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Abstract. This paper analyzes a novel method for construct-
ing preconditioners for diagonally-dominant symmetric positive-
definite matrices. The method discussed here is based on a simple
idea: we construct M by simply dropping offdiagonal nonzeros
from A and modifying the diagonal elements to maintain a certain
row-sum property. The preconditioners are extensions of Vaidya’s
augmented maximum-spanning-tree preconditioners. The precon-
ditioners presented here were also mentioned by Vaidya in an un-
published manuscript, but without a complete analysis.

The preconditioners that we present have only O(n+ t2) nonze-
ros, where n is the dimension of the matrix and t is a parame-
ter that one can choose. Their construction is efficient and guar-
antees that the condition number of the preconditioned system
is O(n2/t2) if the number of nonzeros per row in the matrix is
bounded by a constant.

We have developed an efficient algorithm to construct these pre-
conditioners and we have implemented it. We used our implemen-
tation to solve a simple model problem; we show the combinatorial
structure of the preconditioners and we present encouraging con-
vergence results.

1. Introduction

This paper analyzes a novel method for constructing preconditioners
for diagonally-dominant symmetric matrices with positive diagonal en-
tries. A good preconditioner should balance two conflicting objectives.
It should approximate the matrix well and it should be easy to fac-
tor. For symmetric positive-definite matrices, a good approximation is
one that results in clustered eigenvalues for the preconditioned system
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M−1/2AM−1/2, where M is the preconditioner and A is the matrix.
The method discussed here is based on a simple idea: we construct
M by simply dropping offdiagonal nonzeros from A and modifying the
diagonal elements to maintain a certain row-sum property. The trick,
of course, is to drop nonzeros in a way that makes M easier to factor
than A but still clusters the eigenvalues.
The preconditioners that we analyze in this paper were proposed

about a decade ago by Pravin Vaidya in an unpublished manuscript [16]
which he presented in a scientific meeting. In that manuscript, Vaidya
proposed the overall idea of dropping elements ofA to formM , sketched
a method for analyzing such preconditioners, and proposed a family of
preconditioners. The preconditioners that he proposed are based on
a construction called a maximum-weight basis, and are parametrized
by a single parameter t that controls how many nonzeros are dropped.
When the matrices are not only diagonally-dominant with positive di-
agonals and symmetric, but have only nonpositive offdiagonals, the
maximum-weight basis corresponds to a maximum spanning tree of the
graph of the matrix. This special case received quite a bit of attention.
The theory required to analyze maximum-spanning-tree precondition-
ers was developed by Gremban et al. [8, 9] and by Bern et al. [3], and
the performance of the preconditioners in practice was investigated by
Chen and Toledo [5, 6] (Vaidya’s manuscript contains no proofs and no
experimental results). The more general case was never fully analyzed.
We note that Gremban [9] showed that any linear system with an

n-by-n symmetric diagonally-dominant coefficient matrix can be solved
by solving a related system with a 2n-by-2n symmetric diagonally dom-
inant coefficient matrix with nonpositive off-diagonals. This transfor-
mation allows one to apply Vaidya’s maximum-spanning-tree precon-
ditioners to all diagonally-dominant symmetric matrices. This trans-
formation has several drawbacks compared to the method presented in
this paper. The larger 2n-by-2n matrices are likely to lead to slower
solution times since vector-vector and matrix-vector operations take
longer and the factor of the matrix is likely to fill more. Also, the
transformation does not preserve graph properties that may be rele-
vant to performance, such as planarity (but it does preserve vertex
separators; a size s separator in the original matrix corresponds to a
2s separator in the larger matrix). A more detailed comparison of the
two approaches is beyond the scope of this paper.
This paper analyzes maximum-weight-basis (MWB) preconditioners.

It turns out that the analysis is quite complex, much more so than the
special case of maximum spanning trees. We also present an efficient
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algorithm for constructing MWB preconditioners. The algorithm, too,
is nontrivial and requires a sophisticated data structure to ensure its ef-
ficiency. Unlike previous analysis of preconditioners based on Vaidya’s
dropping idea [3, 8, 9, 10], our analysis is based not on graph em-
beddings, but on an algebraic generalization developed by Boman and
Hendrickson [4]. We have implemented the preconditioner and the
paper presents a numerical example that shows that it is effective in
practice. This example is only meant to illustrate the structure of the
preconditioner and its performance; it is not a thorough experimental
study.
Vaidya’s unpublished work has led to research in several directions.

Some of the research provided proofs for Vaidya’s claims. Gremban
et al. proved some of the basic spectral lemmas [8, 9], Bern et al. proved
a few more lemmas and analyzed maximum-spanning-tree precondi-
tioners [3], Reif analyzed Vaidya’s proposed recursive preconditioners,
in which M is not factored completely [14], and this paper analyzes
Vaidya’s MWB preconditioners. Other research focused on applying
Vaidya’s analysis technique to other preconditioners. Guattery used
the technique to analyze a class of incomplete-factorization precondi-
tioners [10], and Bern et al. used the technique to analyze another
class of incomplete-factorization preconditioners, as well as a simple
multilevel preconditioner. Finally, some of the research uses Vaidya’s
techniques to design new preconditioners. Gremban et al. proposed
a cheap-to-factor hierarchical preconditioner for diagonally-dominant
positive-definite symmetric matrices [8, 9] and Howle and Vavasis ex-
tended Gremban’s preconditioners to complex symmetric linear sys-
tems [11].
The rest of the paper is structured as follows. Section 2 presents tech-

nical tools that we use in the analysis of the preconditioners. In Sec-
tion 3 we show that whenever we form a preconditioner for a diagonally-
dominant symmetric matrix by symmetrically dropping nonzeros and
modifying diagonal elements appropriately, the small eigenvalue of the
preconditioned matrix is at least 1. Section 4 shows how to represent
A as a sum of rank-1 matrices A =

∑m
k=1 uku

T
k , where each rank-1

matrix corresponds to one edge of GA, the underlying graph of A. The
vectors uk, which we call scaled edge vectors, play a prominent role in
this paper. The next section, Section 5, characterizes the structure of
independent sets of edge vectors. Section 6 uses this characterization
to prove that if the preconditioner M corresponds to an independent
set of edge vectors that maximizes the sum of the scaling factors of
the vectors, then the large eigenvalue of the preconditioned matrix is
at most 4nm, where n is the dimension of A and m is the number of
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nonzeros in the strictly upper triangular part of A. Finding the set of
vectors that maximizes this sum is conceptually simple, since the vec-
tors form a combinatorial structure known as a matroid. There exists
a generic algorithm that finds a maximum-weight basis in any matroid,
and it turns out that the set of vectors that we seek form such a basis.
The generic algorithm requires an efficient subroutine for determining
whether a given vector is dependent on an independent set of vectors.
We present an efficient independence-testing algorithm in Section 7.
Section 8 shows how to augment a MWB preconditioner with addi-
tional nonzeros from A, in a way that guarantees a reduction in the
condition number. More specifically, we show how to add O(t2) nonze-
ros toM so that the total number of nonzeros is bounded by O(n+ t2)
and so that the condition number drops to O(n2/t2), when the number
of nonzeros per row in A is bounded by a constant. (Reif shows a con-
struction that overcomes the need to bound the number of nonzeros
per row [14].) Section 9 presents a numerical example. We present a
simple class of diagonally-dominant symmetric matrices and construct
augmented-MWB preconditioners for them. We graphically show the
phases of the construction algorithm on a small matrix. We also show
that augmented-MWB preconditioners perform well compared to mod-
ified incomplete Cholesky preconditioners on a large matrix. We con-
clude the paper with a summary of our results.

