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Abstract. We present a new out-of-core sparse symmetric-indefinite factor-
ization algorithm. The most significant innovation of the new algorithm is a
dynamic partitioning method for the sparse factor. This partitioning method
results in very low input-output traffic and allows the algorithm to run at
high computational rates even though the factor is stored on a slow disk. Our
implementation of the new code compares well with both high-performance in-
core sparse symmetric-indefinite codes and with a high-performance out-of-core
sparse Cholesky code. More specifically, the new code provides a new capa-
bility that none of these existing codes has: it can factor symmetric indefinite
matrices whose factors are larger than main memory; it is somewhat slower,
but not by much. For example, it factors, on a conventional 32-bit worksta-
tion, an indefinite finite-element matrix whose factor size is about 10 GB in
less than an hour.

1. Introduction

We present a method for factoring a large sparse symmetric indefinite matrix A.
By storing the triangular factor of A on disk the method can handle large matrices
whose factors do not fit within the main memory of the computer. A dynamic
I/O-aware partitioning of the matrix ensures that the method performs little disk
I/O even when the factor is much larger than main memory. Our experiments
indicate that the method can factor finite-element matrices with factors larger
than 10 GB on an ordinary 32-bit workstation (a 2.4 GHz Intel-based PC) in less
than an hour.

This method allows us to solve linear systems Ax=b with a single right-hand-
side and linear systems AX = B with multiple right-hand side efficiently and
accurately. Linear systems with a symmetric indefinite coefficient matrix arise
in optimization, in finite-element analysis, and in shift-invert eigensolvers (even
when the matrix whose eigendecomposition is sought is definite).

Linear solvers that factor the coefficient matrix into a product of permuta-
tion, triangular, diagonal, and orthogonal factors are called direct methods. Our
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method is direct, and it decomposes A into permutation, triangular, and block-
diagonal factors (the block-diagonal factor has 1-by-1 and 2-by-2 blocks). Com-
pared to iterative linear solvers, direct solvers tend to be more reliable and accu-
rate, but they sometimes require significantly more time and memory. In general,
direct solvers are preferred either when the user has little expertise in iterative
methods, or when iterative methods fail or converge too slowly, or when many
linear systems with the same coefficient matrix must be solved. In many appli-
cations, such as finite-element analysis and shift-invert eigensolvers, many linear
systems with the same coefficient matrix are indeed solved, and in such cases a
direct solver is often the most appropriate.

The size of the triangular factor of a symmetric matrix and the amount of work
required to compute the factorization are sensitive to the ordering of the rows and
columns of the matrix. Therefore, matrices are normally permuted into a form
whose factors are relatively sparse prior to the factorization itself. Although the
problem of finding a minimal-fill ordering is NP-complete, there exists effective
heuristics that work well in practice (as well as provable approximations that
have not been shown to work well in practice). Even when the matrix has been
prepermuted using a fill-reducing permutation, the factor is often much larger
(denser) than the matrix, and it may not fit in memory even when the matrix
fits comfortably. When the factor does not fit within main memory, the user has
three choices: either to resort to a so-called out-of-core algorithm, which stores
the factors on disk, to switch to an iterative algorithm, or to switch to a machine
with a larger memory. Since machines with more than a few gigabytes of main
memory are still beyond the reach of most users, and since iterative solvers are
not always appropriate, there are cases when an out-of-core method is the best
solution.

The main challenge in designing an out-of-core algorithm is ensuring that
it does not perform too much disk input/output (I/O). The disk-to-memory
bandwidth is usually about two orders of magnitude lower than the memory-
to-processor bandwidth. Therefore, to achieve a high computational rate, an
out-of-core algorithm must access data structures on disk infrequently; most data
accesses should be to data that is stored, perhaps temporarily, in main memory.
Algorithms in numerical linear algebra achieve this goal by partitioning matrices
into blocks of rows and columns. When the matrices are dense, relatively simple
1- and 2-dimensional partitions into blocks of consecutive rows and columns work
well; when the matrices are sparse, the partitioning algorithm must consider the
nonzero structure of the matrices. Essentially the same partitioning strategies
are used whether the I/O is performed automatically by the virtual-memory sys-
tem (or by cache policies higher in the memory hierarchy), or explicitly using
system calls. In general, explicit I/O tends to work better than virtual memory
when data structures on disk are significantly larger than memory. Explicit I/O
is the only choice when the data structures on disk are too large to fit into the
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virtual address space of the program (larger than 2–4 GB on 32-bit processors,
depending on the operating system).

