produced two Lanczos codes, both in the 1980s. These codes had to address
two major problems: how to decide which of the eigenvalues of T' are approximate
eigenvalues of A (many are not), and how to decide when to terminate; we describe
later how they did it. It appears that there has been no progress in classical Lanczos
codes since 1985, although there are some reports about the behavior of these methods
in practice [8], as well as some numerical analyses (see [11] and the numerous references
therein).

The literature on classical Lanczos does not include a detailed characterization of
its convergence behavior. Some papers state that all the eigenvalues of A appear in
T within cn iterations for some small constant ¢ > 1|8]. Others have observed that ¢
grows with n, but very slowly [4].. The classical-Lanczos literature does not contain
extensive experimental results, probably due to the limited computational resources
that were available when the codes were written in the 1980s.

The aim of this paper is to explore in more details the long-term behaviors of the
classical Lanczos process in the real case. In particular, we address the following ques-
tions:

e What factors affect the convergence of the classical Lanczos process, when we
take convergence to mean identifiable convergence to all the eigenvalues of A?
By identifiable convergence we mean that the fact that an eigenvalue of T is
genuine (is an accurate approximate eigenvalue of A) can be algorithmically and
efficiently identified.

e What is the asymptotic number of iterations required for identifiable conver-
gence? Is it O(n), as suggested in some of the literature? We note that once
Lanczos performs ©(n?) iterations, it has done more work and has used more
memory than dense eigensolvers, so there is little reason to use it. We are
interested in cases where convergence occurs much sooner.
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e How does the precision of the floating-point arithmetic (the unit roundoff €,,acpine)
affect the convergence of the process? We are particularly interested in effects
that might mitigate slow convergence or non-convergence.

Our long-term goal is to develop a robust classical-Lanczos eigensolver. To do that, we
need to know how to set thresholds (e.g., for determining convergence of an eigenvalue),
when to use high-precision arithmetic, and how to estimate the running time early on.
These design decisions depend on the insights presented in this paper.

The rest of this paper is organized as follows. Section 2 explains how Lanczos algo-
rithms decide that they have found all the eigenvalues of a matrix. This discussion is
necessary in order to give a precise meaning for the iteration counts that we present
later in the paper. Section 3 starts the exploration of the convergence of the Lanczos
process, focusing on matrices with fixed inter-eigenvalues gap. As the Lanczos process
progresses, more and more Ritz values cluster around each eigenvalue; we explore this
clustering behavior in Section 4. We begin the exploration of more complex spectra in
Section 5, where we show that tight clusters in an otherwise nicely-spaced spectrum
slow down convergence. In Section 6 we show that the slowdown can be mitigated
through the use of high-precision arithmetic. Section 7 studies the asymptotic com-
plexity of the Lanczos process, using carefully constructed spectra, using the insights
gained in earlier sections. Our conclusions from this study are presented in Section 9.

2. DETECTING TERMINATION

A robust Lanczos eigensolver needs to terminate once it found all the eigenvalues.
This may seem obvious, but the literature does not describe reliable ways to do that.
We believe that a Lanczos eigensolver that reliably finds all the eigenvalues of A and
terminates can be designed using a combination of two techniques. To effectively use
these techniques, we need to know more about the convergence of the Lanczos process;
this paper is an effort to generate this knowledge. This section outlines these two
techniques and discusses what we need to know about Lanczos convergence to use
them. The actual investigation of the two techniques is beyond the scope of this paper.

The first technique is eigenvalue dispersal. We add a random matrix P with a small
norm to the input matrix A in order to transform every multiple eigenvalue of A and
every tight eigenvalue cluster into a not-so-tight cluster of simple eigenvalues of A+ P.
We run the classical Lanczos algorithm on A+ P, which has exactly n simple eigenvalues.

The other technique uses the spectrum of 70™ to reliably locate eigenvalues of A+ P.
Once we find n disjoint intervals that each contain an eigenvalue, we have found all the
eigenvalues of A to within an error determined by the size of the interval and the norm
of P, and we terminate.

We begin by explaining the dispersion idea.