2. Background

This section presents technical tools that we use in the analysis of
the preconditioners.
The number of iterations of the conjugate-gradients method for the

solution of systems of linear equations Ax = b is bounded above by the
square root of the spectral condition number κ(A) of A. (To reduce
the norm of the residual by a constant factor.) The condition number
is the ratio of the extreme eigenvalues of A, κ(A) = λmax(A)/λmin(A).
The Conjugate Gradient method can be used to solve consistent linear
systems with a singular coefficient matrix A when a basis for the null
space of A is known. In such cases, the number of iterations is propor-
tional to square root of the ratio of the extreme positive eigenvalues.
When a preconditioner M is used in the conjugate-gradients method,
the number of iterations is proportional to the the square root of the
ratio of the extreme finite generalized eigenvalues of the pair (A,M),
defined below.

Definition 2.1. The number λ is a finite generalized eigenvalue of the
matrix pencil (A,M) if there exists a vector x such that Ax = λMx
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and Mx �= 0. We denote the set of finite generalized eigenvalues by
λf(A,M).
Henceforth whenever we refer to an “eigenvalue” of a matrix pencil,

we mean a finite generalized eigenvalue.

To bound the amount of work in the Preconditioned Conjugate Gra-
dient method, we need to bound the finite eigenvalues of (A,M). We
need to prove two bounds: an upper bound on maxλf (A,M) and a
lower bound on minλf(A,M). We will prove the upper bound directly
and the lower bound by proving an upper bound on max λf(M,A) =
1/minλf(A,M). We therefore only need to show how to prove upper
bounds on the λf (A,M), since the lower bound is proved in essentially
the same way for the matrix pencil (M,A).

Definition 2.2. The support σ(A,M) of a matrix pencil (A,M) is the
smallest number τ such that τM − A is positive semidefinite. If there
is no such number, we take σ(A,M) =∞.
The importance of support numbers stems from the following lemma,

on which all of the analyses of Vaidya’s preconditioners and follow-up
preconditioners are based.

Lemma 2.3. (Support Lemma [9]) If λ ∈ λf(A,M) and M is positive
semidefinite and null(A) ⊆ null(M), then λ ≤ σ(A,M).

The bound given in the Support Lemma is tight if σ(A,M) is finite.
The support lemma allows us to bound the spectrum of a matrix

pencil by showing that τA−M is positive semidefinite. One way to do
so is to split τA−M into a sum of matrices and to show that each term
is positive semidefinite. The next lemma, which was used implicitly by
Vaidya and proved by Gremban [9], states this formally.

Lemma 2.4. (Splitting Lemma) Let Q = Q1 + Q2 + · · · + Qm. If
Q1, Q2, . . . , Qm are all positive semidefinite, then Q is positive semi-
definite.

In previous research, the main tool that was used to prove that
the terms of a splitting are positive semidefinite was the so-called
Congestion-Dilation Lemma [3]. In this paper we use an algebraic gen-
eralization of the Congestion-Dilation Lemma, which is due to Boman
and Hendrickson.

Lemma 2.5. (Rank-1 Support Lemma [4]) if u ∈ Rn×1 is in the range
of V ∈ Rn×k, then σ(uuT , V V T ) = minwTw subject to V w = u.

Our analysis relies on the connection between matrices and graphs,
which we now define formally.

Definition 2.6. The underlying graph GA = (VA, EA) of an n-by-n
symmetric matrix A = (aij) is a weighted undirected graph whose
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vertex set is VA = {1, 2, . . . , n} and whose edge set is EA = {(i, j) : i �=
j and aij �= 0}. The weight of an edge (i, j) is −aij .

Although defining the weight of an edge to be the negative of aij

may seem odd, it turns out to be useful in the context of this paper.

3. Bounding the Smallest Eigenvalue

This section analyzes a certain class of preconditioners for diagonally-
dominant symmetric matrices. The graph GM of the preconditioner M
is a subgraph of the graph GA of A, nonzero off-diagonals in M have
the same values as in A, and diagonal elements in M are set up in
a way that preserves a generalized row-sum property. For this class
of preconditioners, we prove that the smallest eigenvalue of the pencil
(A,M) is at least 1. That is, λmax(M,A) ≤ 1.
The preconditioners that we analyze must preserve the generalized

row-sums that we define below.

Definition 3.1. The row-weight of row i of matrix A is aii−
∑

i�=j |aij |.
We analyze preconditioners whose row weights equal the row weights

of A. If the row weights are nonzero, we subtract from both A and M
a diagonal matrix D so that the row weights in A−D and M −D are
all zero. Clearly, if (A − D) − (M − D) is positive semidefinite, then
A −M is positive semidefinite. Thus, we can assume without loss of
generality that the row weights in A and M are zero.
The next lemma proves that the small eigenvalue of the pencil is at

least 1.

Lemma 3.2. If A is a diagonally-dominant matrix with positive di-
agonal entries and M is a preconditioner whose underlying graph is
a subgraph of GA, and whose row-weights are the same as A’s, then
λmax(M,A) ≤ 1.

Proof. Lemma 2.3 shows that if A −M is positive semidefinite, then
λmax(M,A) ≤ 1. A and M have the same row weights,

aii −
∑
i�=j

|aij | = mii −
∑
i�=j

|mij |

so

aii −mii =
∑
i�=j

|aij| −
∑
i�=j

|mij | =
∑
i�=j

(|aij| − |mij|) .

The matrix M may contain zeros in positions where A contains non-
zeros, but all of M ’s non-zeros are non-zeros in A (with the same
values). Since
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aii −mii =
∑

mij=0

|aij| =
∑
i�=j

|aij −mij | ,

A − M is diagonally dominant. Its diagonal elements are sums of
absolute values, and hence are nonnegative. Such a matrix is positive
semidefinite (see, for example,[2, Theorem 4.9]). �

We will be able to prove this lemma even more simply, once we
prove the Congestion-Dilation Lemma for general undirected graphs
(Lemma 6.3). Then we could simply state that each edge in M is
supported by the equivalent edge A with congestion 1 and dilation 1.

4. Edge Vectors

We now turn our attention to the largest eigenvalue of (A,M). We
propose a preconditioner M whose graph is a specific subgraph of GA,
which allows us to prove an 4nm upper bound on the eigenvalues of
the pencil.
We use the Splitting Lemma and the Rank-1 Support Lemma to

prove the upper bound. We split A into a sum of rank-1 matrices A =∑m
k=1 uku

T
k , where each rank-1 matrix correspond to one edge of GA.