To the best of our knowledge, our algorithm is the first out-of-core sparse
symmetric indefinite factorization method to be proposed. Several out-of-core
methods have been proposed for the somewhat easier problem of factoring a
symmetric positive definite matrix, most recently by Rothberg and Schreiber [17]
and by Rotkin and Toledo [18]. Gilbert and Toledo proposed a method for the
more general problem of factoring a general sparse unsymmetric matrix [10]. This
algorithm is more widely applicable than the algorithm that we present here, but
it is also significantly slower. For earlier sparse out-of-core methods, see the
references in the articles cited above.

Our new method is based on a sparse left-looking formulation of the LDLT

factorization. Our code is not the first left-looking LDLT code [4], but to the
best of our knowledge a left-looking formulation has never been described in the
literature. We partition the matrix into blocks called compulsory subtrees [18]
to achieve I/O efficiency, but the matrix is partitioned dynamically during the
numeric factorization, to account for pivoting. (The method of [18] partitions the
matrix statically before the numeric factorization begins.) To achieve a high com-
putational rate, we have implemented a partitioned dense LDLT factorization,
which we use to factor large dense diagonal blocks; the corresponding lapack

routine cannot be used in sparse codes.
Our implementation of the new algorithm is reliable and performs well. On a

2.4 GHz PC, it factors an indefinite finite-element matrix with about a million
rows and columns in less than an hour, producing a factor with about 1.3 × 109

nonzeros (more than 10 GB). A larger matrix, whose factor contained about 3.3×
109 nonzeros took about 9.5 hours to factor. On this machine, the factorization
runs at a rate of between 1 and 2 billion floating-point operations per second,
including the disk input-output time.

The paper is organized as follows. The next section provides background on
sparse symmetric indefinite factorizations. The section that follows presents our
left-looking formulation of the factorization; we use this formulation in both in-
core and out-of-core codes. Section 4 presents our new out-of-core algorithm and
its implementation. Section 5 presents our experimental results, and Section 6
presents our conclusions.

2. Background on Sparse Symmetric Indefinite Factorizations

This section describes the basics of sparse symmetric indefinite factorizations.
For additional details and references, see the monograph of Duff, Erisman, and
Reid [9] and the papers cited below.

A symmetric indefinite matrix can be factored into a product A = PLDLTP T ,
where P is a permutation matrix, L is unit lower triangular (has 1’s on the diag-
onal), and D is block diagonal with 1-by-1 and 2-by-2 blocks. The permutation
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P is computed during the factorization to ensure numerical stability. This fac-
torization can be used to quickly solve linear systems AX = B and to compute
the inertia of A [6]. The amount of floating-point arithmetic required is only
slightly larger than that required for the Cholesky factorization of A+σI, where
σ > λmin(A), the smallest eigenvalue of A. The amount of work involved in pivot
searches, to construct P so that growth in L is controlled, is usually insignificant
when a partial pivoting strategy is used, like the one proposed by Bunch and
Kaufman [6]. When complete pivoting [7] or rook pivoting is used [5], the cost
of pivot searches can be significant.

When A is sparse, the permutation P has a dramatic effect on the sparsity of
the triangular factor L. There are cases where one choice of P would lead to a
factor with Θ(n2) nonzeros and to a Θ(n3) factorization cost, whereas another
choice, equally good from a numerical point of view, would lead to Θ(n) work
and nonzeros, where n is the order of A. This issue is addressed in the following
way. First, a fill-reducing permutation Q for the Cholesky factor C of A + σI is
found. The rows and columns of A are symmetrically permuted according to Q,
and a symmetric indefinite factorization is applied to QT AQ = PLDLT P T . If
the choice P = I is numerically sound for the factorization of QT AQ, then the
amount of fill in L is roughly the same as the amount of fill in the Cholesky factor
C. (The fill is exactly the same if D has only 1-by-1 blocks; otherwise, full 2-by-2
diagonal blocks cause more fill in the first column of the block, but this fill does
not generate additional fill in the trailing submatrix, and so-called oxxo blocks
with zero diagonals cause slightly less fill in both the second column of the block
and in the trailing submatrix.) In general, however, P = I is not a valid choice.
An arbitrary choice of P can destroy the sparsity in L completely, so most of the
sparse symmetric indefinite factorization methods attempt to constrain the pivot
search so that the resulting permutation QP is not too different from Q alone.
We explain how the pivot search is constrained below.

A combinatorial structure called the elimination tree of A [19] (etree) plays
a key role in virtually all symmetric factorization methods, both definite and
indefinite [13]. When A is definite, the etree is used to predict the structure of
the factor, to represent data dependences, and to schedule the factorization. In
symmetric indefinite factorizations, the etree is used to constrain P so that L does
not fill too much. The etree is also used in indefinite factorization in which P
is thus constrained to represent data dependences, to schedule the factorization,
and to estimate the structure of the factor (but not to predict it exactly).