2.1. Eigenvalue Dispersal. Independently of how the code determines which Ritz
values are genuine, it also needs to decide when to stop. The Lanczos process provides no
information on the multiplicity of the eigenvalues of A. Therefore, when some number
k < n of eigenvalues have been found, they might constitute the entire spectrum of A
(if A has multiple eigenvalues), or they might be a proper subset, with some eigenvalues
of A still to be found. This problem has plagued all the classical Lanczos codes.
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Our code will use a conceptually simple solution that we call dispersion. Instead of
running Lanczos on A itself, we will run it on A + P, where P is a random symmetric
matrix (from some appropriate distribution) with a small norm ||Pl|s < 6. We chose P
so that it is cheap to apply to vectors; this results in Lanczos iterations that are about
as cheap as those performed on A alone. The perturbation P perturbs the eigenvalues,
but only by ¢ or less. Hopefully, A4 P has no multiple eigenvalues; multiple eigenvalues
of A are transformed into clusters of close but distinct eigenvalues of A+ P. The choice
of P determines how close the eigenvalues of A + P are; we do not have a complete
theory that guarantees good separation with high probability, but experiments have
shown that dispersion works well. We omit these experiments from this paper, and
focus instead on the convergence for a given operator (which the reader can take to be
A+ P).

We note that if the user would like to determine the eigenvalues to within a small
tolerance € near €y ,chine, the norm o of the perturbation P will need to be even smaller,
which implies that multiple eigenvalues of A will be transformed into very tight clusters
in A + P; these clusters will behave in floating point exactly like multiple eigenvalues.

The solution in this case is to shrink €pachine by resorting to high-precision arithmetic.
This technique essentially widens the gap between the desired accuracy € and the unit
roundoff €,.cnine SO that a convenient value of 6 in between them can be chosen.

2.2. Locating Eigenvalues. A growing body of results suggest that non-trivial clus-
ters of Ritz values are only found very close to eigenvalues of A. That is, if we find two
or more eigenvalues of 7™ that are very close to each other, they normally indicate
the location of an eigenvalue of A; we call such Ritz values doubly-converged. This
phenomenon was known to Cullum and Willoughby [2] and to Parlett and Reid [13],
but back then there were no provable bounds on the location of eigenvalues relative to
non-trivial Ritz clusters. Furthermore, both groups aimed to detect convergence even
before clusters form, so their codes also used more poorly justified eigenvalue-location
estimates.

In the years that followed, double convergence was analyzed more rigorously, and we
now know that clusters of Ritz values normally indicate the location of eigenvalues. We
say normally because all the results in the literature are conditioned on properties of
the spectrum of A and/or 7™ which might not hold. However, exceptions seem very
rate, and some conditions are easily tested (in particular, conditions that only involve
Ritz values are easy to test).

In the rest of this section, we describe two such results and we explain what kind of
experimental analysis is required to understand them more fully.

We begin with a result of Wiilling [22]. Assume that the Lanczos process (in floating-
point) for m > n iterations and compute the eigendecomposition of 7™ = XRXT,
The matrix X is unitary and its columns are the eigenvectors of 7™ and R is diagonal
and its diagonal entries are the eigenvalues of 7™ (Ritz values of A). The eigende-
composition of a tridiagonal symmetric matrix costs ©(m?) arithmetic operations, can
be done sequentially within a memory of size ©(m) (if X is computed one column at a
time), and can be easily parallelized to at least m processors.
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It is well known that when X, ; is small, then R;; is close to an eigenvalue of A |12,

p. 249|,

min |\, — R, ;| < 25T X + [|A]l O (émachine) -

1<k<n ’
This bound gives us m intervals that contain all the eigenvalues of A. If we find among
them n disjoint intervals, we are done; we have located all the eigenvalues.

Will we always find n disjoint intervals and will they always be small enough for
some reasonable iteration count m? Wiilling [22]| showed that each tight cluster of
Ritz values that is well separated from all other clusters corresponds to at least one
small X,, ; (where j is part of the cluster); this implies that the cluster is close to some
k. Wiilling’s result depends on the cluster remaining non-trivial (with 2 or more Ritz
values) for two consecutive iterations (say m and m — 1); he shows an example in which
symmetry causes the size of one cluster to oscillate between 1 and 2, but this seems to
depend on both symmetry in the spectrum and on a particular choice of the Lanczos
starting vector. We have found that floating-point errors quickly destroy the symmetry
even in this example, leading to two consecutive iterations in which the cluster has 2
Ritz values.