We split 4nmM trivially into 4nmM =
∑m

k=1 4nM . We then use the
Rank-1 Support Lemma (Lemma 2.5) to show that σ(uku

T
k ,M) ≤ 4n,

and hence, that 4nM − uku
T
k is positive semidefinite. This shows that

each of the m terms in the splitting

4nmM − A =

m∑
k=1

(
4nM − uku

T
k

)

is positive semidefinite, and hence the entire sum.
We use Rank-1 Support Lemma to show that σ(uku

T
k ,M) ≤ 4n by

proving that there exist V and w such that M = V V T , V w = uk, and
the entries wi of w satisfy |wi| ≤ 2.
We now show how to represent A as a sum of rank-1 matrices and

how to represent M as M = V V T . These representations rely on the
following definitions of edge vectors and vertex vectors.

Definition 4.1. The edge vector 〈ij〉 of a nonzero entry aij < 0 in a
matrix A has exactly two non-zeros, 〈ij〉min(i,j) = 1 and 〈ij〉max(i,j) =

−1. The edge vector 〉ij〈 of a nonzero aij > 0 also has two non-zeros,
〉ij〈i = 1 and 〉ij〈j = 1. The vertex vector 〈i〉 of row and column i

of a matrix has exactly one nonzero, 〈i〉i = 1. All of these vectors are
n-by-1 column vectors, where n is the dimension of A.
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The next lemma shows how to represent A as a sum of rank-1 ma-
trices uku

T
k where each uk is an edge vector.

Lemma 4.2. If A is symmetric and has zero row-weights aii =
∑

i�=j |aij |,
then we can split A into

A =
∑

aij < 0
i < j

|aij| 〈ij〉 〈ij〉T +
∑

aij > 0
i < j

aij 〉ij〈 〉ij〈T

=
∑

aij < 0
i < j

(√
|aij| 〈ij〉

) (√
|aij | 〈ij〉

)T

+
∑

aij > 0
i < j

(√
aij 〉ij〈

) (√
aij 〉ij〈

)T

Proof. Each term in the sums contributes to exactly two off-diagonal
non-zeros, aij and aji, and to two diagonal elements aii and ajj. Fur-
thermore, each off-diagonal nonzero in A receives contributions from
exactly one term in the sums. It is easy to see that the contributions
sum up to exactly the correct values. �

The preconditioner M can be written as a sum of rank-1 matrices
that correspond to edge vectors. The rank-1 matrices whose sum is M
are a subset of the rank-1 matrices whose sum is A,

M =
∑

(i, j) ∈ EM

aij < 0
i < j

|aij| 〈ij〉 〈ij〉T +
∑

(i, j) ∈ EM

aij > 0
i < j

aij 〉ij〈 〉ij〈T .

We define V to be the matrix whose columns are
√|aij| 〈ij〉 and√aij 〉ij〈

for i < j and (i, j) ∈ EM . We have M = V V T . The preconditioner M
that we construct satisfies the conditions of the next lemma. Once we
show that it does indeed satisfy the conditions, the lemma proves the
4nm condition-number upper bound.

Lemma 4.3. Let A = UUT and let M = V V T , where U is n-by-m
and V consists of the first � columns of U . If for every column uk of
U we have uk = V wk for some wk with entries whose absolute values
are smaller than or equal to 2, then σ(A,M) ≤ 4mn.

Proof. We use the splitting lemma to split A =
∑m

k=1 uku
T
k and mM =∑m

k=1M and show that 4nM − uku
T
k is positive semidefinite. This is

true because by the Rank-1 Support Lemma, σ(uku
T
k ,M) ≤ wT

kwk ≤
4n. �
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5. The Combinatorial Structure of a Maximum-Weight

Basis

Given a set of scaled edge vectors uk =
√|aij | 〈ij〉 (or uk =

√
aij 〉ij〈)

and a weight αk for each vector uk, we wish to find a maximum-weight
basis for the uk. This basis should consist of a subset of the uk’s and
should maximize the sum of the weights of the uk’s in the basis. This
section analyses the structure of the maximum-weight basis. We begin
by showing a simple property of maximum-weight bases.

Lemma 5.1. Let u1, . . . , u� be a maximum-weight basis for the vectors
u1, . . . , um with weights α1, . . . , αm (that is, we assume without loss
of generality that the basis consists of the first � vectors). Let uk =
β1u1 + · · ·+ β�u�. If βi �= 0 then αi ≥ αk.

Proof. Suppose for contradiction that for some i, αi < αk and βi �= 0.
We show that if we remove ui from the basis and insert uk, we end up
with another basis with a larger sum of weights. We have

ui =
1

βi

(uk − β1u1 − · · · − βi−1ui−1 − βi+1ui+1 − · · · − βlul) .

Therefore, the new subset is also spanning. The sum of weights is larger
than in the supposedly maximum-weight basis, a contradiction. �

Our next task is more involved. We show that a combinatorial prop-
erty of a graph ensures that its edge vectors are linearly independent.
We need the following definitions.

Definition 5.2. The sign of an edge (i, j) in the graph GA of a sym-
metric matrix A is the opposite of the sign of aij . (That is, the sign is
positive if aij < 0.) The sign of a path in GA is negative if it contains
an odd number of negative edges; otherwise the path is positive.

We can now state the combinatorial property that guarantees linear
independence of edge vectors.

Theorem 5.3. The edge vectors of an undirected graph GA are lin-
early independent if and only if each connected component contains no
positive cycles and at most one negative cycle.

We shall prove the theorem later using three technical lemmas that
characterize various ways of spanning an edge vector.
The following lemma shows how to span an edge vector using vectors

of edges along a simple path between the original edge’s endpoints. In
this paper we use the term simple path to stand for a path in which
each edge appears only once.
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Lemma 5.4. The edge vectors of a simple positive path between vertices
i and j span the edge vector 〈ij〉. The coefficients of the linear com-
bination are all either 1 or −1. The edge vectors of a simple negative
path between vertices i and j span the edge vector 〉ij〈. The coefficients
of the linear combination are all either 1 or −1.
Proof. We prove the lemma by induction on the length of the simple
path. The claim is clearly true for paths of length 1. Suppose that the
lemma is true for paths of length �. Suppose that there is a path of
length �+ 1 between i and k such that the vertex just before k in the
path is j. By induction, the edges of the path from i to j span 〈ij〉
if that prefix of the path is positive, or 〉ij〈 otherwise. There are now
four cases. If the edge (j, k) is positive and so is the prefix of the path,
then either 〈ij〉+ 〈jk〉, 〈ij〉− 〈jk〉, −〈ij〉+ 〈jk〉, −〈ij〉− 〈jk〉 is equal
to 〈ik〉 (the others are −〈ik〉, 〈ik〉 − 2 〈j〉, and −〈ik〉 + 2 〈j〉). The
second case occurs when (j, k) is positive but the prefix of the path is
negative, the third and fourth when (j, k) is negative and the prefix is
either positive or negative. Their analysis is similar and is omitted. �

Lemma 5.5. The edge vectors of a negative cycle that contains vertex
i and of a simple path between i and j, where the edges of the path are
disjoint from the cycle, span the vertex vector 〈j〉. The coefficients of
the linear combination are ±1 for the edges of the path and ±1/2 for
the edges of the cycle.

Proof. Let (i, k) be an edge in the cycle. If (i, k) is positive, then the
path from i to k along the cycle must be negative, since the entire cycle
is negative. Lemma 5.4 shows that 〉ik〈 is a linear combination of the
edge vectors along this negative path, with coefficients either 1 or −1.
Since 〈ik〉 + 〉ik〈 = 2 〈i〉 (if i < k; otherwise −〈ik〉 + 〉ik〈 = 2 〈i〉), 〈i〉
is a linear combination of the edges of the cycle. The coefficients are
either 1

2
or ±1

2
. If (i, k) is negative, the rest of the cycle is positive,

and a similar argument shows that the cycle spans 〈i〉. Since the cycle
spans 〈i〉 with coefficients ±1

2
and the path from i to j spans either

〈ij〉 or 〉ij〈 with coefficients ±1, the cycle and path together span 〈j〉
with the desired coefficients. �

Lemma 5.6. The edge vectors of a connected component that contains
a negative cycle span the edge vectors 〈ij〉 and 〉ij〈, for any two vertices
i and j in the component. The coefficients are all ±1, ±2 or 0.

Proof. Suppose that there is a simple path from i to j that contains
cycle edges. Then we can construct another simple path from i to j, in
which we will replace the cycle edges in the first path with all the other
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cycle edges. These two simple paths have opposing signs. Therefore,
by Lemma 5.4, one path spans 〈ij〉 and the other spans 〉ij〈, both with
coefficients ±1.
Now suppose that there is no simple path from i to j that contains

cycle edges. Let k be the first vertex that is both on the path from i to
the cycle and on the path from j to the cycle. Such a vertex must exist,
otherwise there is a simple path between i and j that contains cycle
edges, a contradiction of our supposition. The vertex k may, however,
be one of i and j. The sign of the path between i and j is determined
by the sign of the paths between i and k and between k and j. The
vectors 〈ik〉 and 2 〈k〉 span 〉ik〈 with coefficients ±1, which means that
the path from i to j and the path from k to the cycle and the cycle
span both 〈ij〉 and 〉ij〈 with the desired coefficients. �
We are now in position to prove Theorem 5.3,

Proof. (⇒) Suppose to the contrary that there is a positive cycle in GA.
Let e be an edge in that cycle. Then the path between e’s endpoints
along the cycle has the same sign as e’s. Lemma 5.4 shows that the
vector corresponding to e is a linear combination of the vectors of the
edges along the path. Therefore, the vectors are linearly dependent.
Suppose to the contrary that a connected component contains two

simple negative cycles. Let us choose a vertex i in the following way:
if the two cycles contain common vertices, then we choose i to be one
of those vertices. Otherwise we choose i to be one of the vertices on a
path connecting the two cycles. Lemma 5.5 shows that 〈i〉 is a linear
combination of the vectors corresponding to the edges along any of the
paths from i to itself traveling through a negative cycle. Since 〈i〉 could
be represented as two different linear combinations of the edge vectors,
the vectors are linearly dependent.
(⇐) Let G = (V,E) be a graph, where each connected component

contains no positive simple cycles, and at most one negative simple
cycle. Suppose to the contrary that the vectors corresponding to the
edges are linearly dependent. Therefore, there exists a subgraph G∗ =
(V,E∗) ⊂ (V,E) and coefficients αij �= 0, such that

∑
(i, j) ∈ E∗

(i, j) is positive
i < j

αij 〈ij〉+
∑

(i, j) ∈ E∗

(i, j) is negative
i < j

αij 〉ij〈 = 0 .

The subgraph G∗ cannot contain any leaves. If i is a leaf, only one
edge vector contains a nonzero in position i, so this nonzero cannot
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be canceled out by the other edge vectors in G∗. Also, G∗ is a sub-
graph of G, so each connected component contains no more than one
simple cycle. Therefore, G∗ is a union of distinct simple negative cy-
cles. By Lemma 5.5, each simple negative cycle of length n0 spans the
n0-dimensional subspace of the n0 corresponding vertex vectors, and
therefore they are linearly independent. No vertex appears in more
than one cycle, so the entire set of vectors is linearly independent, a
contradiction. �

Theorem 5.3 provides a characterization of independent edge vectors.
The next theorem characterizes the combinatorial structure of any basis
of a connected graph.

Theorem 5.7. Let GA = (V,E) be a connected graph, let E ′ be a
set of edges corresponding to a basis of the edge vectors of E, and let
GB = (V,E ′). Then GB is either a spanning tree of GA or it is a
spanning set of 1-trees (graphs consisting of a tree plus one edge whose
endpoints are in the tree).

Proof. Suppose for contradiction that GB contains two or more con-
nected components, one of which is a tree. Since GA is connected,
there is an edge e ∈ E that connects the tree to another component.
The edge vector corresponding to e is linearly independent of the edge
vectors of GB, because even after we add e to GB, no component con-
tains a positive cycle or more than one negative cycle. This contradicts
the assumption that the edges of GB form a basis. Therefore, if GB

contains more than one component, all the components must be 1-trees
(and in particular, their cycles must be negative). �

This theorem makes it clear exactly when a spanning tree forms a
basis for a set of edge vectors:

Lemma 5.8. The edges of a spanning tree of a connected graph GA

form a basis for the edge vectors of GA if and only if GA has no negative
cycles.

6. The Condition Number of MWB Preconditioners

The characterization of linearly-independent sets of edge vectors that
Theorem 5.3 provides will prove useful in the next section, where we
use it to efficiently find a maximum-weight basis. Our remaining task
in this section is to complete the analysis of the upper bound on the
condition number. The next lemma provides the last technical tool
that we need.
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Lemma 6.1. Let u1, . . . , u� be a maximum-weight basis for a set of m
scaled edge vectors uk =

√|aij | 〈ij〉 (or uk =
√
aij 〉ij〈) with weights√|aij |. Let uk = w1u1 + · · ·+ w�u�. Then wi ≤ 2.

Proof. Let uk =
√|aij| 〈ij〉 (or uk =

√
aij 〉ij〈) be the scaled edge

vector we want to support. Let e = (i, j) and let GM be the graph
underlying the maximum-weight basis.
We first show how the edge vectors of the edges in the maximum-

weight basis support 〈ij〉 (or 〉ij〈). This analysis splits into three cases
depending on the connected components that i and j belong to. We
then show how the maximum-weight basis itself supports uk.
If i and j are in the same connected component in the maximum-

weight basis and that component has no cycles, then the path between
i and j must have the same sign as e’s, or else e could have been
added to the basis. By Lemma 5.4, the vector 〈ij〉 (or 〉ij〈) is a linear
combination of the edge vectors of the edges in the maximum-weight
basis with coefficients ±1 or 0.
If i and j are in the same connected component in the GM , and that

component has a negative cycle, then by Lemma 5.6 vector 〈ij〉 (or
〉ij〈) is a linear combination of the edges in the maximum-weight basis
(without scaling), with coefficients ±1,±2 or 0.
If i and j are in two separate connected components, then these two

components must both include a negative cycle, or else e could have
been added to the basis. By Lemma 5.5, the vector 〈ij〉 (or 〉ij〈) is a
linear combination of the edges in the maximum-weight basis (without
scaling), with coefficients ±1

2
, ±1 or 0.