Wiilling’s bounding interval depends on both the cluster size, its diameter, and the
separation from other Ritz values. A large well separated and tight cluster leads to a
small bound on X, ;; a small cluster or one that is not well separated or one that is
fairly spread out yields a large, perhaps useless bound on X,, ;. Wiilling’s bound is
much sharper if the cluster size grows or shrinks between iterations m and m — 1, but
we can’t expect to find more than one such cluster if we decompose 7 and T+
for just one value of m.

Knizhnerman |9, Theorem 2|, sharpening an earlier result of Greenbaum [7], provides
a different kind of guarantee on Ritz clusters. Knizhnerman showed that if there are
no Ritz values that are close but not very close to eigenvalues of A, then every Ritz
cluster is close to an eigenvalue. More specifically, Knizhnerman’s result assumes that
there are no Ritz values within distance

AU emacnine | All) < d < max (O(m emaarine [ A1), Omey i A1)

machine

of an eigenvalue of A, where the constants within the big-O and big-{2 notation depend
on n (linearly) and on ||| A]||/||A]l.

Our approach in this paper is to simply assume that a doubly-converged Ritz value
indicates the location of an eigenvalue; the results of Wiilling, Paige, Knizhnerman and
Greenbaum suggests that this is usually the case. Once we found n distinct clusters,
the code can compute X to ascertain that we have indeed found all the eigenvalues of
A. Our experiments aim to demonstrate the validity of this approach by examining the
following aspects:

e We show that Ritz values do cluster around eigenvalues and that the diameter
of the cluster is a function of €yachine. This implies that codes can use high-
precision arithmetic to force clusters to be tight.

e We also show that additional Ritz values cluster around each eigenvalue peri-
odically, with a periodicity that changes from eigenvalue to eigenvalue. This
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implies that clusters always form around eigenvalues; perhaps slowly, but they
always form.

e Finally, we show that the periodicity of each cluster depends on both the shape
of the spectrum and on €,,cphine- High-precision arithmetic reduces the variability
among the periods of the different clusters, reducing the risk of some clusters
forming very slowly.

2.3. Termination Conditions in Early Codes. The results that we cited above are
relatively new; they were not known when the Cullum-Willoughby and Parlett-Reid
codes were written. Both codes used heuristics to locate eigenvalues and to terminate.
Both codes reported approximate eigenvalues early (perhaps too early). Cullum and
Willoughby assumed that when a Ritz value is almost an eigenvalue of a matrix obtained
from T by deleting the first row and column, it is close to an eigenvalue of A. They
have an argument that supports this criterion but no formal proof. Parlett and Reid
keep track of intervals with no Ritz values and at some point declare them as being
outside the spectrum of A, also heuristically. Both codes take a cluster of size 2 to
indicate an eigenvalue of A. None of the codes attempt to find n eigenvalues because
they assume that the matrix might have multiple eigenvalues.

3. CONVERGENCE WHEN THE EIGENVALUES OF A ARE REGULARLY SPACED

We now begin the exploration of the convergence behavior of Lanczos. In order to
explore it systematically we begin with very simple cases and then progress to more
complex ones. This strategy allows us to understand individual behaviors in isolation.
Long-term behavior: regularly spaced eigenvalues and a regular starting vector. As we’ll
see later, clustered Eigenvalues have a significant effect on convergence, and so does the
starting vector. We begin the exploration with matrices that have no clusters at all:
their eigenvalues are regularly spaced in the spectrum. The matrices are diagonal. The
starting vector has 1/4/n in all the entries. Because the eigenvectors are unit vectors,
the projection of the starting vector on all the eigenvectors is the same.

Figure 3.1 shows the location of Ritz values over 5000 iterations of the Lanczos algo-
rithm on a matrix of dimension n = 200 with regularly spaced eigenvalues. (Figure 3.2
visualizes the same Lanczos process differently.) The horizontal lines fall on eigenvalues.
The darker areas in the figure are areas in which Ritz values have not yet converged,
so they move from iteration to iteration.