In all three cases, the 〈ij〉 (or 〉ij〈) is a linear combination of the
unscaled vectors of the edges in the maximum-weight basis, with coef-
ficients whose absolute values are smaller than or equal to 2. Therefore,

wr = γr

√|aij|√|br| ,
where γr ≤ 2 and where the br’s are the weights of the edges in the

MWB. By Lemma 5.1,

√
|aij |√
|br|
≤ 1 for 1 ≤ r ≤ �. It follows that for

1 ≤ r ≤ �, wr = γr

√
|aij |√
|br |
≤ 2 · 1 = 2. �

This concludes the analysis of the condition number of a maximum-
weight basis, since we can now apply Lemma 4.3 to prove the upper
bound on the spectrum. The lower bound has already been established
in Lemma 3.2. We have, therefore, proven the following theorem.
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Theorem 6.2. The condition-number of a matrix pencil (A,M) where
A is symmetric, diagonally dominant with positive diagonals and M is
a maximum-weight basis preconditioner is bounded by 4mn.

As a side effect of our analysis, we can now formulate and prove a
generalized Congestion-Dilation Lemma. We essentially use the same
technique that Boman and Hendrickson used to prove the original
Congestion-Dilation Lemma [4].

Lemma 6.3. Let e = (i, j) be an edge of weight a. Let u0 be the scaled
vector representing e. Let V = [u1, u2, . . . , u�] be scaled edge vectors

uk =
√|bk| 〈ij〉 (or uk =

√
bk 〉ij〈), corresponding to edges that support

e in one of the following ways: either by a simple path whose sign is
the same as e’s, or by two negative cycles and two paths from each of
e’s endpoints to the cycles, or by a path from e’s endpoints through a
negative cycle. Then σ(uuT , V V T ) ≤ 4a

min{bk}�.
Furthermore, in the first two cases the support σ(uuT , V V T ) is bounded

by a
min{bk}�.

Proof. By Lemmas 5.4, 5.5 and 5.6, e’s vector is a linear combina-
tion of the vectors in V , with all the coefficients ck either ±2, ±1
or ±1

2
. Let the linear combination coefficients be (c1, c2, . . . , c�). Let

w = (c1
√

a√
b1
, c2

√
a√
b2
, . . . , c�

√
a√
b�
)T . Then u = V w. Therefore:

σ(uuT , V V T ) ≤ wwT =

�∑
k=1

c2k
a

bk
≤

�∑
k=1

4
a

bk
≤

�∑
k=1

4a

min{bk} =
4a

min{bk}�

In fact, if the support of uk is done by one of first two ways, then
the coefficients of the linear combination are all either ±1 or ±1

2
, and

we have

σ(uuT , V V T ) ≤ wwT =

�∑
k=1

c2k
a

bk
≤

�∑
k=1

1· a
bk
≤

�∑
k=1

a

min{bk} =
a

min{bk}�

�

As in the analysis of the Congestion-Dilation Lemma for M-matrices,
we interpret � to be the dilation and a

min{bk} to be the congestion.
As we have mentioned, we can use this generalized Congestion-

Dilation Lemma to provide another proof of Lemma 3.2: each edge
in M is supported by the equivalent edge in A with congestion 1 and
dilation 1.
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7. An Efficient Algorithm for Constructing

Maximum-Weight Bases

It turns out that finding a maximum-weight basis for a set of scaled
edge vectors is an instance of a well-studied problem [7, Section 17.4].

A set of m scaled edge vectors uk =
√|aij| 〈ij〉 (or uk =

√
aij 〉ij〈)

with weights
√|aij | and the collection of linearly-independent subsets

define a combinatorial structure called amatroid. There exists a generic
greedy algorithm for finding a so-called maximal independent set in a
matroid. In our matroid, a maximal independent set is the maximum-
weight basis that we wish to construct.
The generic maximum-weight basis algorithm works by sorting the

elements of the matroid (the scaled edge vectors) by weight and trying
to add them to the basis, starting from the heaviest. The next vec-
tor to be considered is added to the independent set if it is linearly
independent of the vectors already in the set.
To apply the generic algorithm, we must provide a routine that tests

whether an edge vector is linearly dependent on the vectors already
in the set. Using a rank-revealing factorization, such as the singular-
value decomposition (SVD) is too expensive. The vectors are highly
structured, so we can test for linear independence more efficiently.
The algorithm that we use for testing independence relies on the

characterization of independent sets that Theorem 5.3 provides. We
maintain a data structure that allows us to quickly test whether we
can add a new edge vector to the basis. More specifically, we test
whether the new edge closes a positive cycle or a second negative cycle
in the underlying graph. If so, it is linearly dependent on the edges
already in the basis.
The data structure that we use is a forest of shallow rooted trees that

represent connected components in the underlying graph. We augment
this data structure, which is sometimes referred to as a union-find data
structure, with labels that allow us to quickly determine the sign of
paths in the graph. The basic union-find data structure was apparently
first used by McIlroy and Morris (see [1, page 169]); The data structure
and its complexity analysis are presented in several textbooks, such
as [1] and [7]. Tarjan proposed the augmentation technique that we
use [15].
The forest is represented by an array π of length n, where n is the

size of the graph. Each rooted tree in the forest represents a connected
component of the graph, although the topology of the trees has nothing
to do with the topology of the graph. The parent of vertex i is π[i]. If i
is the root of a tree, π[i] = i. We also maintain an array r; if i is a root
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then r[i] is the height of the tree rooted at i; r is undefined otherwise.
The two arrays π and r are part of the standard implementation of
union-find data structures.

Algorithm 1 Finding the representative vertex of a connected com-
ponent (the root of the tree) with path compression. The algorithm is
an augmented version of the standard union-find procedure that also
maintains the sign of paths in the graph when the tree is compressed.
Indentation denotes block structure.
vertex AugmentedFindSet(vertex i)
temporary vertex j
if (i �= π[i])

j ←AugmentedFindSet(π[i])
s[i]← s[i] xor s[π[i]]
π[i]← j

return π[i]

Algorithm 2 Unifies i’s and j’s trees, using an edge whose sign is �.
Returns the root of the united tree.
vertex AugmentedUnion(vertex i,vertex j,boolean edgesign)
temporary vertices ρi,ρj // representatives of i and j
ρi ← π[i]
ρj ← π[j]
if (r[ρi] > r[ρj ] )

π[ρj ]← ρi

s[ρj ]← s[i] xor s[j] xor edgesign
return ρi

else
π[ρi]← ρj

s[ρi]← s[i] xor s[j] xor edgesign
if (r[ρi] = r[ρj ])
r[ρj]← r[ρj ] + 1

return ρj

We augment the union-find data structure with two additional bit
arrays, s and c. The value s[i] represents the sign of the path in the
graph between i and π[i] (0 for positive and 1 for negative); it is only
defined if the connected component is a tree. The value c[i] is defined
only for roots and specifies whether the connected component has a
cycle.
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Our algorithm is presented in Algorithms 1, 2, 3 and 4. Algorithm 4
is an instance of the generic greedy maximal-independent-set algo-
rithm, applied to our case. Algorithm 3 tests for independence; it
uses Algorithms 1 and 2 as subroutines.

Algorithm 3 Given two vertices i and j and the weight w of the edge
connecting them, this algorithm adds (i, j) to the basis if and only if
the edge is independent of the current independent set.

AddEdgeIfIndependent (vertex i, vertex j, real w)
temporary vertices ρi, ρj ,unionroot
temporary boolean edgesign
edgesign← (w > 0)
ρi ← AugmentedFindSet(i)
ρj ← AugmentedFindSet(j)
if (ρi �= ρj)

// i and j are in different connected components
if ((c[ρi] = 0)or(c[ρj ] = 0))

// one of the connected components does not contain a
cycle

AddEdgeToBasis(i, j, w)
unionroot ← AugmentedUnion(i, j,edgesign)
c[unionroot]← c[ρi] or c[ρj ]

else
// i and j are in the same connected component
if ((edgesign �= s[i] xor s[j]) and(c[ρ1]==0))

// the connected component does not contain a cycle, and
// adding (i, j) does not close a positive cycle
AddEdgeToBasis(i, j, w)
c[ρi]← 1

Algorithm 4 This is the generic greedy algorithm to find a maximal-
independent set of a matroid.

GreedyMaximumWeight()
Sort(edges by absolute value of weight)
foreach (e=(i,j) an edge of weight w)
if (EdgeIsIndependent(i, j, w))

AddEdgeToBasis(e)

The correctness of the algorithm relies on the correctness of the
generic greedy algorithm, the correctness of the union-find data struc-
ture, on Theorem 5.3, and on the correct maintenance of the arrays
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s and c. The correct maintenance of c is trivial. The correct main-
tenance of s is more challenging to prove. We start with a simple
technical lemma.

Lemma 7.1. If i, j, and k are vertices in a connected component of
GA that contains no cycles and

s[i, j] =

{
0 if the path in GA between i and j is positive
1 otherwise,

then s[i, k] = s[i, j] xor s[j, k].

Proof. Since the connected component is a tree, the paths from i to j
and from k to j must meet at some vertex x; from x to j the two paths
are identical (x and j may be the same vertex). The simple path from
i to k is in fact concatenation of the path from i to x to the path from
x to k. Therefore,

s[i, j] xor s[j, k] = (s[i, x] xor s[x, j]) xor(s[j, x] xor s[x, k])

= s[i, x] xor(s[x, j] xor s[j, x]) xor s[x, k]

= s[i, x] xor s[x, k]

= s[i, k] .

�

The next three lemmas show that the algorithm does, indeed, main-
tain s correctly.

Lemma 7.2. AugmentedFindSet preserves the correctness of s.
That is, if the array s is correct before the call of AugmentedFind-

Set, then it is correct after the subroutine returns.

Proof. AugmentedFindSet changes the values of π and c along the
path from a vertex i to the root. We prove the correctness by induction
on the distance from the root. If i is the root, the algorithm returns
immediately, so the claim holds. Suppose the lemma is correct for all
the vertices between vertex i and the root. By Lemma 7.1, we have that
s[i, root] = s[i, π[i]] xor s[π[i], root]. The parent of π[i] the recursive call
is the root, and the parent of i when the subroutine returns is also the
root, so correctness is maintained. �

Lemma 7.3. If the arguments i and j to AugmentedUnion are im-
mediate children of roots and if s is correct before the call, then s is
maintained correctly by AugmentedUnion.

Proof. The only change in the array π is π[ρj ] = ρi or π[ρi] = ρj. By
Lemma 7.1 s[ρi, ρj ] = s[ρi, i] xor s[i, j] xor s[j, ρj ]. By the hypothesis of
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the lemma, ρi = π[i] and ρj = π[j]. Since s[ρi, i] = s[i], s[j, ρj ] = s[j]
and s[i, j] = �, the lemma is correct. �
Lemma 7.4. AddEdgeIfIndependent is correct.

Proof. If i and j are in different connected components and both con-
tain cycles, the routine returns without adding (i, j) to the basis. If
they are in different components and at most one contains a cycle, the
routine adds (i, j).
If i and j are in different components, then s[i] xor s[j] is the sign of

the path between them, since both are children of the same root. In
that case, the routine adds the edge if and only if the sign of the edge
is different from the sign of the path (i.e., the edge closes a negative
cycle) and there is no cycle in the component.
The correct maintenance of s follows from the fact that we call Aug-

mentedUnion only when the arguments are children of roots. �
The complexity analysis of the algorithm is simple. It shows that

the running time of the algorithm is dominated by sorting the edges.
The total cost of the calls to AddEdgeIfIndependent is essentially
linear in m. The proof is essentially identical to Tarjan’s analysis of
augmented union-find data structures in [15]. Note that we do not
claim that this algorithm is optimal; in particular, there may be a way
to avoid sorting the edges.

Theorem 7.5. GreedyMaximumWeight runs in O(m lgm+mα(m,n)) =
O(m lgm), where α is the inverse of Ackermann’s function.

Proof. Sorting the edges takes O(m lgm) time.
We make m calls to AddEdgeIfIndependent. Each call makes

two calls to AugmentedFindSet and at most one to Augment-

edUnion. The other costs in AddEdgeIfIndependent are O(1).
Since AugmentedFindSet and AugmentedUnion are O(1) mod-
ifications to the corresponding standard union-find routines, the total
cost of all the calls is O(mα(m,n)). �
We can now bound the total amount of work required to solve linear

systems using MWB preconditioners.

Theorem 7.6. The total amount of work to solve a symmetric diagonally-
dominant linear system with positive diagonals using the conjugate-
gradients method with a MWB preconditioner is

O(m lgm + n+ n
√
mn)

where n is the size of the system and m is the number of offdiagonal
entries in the strictly upper (or lower) part of the coefficient matrix.
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Proof. Constructing the preconditioner costs O(m lgm+mα(m,n)) =
O(m lgm).
Factoring the preconditioner costs O(n) work. We eliminate first

non-cycle vertices using the minimum-degree algorithm. The vertices
that we eliminate always have degree 1 so their elimination costs O(1)
and generates no fill. We then eliminate the vertices that belong to
cycles. Each such elimination generates one fill edge (except for the
last 3 vertices in each cycle that generate no fill), so they also cost
O(1) to eliminate.
Finally, the preconditioner has O(n) nonzeros, so each conjugate

gradients iteration costs O(n+m) work. Since the condition number is
bounded by 4mn, the number of iterations is bounded by O(

√
mn). �

8. Augmented Maximum-Weight Bases

Our next step is to apply Vaidya’s augmentation strategy to maximum-
weight basis preconditioners. We construct the preconditioner in the
following way:

(1) We first find the maximum-weight basis GC of the graph GA.
We call this basis the core basis.

(2) We partition each connected component of the basis into con-
nected subgraphs whose sizes are between n/t and ((d+1)n/t)+
1, where d is the maximum degree of vertices in the MWB. Com-
ponents whose initial size is at most n/t need not be partitioned
at all.

(3) In each subgraph, we complete the set of edges induced by the
core basis to a MWB of the subgraph.

(4) For each pair of subgraphs, we complete the set of edges in-
duced by the core basis on the pair to a MWB of the pair. This
final step is equivalent to the step of adding the heaviest edge
between each pair of subgraphs in Vaidya’s MST precondition-
ers.