The main artifact that we see is that Ritz values converge first at the outer edges of
the spectrum. As the algorithm continues, Ritz values converge to eigenvalues in the
interior of the spectrum. When there is a converged Ritz value near every eigenvalue,
new Ritz values start to appear at the outer edges again. They do wander a bit and
then converge, leading eventually to two Ritz values near every eigenvalues. The process
continues.

Ritz values converge faster near the edges of the spectrum; the crescent-shaped areas
of non-converged Ritz values are thinner at the edges and thicker in the center of the
spectrum.
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FIGURE 3.1. The evolution of the Ritz values as the number of Lanczos
iterations grows. Each blue dot represents an eigenvalue of 7. The purple

circles show points of double convergence (a Ritz cluster growing to size
2).

Over time, it takes less time for Ritz values to converge. This phenomenon manifests
itself on the graph by the disappearance of the crescent-shaped bands of non-converted
Ritz values.

A closer inspection of the graph in Figure 3.1 shows that the curvature of the crescents
grows. After, say, 1500 iterations, there are more Ritz values near eigenvalues at the
edges of the spectrum than near eigenvalues at the center. Figure 3.3 quantifies this
more clearly. For a matrix of dimension 200 the ratio is around 3.5 to 3.75 and it is
stable as the number of iterations grows.

As the matrix dimension grows, the ratio between the number of converted Ritz
values at the edges and converged Ritz values at the center grows. Figure 3.4 shows the
numbers for a matrix of dimension n = 2000; the ratio is about 5. The ratio remains
stable as the number of iterations grows. We also see that the behavior at the center
is valid over a larger part of the spectrum than for the smaller matrix in Figure 3.3;
here the number of converged Ritz values is fairly flat in most of the spectrum; it rises
dramatically only close to the edges of the spectrum.

The effect of the starting vector. When the projection of the starting vector on a par-
ticular eigenvector is small, convergence to the corresponding eigenvalue is slower than
when the projection is large. However, Figure 3.5 shows that the effect is not neces-
sarily dramatic. When half the projections are large and half are small, convergence
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FIGURE 3.2. The projection of the Lanczos basis vectors on the eigen-
vectors of the matrix (the same matrix as in Figure 3.1). The color scale
is logarithmic with base 10.

to the eigenvalues associated with small projections is slower, but not dramatically so.
Even when the small projections were smaller by a factor of 10'® (they were near the
unit roundoff €y,chine), @ Ritz value converged to each eigenvalue after fewer than 2n
iterations.

4. THE BEHAVIOR OF RiTZ CLUSTERS

As the number of iterations grows, more and more Ritz values converge to each
eigenvalue. In general, this is a good thing; two very close Ritz values indicate that
they must be close to an eigenvalue.

We discovered two behaviors of these Ritz clusters that were not previously observed.
These behaviors are important for the design of Lanczos codes.

The first behavior, shown in Figure 4.1, is a divergence of the clusters. As the number
of Ritz values in the cluster grows, the cluster widens. Each widening even grows the
cluster only by a small amount, but it does not appear that this process has a limit.

The scale of the divergence is determined by the unit roundoff. Figure 4.2 shows that
when the Lanczos code is implemented in double-double precision (128-bit floating-
point numbers) the divergence looks similar qualitatively but the scale of the divergence
shrinks by about 16 decimal digits.

The divergence of Ritz clusters has two implications for the design of Lanczos codes.
The first is that eigenvalues should be extracted from Ritz values as soon as possible.
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FIGURE 3.3. The number of Ritz values (for n = 200) near each eigen-
value after 10,000 to 40,000 iterations. The graph only count converged
Ritz values (closer than 1073 to an eigenvalue).

If the iteration continues for a long time because Ritz values failed to converge to some
eigenvalue (we will see below that this happens when the eigenvalues themselves are
clustered), the code should estimate the other eigenvalues from early Ritz values, not
from the Ritz values at the end of the iterations. The other implication is that contin-
uous ranges of Ritz values do not necessarily imply the discovery of new eigenvalues;
they may indicate a divergence from one eigenvalue.