We show that the support of this preconditioner, like that of Vaidya’s
preconditioner for M-matrices, is O(n2/t2).
To partition a connected component of the basis, we remove one cycle

edge (if it has a cycle) and use an algorithm called TreePartition,
to decompose the remaining tree into connected subtrees. TreePar-

tition, which is shown in Figure 8.1, decomposes recursively a rooted
tree T into a set of connected subtrees. We denote the maximum num-
ber of children in the tree by d. The theorem below states that the
number of vertices in each subtree is between n/t and (dn/t) + 1, ex-
cept for the subtree containing the root, which might be smaller. This
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TreePartition(vertex i)
# comment: si = number of vertices in the subtree rooted at i
si ← 1
for each child j of i

if (sj > n/t+ 1)
TreePartition(j)

if (sj ≥ n/t)
form a new subtree rooted at j
disconnect j from i

else
si ← si + sj

Figure 8.1. The algorithm that we use to decompose
the maximum spanning tree. The code splits the tree T ,
which is stored in a global data structure. The code uses
a global integer array s.

algorithm is taken from [5, 6], where the correctness theorem is proved.
The paper [5, 6] also discusses how certain details in TreePartition

affect the sizes of subgraphs in practice.

Theorem 8.1. TreePartition(i) splits the subtree rooted at i into
connected subtrees. The size of each subtree is between n/t and (dn/t)+
1, except perhaps for the subtree that contains i, which may be smaller
(but not larger).

The implementation uses a global array s of n integers, where si is
initialized before the first call to TreePartition to be the number of
vertices in the subtree rooted at i. The initial call to TreePartition

passes the root of T as an argument. Partitioning a MWB is now
straightforward.

Lemma 8.2. Each connected component of a maximum-weight basis
whose size is at least n/t can be partitioned into connected subgraphs
whose sizes are between n/t and ((d+ 1)n/t) + 1.

Proof. Each connected component contains at most one cycle. We can
remove one edge from the cycle, and be left with a tree. We choose
an arbitrary root for the tree. Running TreePartition on the tree
partitions it into subgraphs whose sizes are between n/t and (dn/t)+1,
except for the subgraph containing the root which may be smaller. If
the size of the root’s subtree is smaller than n/t, we connect it to
one of the adjacent subtrees (whose size is no greater than (dn/t)+ 1).
Therefore the basis is partitioned into connected subgraphs whose sizes
are between n/t and ((d+ 1)n/t) + 1. �
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In addition to partitioning large connected components, we also
bundle together small components into subgraphs whose sizes are be-
tween n/t and 2(n/t), except perhaps for one subgraph which might
be smaller.
Our next task is to show that we can always complete a subset of

the core maximum-weight basis induced by a subgraph to a maximum-
weight basis of the subgraph. We prove this using a more general lemma
that applies to any matroid in which dependence is linear dependence.

Lemma 8.3. Let S be a group of vectors with a maximum-weight basis
M ⊆ S, and let S ′ ⊂ S. Then M ∩ S′ can be completed to form a
maximum-weight basis of S ′.

Proof. We assume without loss of generality that the basis M was con-
structed using the generic greedy algorithm. We prove the lemma by
showing that the greedy algorithm, when executed on S′, finds a basis
M ′ such that (M ∩ S′) ⊆ M ′. More specifically, we run the greedy
algorithm on S ′ using the ordering of vectors that is induced by the
ordering that was used to construct M .
Let us assume to the contrary that M ∩ S′ cannot be completed

into a maximum-weight basis of S′. We consider a run of the generic
greedy algorithm to form a basis for S′. We start with an empty set
M ′, and add vectors one by one to the set, by weight. We add the
next vector if it is linearly independent of the vectors already in M′.
For the assumption to hold, we must eventually come upon a vector
s ∈M ∩ S′ that we cannot add to M ′.
Let s ∈ M ∩ S′ be the first vector that we cannot add to M ′. This

vector must be a linear combination of the vectors already inM′. These
vectors are either vectors in M or vectors that were rejected when M
was constructed but accepted when M′ was constructed. Vectors that
were rejected fromM must have been linear combinations of preceding
vectors which were accepted intoM . Therefore, s is linearly dependent
of vectors in M that precede it in the weight ordering. Hence, s would
not have been accepted into M , so s �∈M ∩ S′, a contradiction. �

We apply this lemma in the following way. The basis M corresponds
to GC , the core MWB of GA, and S

′ corresponds to the set of edges
induced by a subgraph of GA.
This lemma allows us to bound the number of edges that are needed

to complete a basis for a subgraph or a pair of subgraphs. The edge
subset GC , when restricted to the edges induced by the k vertices of
a connected subgraph of GC , contains at least k − 1 edges. Therefore,
we need to add at most one edge to complete the induced subset to a
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maximum-weight basis of the subgraph. When the maximum-weight
basis is induced upon a pair of connected subgraphs, it contains at
least 2(k − 1) edges. Therefore, for each pair, at most two edges need
to be added. If the subgraph of GC consists of a bundle of several
small connected components, the induced subset is already a maximum-
weight basis. Similarly for a pair of such bundles. To a pair consisting
of one bundle of small components and one large connected component,
we may need to add at most one edge to complete a basis.

Theorem 8.4. An augmented maximum-weight basis preconditioner
M supports a symmetric diagonally-dominant matrix A whose diagonal
entries are positive with support number bounded by

O

(
d3n2

t2

)
,

where d + 1 is the maximum number of nonzeros per row in A, and
where t is the parameter used to partition the core basis. Furthermore,
the graph of the preconditioner has n +O(t2) edges.

Proof. We split A into A =
∑m

k=1Ak =
∑m

k=1 uku
T
k , a sum of rank-1

matrices corresponding to edges in GA. We split the preconditioner M
into a sum of k + 1 matrices, M = R +

∑m
k=1Mk, where Mk supports

Ak and R is symmetric positive semidefinite. For an edge k whose
endpoints are in a single subgraph of GC , Mk corresponds to a scaling
of the MWB of that subgraph. For an edge whose endpoints are in two
distinct subgraphs of GC , Mk corresponds to a scaling of the MWB
of the pair of subgraphs. An edge k′ in GM supports at most d(((d +
1)n/t)+ 1) edges. Consider an endpoint i of k′. This vertex is in some
subgraph of GC , and k

′ supports only edges with at least one endpoint
in this subgraph. There are at most d(((d+ 1)n/t) + 1 edges incident
to vertices in a subgraph, hence the bound.
Therefore, we scale each maximum-weight basis by a factor of d(((d+

1)n/t) + 1 to form Mk. This ensures that R remains positive semidefi-
nite.
By Lemma 6.3, Mk support Ak with support number

4 · d
(
(d+ 1)n

t
+ 1

)
· 2

(
(d+ 1)n

t
+ 1

)
= O

(
d3n2

t2

)
.

We now bound the number of edges in the preconditioner. There are
at most n edges in the core basis. There are O(t) subgraphs of the core
basis, and for each one and each pair we add at most two edges to the
preconditioner. This proves the bound on the number of edges in the
GM . �
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We now analyze the amount of work required for the entire solution
process.

Theorem 8.5. The total amount of work to solve a symmetric diagonally-
dominant linear system with positive diagonals and with a bounded
number of nonzeros per row using the conjugate-gradients method with
an augmented MWB preconditioner is

O(n lgn+ (n+ t6) + (n + t4) · n/t) = O(t6 + n2/t+ nt3)

where n is the size of the system and t is the number of subgraphs that
the MWB is partitioned into.The asymptotically optimal value for t is
t = Θ(n0.25), which yields O(n1.75) work.