The second behavior of clusters is a dependence of the widening on the location in

the spectrum. Figure4.3 shows that in the middle of the spectrum, Ritz values in a
cluster are spaced much more widely than at the edges of the spectrum. In both cases
we see clusters of Ritz values near eigenvalues, but the clusters are tighter at the edges.
We also see that when the cluster grows by one Ritz value, old Ritz values are replaced
by new ones; Ritz values never seem to be completely converged.
Spectrum with Gaps. Ritz values tend not to fall within large gaps in the spectrum, as
shown in Figure 4.4. The density of Ritz values within the gap is much smaller than
their density outside the gap, and they do not exhibit any convergence behavior in the
gap. No Ritz values fall outside the spectrum, except perhaps for small deviations near
the extreme eigenvalues.
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FIGURE 3.4. The number of converged Ritz values for a larger matrix
(n = 2000) after 100,000 and 200,000 iterations.

On the other hand, even when the gap is large, eigenvalues on the far side of the
gap influence convergence. Ritz values converge more quickly at the outer edges of the
spectrum than near the inner edges adjacent to the gap.

We conclude that gaps in the spectrum do not appear to slow down convergence; we
will see below that this is not true for clusters the in spectrum.

5. THE EFFECTS OF CLUSTERS OF EIGENVALUES

Clusters of eigenvalues affect the convergence of Lanczos in ways that are important
for the design of Lanczos codes. Parlett [15] showed that a Ritz value can converge
to a value between two eigenvalues and hold there for a number of iterations before
moving to an eigenvalue. In this section we study this phenomenon, which Parlett calls
misconvergence, as well as several other cluster-related behaviors.

A small cluster (10 eigenvalues out of 200) does not affect much convergence out-
side the cluster, as shown in Figure 5.1; the overall behavior is similar to the one in
Figure 3.1.

On an eigenvector/Lanczos-vector projection map, the cluster is easily visible, as can
be seen in Figure 5.2; the behavior in the cluster is clearly different from the behavior
outside the cluster.

Tight clusters cause severe misconvergence. Figure 5.3 shows that a Ritz value that
shows up in a cluster tends to wander around near and between eigenvalues and then
typically settles for a long time in-between eigenvalues. As more Ritz values show
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FIGURE 3.5. The evolution of the Ritz values as the number of Lanczos
iterations grows. The matrix has dimension n = 200 and regularly-spaced
eigenvalues. The projection of the starting vector (before normalization)
on the smallest /2 eigenvalues is random between 1 and 2 and the pro-
jection on the largest eigenvectors is between 1 x 107% and 2 x 107, for
k = 8 (top left), kK = 12 (top right), and k& = 16 (bottom).

up, a misconverged eigenvalue tends to shift closer to an eigenvalue, until it actually
converges. If we inspect the eigenvalue at 5 x 107!2) for example (the top most one),
we see a misconverged Ritz value that shifts between 3 or 4 stable locations before
converging. The bottommost Ritz value in the cluster shows a symmetric behavior.
The periods of misconvergence tends to be similar to each other; they are probably
dictated by the periodicity of the appearance of new Ritz values in the cluster.

The most important effect of clusters is on the periodicity of the appearance of Ritz
values near eigenvalues. In a cluster, the periodicity is longer; a Ritz value appears near
a specific eigenvalue less often than near non-clustered eigenvalues. This is shown in
the left plot of Figure 5.4. This phenomenon causes Lanczos to converge more slowly to
all the eigenvalues when there are clusters than when the the eigenvalues are regularly
spaced. If we examine the raw density of Ritz values, ignoring the distribution of
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FIGURE 4.1. Ritz values near the eigenvalue 0 in a 10-by-10 matrix. In
this experiment the Ritz values in the cluster mostly diverge away from
the center of the spectrum (the center is at —0.1), but this depends on
the starting vector. The starting vector here is the constant vector. The
graph on the left shows the behavior over 10,000 iterations whereas the
graph on the right shows only the first 1,000 iterations.
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FIGURE 4.2. Divergence using double-double precision (about 32 decimal
digits in the fraction of a floating-point number). We still see divergence,
but on a much smaller scale.

eigenvalues, we see that the cluster attracts more Ritz values than intervals of the same
size elsewhere in the spectrum. This is shown in the right plot of Figure 5.4. This
increased attraction is not sufficient, however, to compensate for the larger number of
eigenvalues in the interval, so convergence to all eigenvalues is still adversely affected
by the cluster.
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FIGURE 4.3. Divergence of Ritz values in the center of the spectrum

(left) and half way from the center to the edge of the spectrum (right).

The red line represents the eigenvalue and blue dots represent Ritz values.

The labels on the Y axes are relative to the eigenvalue.
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FIGURE 4.4. The evolution of Ritz values when the eigenvalues are reg-
ularly spaced in two intervals, from [—1, —0.5] and [0.5,1]. The starting
vector is random and n = 200.
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FIGURE 5.1. The evolution of the Ritz values as the number of Lanczos
iterations grows for a matrix with a cluster of 10 eigenvalues (spaced 1072
apart) located in the center of the spectrum. Each blue dot represents a
Ritz value.

6. THE EFFECTS OF HIGH-PRECISION ARITHMETIC ON THE LANCZOS PROCESS

Increasing the precision of the floating-point arithmetic reduces the adverse effect of
clusters, as shown in Figure 6.1. As we increase the precision, the number of Ritz values
in a cluster increases, speeding up the convergence. This phenomenon was already
observed by Edwards et al. [4], but it does not appear that Lanczos codes used this
insight.

Figure 6.2 shows that high precision only helps if the cluster is not too tight. If the
cluster is tight relative to €pachine, it attracts too few Ritz values even if €achine 1S small;
what matters is the spacing of eigenvalues in the cluster relative to €machine-

The high precision is important only for the Lanczos iteration vectors, from which
the tridiagonal matrix 7" is constructed. Once computed, 7' can be rounded to a lower
precision (double precision in our experiments) and its eigenvalues computed in that
precision without affecting the overall convergence behavior. This is significant since
computing the eigenvalues of T is typically more expensive than producing it, at least
when A is reasonably sparse.

As the size of an eigenvalue cluster grows, its effect on convergence becomes devas-
tating, even in high precision. Figure 6.4 shows that as the size of a cluster grows, the
number of Ritz values in it increases, but not nearly fast enough to obtain convergence
on all eigenvalues. When the cluster is small, say containing 10 eigenvalues, there are
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FIGURE 5.2. The projection of the Lanczos basis vectors on the eigen-
vectors of the matrix (the same matrix as in Figure 5.1). The color scale
is logarithmic with base 10.

more than 3 Ritz values per eigenvalue after 20n iterations, even in 64-bit arithmetic
(and more Ritz values in higher precision). When the cluster contains 100 eigenvalues,
there is not even a single Ritz value per eigenvalue after 20n iterations; we cannot
expect convergence in that many iterations. Things get much worse as the cluster size
continues to grow.

The distribution of Ritz values within the cluster is typically not uniform, just like
within the spectrum as a whole. When eigenvalues in the cluster are distributed uni-
formly, more Ritz values appear at the edges of the cluster than near its center, as
shown in Figure 6.5. This implies that even once there are on average 2 or 3 Ritz val-
ues per eigenvalue in the cluster, we may be very far from convergence, because there
are not enough Ritz values near eigenvalues in the center of the cluster.

7. THE ASYMPTOTIC COMPLEXITY OF THE LANCZOS PROCESS

To assess the asymptotic convergence of the Lanczos process, we ran it on two family
of synthetic matrices. In both families, all the eigenvalues belong to two equal-size
clusters, one at 1 and the other at —1. In the first family, we kept the inter-eigenvalue
separation d within a cluster fixed, at § = 1078, This allows us to determine the effect
of growing matrix dimension without causing the eigenvalues to get closer to each other.
In the second family, we kept the matrix dimension at n = 1000 while shrinking the
inter-eigenvalue distance within each cluster.
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FIGURE 5.3. Evolution of Ritz values near a cluster. The red lines repre-
sents a cluster eigenvalues (they are 107! apart) and blue dots represent
Ritz values. The purple circles show where double convergence first oc-
curs. A numeral k£ shows the first time that there are k£ Ritz values near
an eigenvalue.

The results, shown in Figure 7.1, show that for a given clustering of the eigenval-
ues, the growth in iteration count is proportional to ¢(n) x n, where c¢(n) is a very
slowly growing function of n. The inter-eigenvalue separation has a very slight effect
on convergence.