Proof. Constructing the preconditioner costs O(n lgn). We first build
the core basis. We then split the basis into subgraphs and complete
the basis for each subgraph. The total cost of all the completions is
O(n) since we process each edge by weight and determine whether it
completes a subgraph basis in O(α(n, n)) amortized work. Next, we
complete the bases for all pairs in a similar way: we go over the edges
in weight order and determine whether each one can be added to a pair
basis. The cost per edge is the same as in the previous case.
The rest of the proof follows almost exactly the proof of Lemma 4.1

in [3]. The only difference is that the elimination of a cycle edge may
introduce one fill edge, but this does not affect the analysis. �

If GA is planar, we can show a better work bound. If the graph
is planar and the MWB is a tree, Bern et al. [3] show that the total
amount of work to solve a linear system is O(n1.2). Their bound relies
on two observations:

(1) Since each subgraph in the partitioning of the core basis is con-
nected, we add at most O(t) edges to the preconditioner to form
basis for the pairs (versus O(t2) in the general case). This is
true since the subgraphs themselves can be contracted to form
a planar graph with O(t) vertices.

(2) The augmented-MST basis without the edges that complete the
pair bases forms a forest. We eliminate all the degree-1 and -2
vertices that are not adjacent to these pair edges. This intro-
duces only O(n) fill edges, costs only O(n) work, and preserves
planarity. The remaining forest has at most O(t) vertices (those
adjacent to pair edges). Thus, after eliminating degree-1 and
-2 vertices, we are left with a planar graph with O(t) vertices.
Using nested dissection, we eliminate the rest of the vertices,
which costs O(t1.5) work and generates O(t lg t) fill elements.
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This analysis remains valid for MWB as long as the decomposition of
the core basis into subgraphs generates at most O(t) connected sub-
graphs. If, on the other hand, the decomposition generates subgraphs
with several connected components (this happens when the core basis
includes many small 1-trees which our algorithm bundles into larger
subgraphs), the analysis breaks down. Specifically, we may need to
add O(t2) edges to support all the pairs of subgraphs, as in the general
case. We conjecture that there may be a clever way to bundle small
1-trees into subgraphs that guarantees that only O(t) edges are added
to support all pairs of subgraphs, which would imply that we can solve
such systems in O(n1.2) total work.

9. A Numerical Example

This section presents a numerical example using a class of matri-
ces that arise from a finite-differences discretization of the partial-
differential equation

cx
∂2u

∂x2
− cy ∂

2u

∂y2
+ cu = g ,

where c, cx, and cy are positive constants and g is an arbitrary function.
We discretized the equation with periodic boundary conditions using
a 5-point stencil on a square domain. The graph of the matrix is
shown in Figure 9.1. We selected c so that the matrix has zero row
weights (except for one row where we increased the row sums to obtain
a nonsingular matrix). We used right-hand sides with uniform random
elements in [0, 1] for the discretized equations.
We have implemented the augmented-MWB construction algorithm

and have used it to solve these linear systems. The code is an exten-
sion of the augmented maximum-spanning-tree preconditioning code
described in [5, 6].
Note that when the mesh has an even number of points in the y

direction, the graph of the coefficient matrix has only positive cycles.
Therefore, in these cases the bases reduce to spanning trees, as stated
in Lemma 5.8.
Figure 9.1 shows the graph of A for a discretization on an 11-by-11

mesh, the graph of the maximum-weight basis, the partitioning of the
basis into two subgraphs of roughly half the size, and the edges that
augment the MWB.
Figure 9.2 describes the convergence of augmented-MWB (AMWB)

and modified-incomplete-Cholesky (MICC) preconditioners on this model
problem with a mesh size of 1001-by-1001. We used METIS [12, 13]
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Figure 9.1. The graph of A for an 11-by-11 mesh (top
left), the maximum-weight basis (top right), the parti-
tioning into subgraphs (bottom left), and the complete
preconditioner (bottom right). Red lines denote negative
edges and green lines denote positive ones. The edges at
the boundaries of the mesh are wraparound edges that
connect a vertex at the top boundary to a vertex in the
bottom with the same left-right displacement, and sim-
ilarly for the left and right boundary vertices. In the
two bottom graphs, ×’s denote the vertices of one sub-
graph and filled circles the vertices of the other subgraph
(the basis was split into 2 subgraphs in this case). The
two edges marked by black arrows in the preconditioner
were added to the maximum-weight basis to complete
the bases of the two subgraphs. Since there are only two
subgraphs, no edges were required to complete the base
of the pair. Note that the maximum-weight basis has a
negative cycle in this case.
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Figure 9.2. The convergence of augmented MWB ver-
sus the convergence of modified incomplete Cholesky
(MICC) preconditioners for the model problem of this
section. The mesh size was 1001-by-1001. The graphs
show the number of iterations required to reduce the 2-
norm of the residual by a factor of 108 in a conjugate-
gradients solver as a function of the fill in the precondi-
tioners.

to order the AMWB preconditioners to reduce fill. We do not pre-
order the matrix prior to the incomplete factorization, so it remains
ordered using the natural row-by-row ordering of the mesh. The figure
shows convergence for isotropic problems, where cx = cy = 1, and for
anisotropic problems, where cx = 1 and cy = 100 or vice versa.
The graphs indicate that AMWB are more effective than MICC pre-

conditioners on this problem. They converge at about the same rate
when the direction of weak influences coincide with the order of incom-
plete elimination (y-direction anisotropy). The AMWB precondition-
ers maintain their performance when the direction of weak influences
changes, but the MICC preconditioners deteriorate. The AMWB pre-
conditioners are also more effective on isotropic problems.
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This example is meant to illustrate the construction of MWB pre-
conditioners and to demonstrate that they can be effective. We do
not claim that this example establishes that MWB are effective and
efficient in practice. To do so would require a more detailed study
that examines several classes of problems, several performance metrics
(both convergence and running times), and perhaps several ordering
algorithms.

10. Conclusions

This paper presents maximum-weight-basis preconditioners for diagonally-
dominant positive-definite symmetric matrices. The theory presented
here proves Vaidya’s claims concerning these preconditioners, which he
proposed about ten years ago. The theory presented here extends con-
siderably our ability to analyze preconditioners by means of splittings
and support bounds.
Much of the appeal of augmented-MWB preconditioners and other

preconditioners proposed or inspired by Vaidya stems from the fact that
their performance can be analyzed rigorously. Theorems 7.6 and 8.5
provide bounds on the amount of work required to solve linear systems
using MWB and augmented-MWB preconditioners. These bounds ap-
ply to discretizations with unstructured grids and to problems with
inhomogeneous (variable) coefficients. Provable bounds for incomplete-
factorization preconditioners are typically weaker.
We have implemented the algorithm presented in this paper. We

used this implementation to solve a model problem. Our limited ex-
periments show that augmented-MWB preconditioners are effective.
Acknowledgements. Thanks to Haim Kaplan for pointing us to Tar-
jan’s paper on augmented union-find data structures.
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