The fact that the inter-eigenvalue gap does not influence much the convergence rate
seems to contradict the results of Section 5, but it does not. A tight cluster in a
spectrum with mostly wide inter-eigenvalue gaps attracts too few Ritz values and slows
down convergence. In a spectrum in which all the eigenvalue gaps are small, the Ritz
values do appear within the spectrum (but rarely in huge gaps, as shown in Figure 4.4),
so convergence is not affected by the magnitude of the gaps. Figure 7.2 demonstrates
that this is indeed the case. When the eigenvalues at 1 are spaced 107% apart but the
eigenvalues at —1 were spaced ¢ apart for § = 1071°, ..., 107°, convergence depends
more strongly on 4.

When the eigenvalues are regularly spaced, larger matrices require more iterations to
converge, because their eigenvalues are closer together, as shown in Figure 7.3. Con-
vergence to a fixed tolerance tends to occur after k£ x cn iterations for some constant
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FIGURE 5.4. The number of Ritz values within 107'? (left) and 1078
(right) of each eigenvalue for a matrix of dimension n = 200 with a
cluster of size 10 in the center of the spectrum spaced 107!2. There are
fewer Ritz values near each eigenvalue within the cluster than elsewhere,
yet there are more Ritz values in the cluster area than if there was a
single eigenvalue there.

c ~ 1.5, which is essentially the periodicity at which Ritz values appear near eigenvalues
at the center of the spectrum. On small matrices (n = 992 in our experiment), k = 2
was almost always sufficient. For n = 1737, k = 2 was usually sufficient but sometimes
convergence required k = 3 or k = 4. At n = 5319, convergence required up to k =5
or k =6.

8. CONVERGENCE ON REAL-WORLD MATRICES

Figures 8.1 and 8.2 explore the behavior of Lanczos on a large set of real-world
matrices. We ran our code on a set of 133 matrices from Davis’ University of Florida
Sparse Matrix Collection This set includes all the symmetric matrices of dimension
2500 or less (and with numerical values; we omitted sparsity-pattern-only matrices). We
did not attempt to disperse multiple eigenvalues; instead, we compared the eigenvalues
computed by our code to those computed by LAPACK and counted how many agree to
within 107" ||A|| or better; this tells when our code fails to find isolated eigenvalues or
entire clusters, not when it converges to all the eigenvalues in a tight cluster.

The results show that Lanczos can compute all the eigenvalues of most of the matrices
after 16n iterations; over 60% or them with 64-bit arithmetic, and more than 70% of
them with 128- and 256-bit arithmetics. After only 4n or 8n iterations, Lanczos can still
compute all the eigenvalues of many matrices. As we perform more iterations, Lanczos
tends to resolve more eigenvalues that are far away from already converged ones. The
remaining non-converged eigenvalues tend to get closer and closer to converged ones.
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FIGURE 6.1. The number of Ritz values within 107 of each eigenvalue
for a matrix of dimension n = 200 with a cluster of size 10 in the center of
the spectrum spaced 107! using different floating-point precision: IEEE-
754 double precision (64 bits; top left), 128 bit floating-point (top right)
and 256 bit floating point (bottom).

9. CONCLUSIONS

Our experimental examination of the long-term behavior of the Lanczos process leads
us to several conclusions.

First, as long as the distance between eigenvalues is large relative to €pachine, Lanczos
converges to all the eigenvalues (and converges twice in roughly twice the number of
iterations). If the minimal inter-eigenvalue distance is large relative to €machine, the
number of iterations m required for double convergence to all the eigenvalue grows very
slowly as a multiple of n. In other words, m/n grows very slowly. On the other hand, as
the distance between eigenvalues approaches €nachine, convergence slows down. These
results are consistent with theoretical worst-case convergence rate bounds [9)].

Large tight clusters of eigenvalues dramatically slow down the convergence of Lanczos
to all the eigenvalues. Lanczos may be impractical for matrices with such spectra unless
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FIGURE 6.2. The number of Ritz values per unit length for a matrix of
dimension n = 200 with a cluster of size 10 in the center of the spectrum
spaced 107'? using 64-bit floating-point arithmetic (left) for a matrix
with a size 10 cluster spaced 1072¢ with 128-bit floating point-precision
arithmetic (right). In both cases the spacing between eigenvalues in the
cluster is around 10%€pachine-
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measures are taken to address this issue.

FIGURE 6.3. The number of Ritz values within 107 of each eigenvalue
for a matrix of dimension n = 200 with a cluster of size 10 in the center
of the spectrum, with eigenvalues spaced 107'! apart. The graph on
the left shows the behavior of Lanczos when the entire algorithm used
128-bit arithmetic, and the graph on the right shows the behavior when
the tridiagonal matrix 7" was constructed using 128-bit arithmetic but its
eigenvalues computed in 64-bit arithmetic.

Initial experimentation on small matrices

suggest that randomized dispersion is effective when the spectrum contains clusters but
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FIGURE 6.4. The number of Ritz values within a cluster of eigenvalues
that are spaced 10~7 apart after 20n Lanczos iterations. Apart from the
cluster, the spectrum contains 2000 eigenvalues spaced evenly between
—1 and 1. In both graphs, the X axis shows the number of eigenvalues
in the cluster, ranging from 1 to 5000. (The dimension of the matrices
therefore ranged from 2000 to 7000). On the left, the Y axis shows the
number of Ritz values in the cluster. On the right, the Y axis shows the
same number, but divided by the size of the cluster. Both graphs show
the results of computations in 64-bit arithmetic (double), 128-bit (DD),
and 256-bit (QD).
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FIGURE 6.5. A histogram of the Ritz values within a cluster of 5000
eigenvalues that are spaced 1077 apart after 20n = 20 - 7000 Lanczos
iterations. The histogram on the left shows the results in 64-bit arithmetic
and the results on the right in 128-bit.
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FIGURE 7.1. The number t of iterations required to achieve double con-
vergence to all the eigenvalues for matrices with two clusters of eigenval-
ues at 1 and —1. On the left, the dimension n of A changes while the
inter-eigenvalue distance ¢ is kept fixed; on the right, the dimension n is
fixed and the distance ¢ varies. In both graphs, the Y axes are iteration
counts t relative to the matrix dimension n. The black x symbols mark
the average in 250 experiments with different starting vectors, and the
blue lines span the standard deviations.
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FIGURE 7.2. On the left, a graph from Figure 7.1. On the right, a similar
experiment, but where the cluster at 1 had eigenvalues spaced 10~% apart.

they are not too large, but ineffective when clusters are very large (say an eigenvalue
of multiplicity 3000 in a matrix of dimension 10000).

We note that high-precision is not required to compute the Ritz values once T has
been computed, as long as they are computed to a precision that allows convergence
decisions to be made. If we are only interested in accelerating double convergence, it
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is enough to use high-precision arithmetic only in computations involving the Lanczos
basis vectors. This observation is trivial given the perturbation theory of the eigenvalues
of symmetric matrices and the stability of tridiagonal eigensolvers, but it is still useful
in practice, since computing the Ritz values from 7 (and computing X™) is a
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FIGURE 7.3. The number of runs out of 1000 in which there are at n
Ritz clusters with Ritz values closer than 107'? (indicating double conver-
gence and hence detection of an eigenvalue). The matrices have regularly-
spaced eigenvalues between —1 and 1. The runs differ only in the starting
vector, which is random. As n grows, more iterations are required to ob-

tain double convergence.

computationally expensive part of Lanczos.

We have also found that Ritz values first converge but then slowly diverge.
far as we can tell, this observation is completely new. Therefore, double convergence
(perhaps any valid convergence criterion) becomes less useful if we apply it after too

many iterations.

As
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F1GURE 8.1. Convergence behavior on a set of 133 real-world matrices.
The graphs show the percentage of matrices that have converged to all
the eigenvalues after 4n, 8n, and 16n iterations (in brown). The code did
not attempt to find the multiplicity of each eigenvalue. The graphs also
show, for matrices that have not converged, the minimum distance from
a converged eigenvalue to a non-converged one. The graph on the right
shows results for 64-bit computations, and the graph on the left for 128-
bit computations. In high precision, 7" was computed in high precision
but its eigenvalues were computed in 64-bit arithmetic.
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FIGURE 8.2. Convergence behavior on real-world matrices, using 64-bit
arithmetic (left) and 256-bit arithmetic (right). The setup is the same as
in Figure 8.1.

Finally, we have found that Lanczos can find all the eigenvalues of many large real-
world matrices.
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