The elimination tree is a rooted forest (tree unless A has a nontrivial block-
diagonal decomposition) with n vertices. The parent π(j) of vertex j in the
etree is defined to be π(j) = mini>j{Cij �= 0}where C is the Cholesky factor of
A + σI . An equivalent definition is the transitive reduction of the underlying
directed graph of A. This alternative definition is harder to visualize, but does
not reference a Cholesky factorization. The etree can be computed directly from
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Figure 2.1. A fundamental supernodal decomposition of the fac-
tor of a matrix corresponding to a 7-by-7 grid problem, ordered
with nested dissection. The circles correspond to elements that are
nonzero in the coefficient matrix and the stars represent fill ele-
ments.

the nonzero structure of A in time that is essentially linear in the number of
nonzeros in A.

Virtually all the state-of-the-art sparse indefinite factorization algorithms use a
supernodal decomposition of the factor L, illustrated in Figure 2.1 [8, 15, 16]. The
factor is decomposed into dense diagonal blocks and into the corresponding sub-
diagonal blocks, such that rows in the subdiagonal rows are either entirely zero or
almost completely dense. In an indefinite factorization, the algorithm computes
a supernodal decomposition for the Cholesky factor C before the numeric fac-
torization begins. The decomposition is refined during the numeric factorization,
such that it is a correct decomposition of the actual factor L.

The supernodal decomposition is represented by a supernodal elimination tree
or an assembly tree. In the supernodal etree, a tree vertex represents each su-
pernode. The vertices are labeled 0 to s − 1 using a postorder traversal, where
s is the number of supernodes. The pivoting permutation P is chosen so that
the supernodal elimination trees of C and L coincide, although some of the su-
pernodes of L might be empty. (We ignore oxxo pivots in this discussion.) We
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associate with supernode j the ordered set Ωj of columns in the supernode in C,
and the unordered set Ξj of nonzero row indices in the subdiagonal block of C.

We denote by Ω̃j and Ξ̃j the same sets in L. The ordering of indices in Ωj is
some ordering consistent with a postorder traversal of the non-supernodal etree
of A. We define ωj = |Ωj | and ξj = |Ξj |. For example, the sets of supernode
29, the next-to-rightmost supernode in Figure 2.1, are Ω29 = (37, 38, 39) and
Ξ29 = {40, 41, 42, 46, 47, 48, 49}.

If A is positive definite, the factorization algorithm factors all the columns in
Ωj during the processing of vertex j of the etree, and these columns update the
columns in Ξj . When A is indefinite, however, the algorithm may be unable
to factor all the columns in Ωj during the processing of vertex j. The columns
that are not factored are delayed to j’s parent π(j). The parent tries to factor
the delayed columns; if this fails too, the failed columns are delayed again to
π(π(j)); at the root, all the remaining columns are factored. In essence, a column
is delayed when all the admissible pivot rows, the rows with index in Ωj , are
numerically unstable; delaying provides new admissible pivot rows. We denote
the set of columns that were delayed from j to its parent by ∆j = Ξ̃j \ Ξj.

State-of-the-art sparse factorization codes fall into two categories: left look-
ing [15, 16] and multifrontal [8, 14]. In the indefinite case, the multifrontal
approach is much more common and is well documented in literature [5, 8]. The
left-looking approach is used in one code that we are aware of, spooles [4], but
the formulation of the algorithm is not documented in the literature (Ashcraft
and Grime’s paper [4] documents the software but not the algorithm). In the
rest of this section we address the multifrontal in-core method, and in the next
section we formulate a left-looking approach.

The multifrontal algorithm traverses the etree and factors the matrix in pos-
torder. To process supernode j, the algorithm creates a so-called frontal matrix
F (j). This matrix is dense, and its rows and columns corresponds to the columns
in Ωj , to the columns Ψj =

⋃
k,j=π(k) ∆k that were delayed from the subtrees

rooted at j’s children, and to the columns that columns Ωj ∪ Ψj update. This
matrix is initialized to zero, then updated by the nonzeros of A in columns Ωj .
Next, the updates from the subtrees are added to the frontal matrix. All the up-
dates from a child k are packed in an update matrix UΞ̃k ,Ξ̃k

. These matrices are

added to F (j) in a scatter-add operation that is called extend-add. The algorithm
now tries to factor the columns in Ωj ∪ Ψj. If the diagonal element of a column
is large enough compared to the rest of the column, the column is factored and
a 1-by-1 block is added to D. If the diagonal element is too small, but a 2-by-2
block consisting of two columns in Ωj∪Ψj is large enough compared to the rest of
the two columns, they are factored using a 2-by-2 diagonal block. Different codes
use different strategies for choosing pivot columns. Once one or two columns are
factored, the remaining uneliminated columns in Ωj ∪ Ψj are updated, to allow
future pivoting decisions to be made. The factorization of supernode j may fail
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Figure 2.2. Notation for pivot entries. The symbols γ1 and γq

denote the absolute value of the largest subdiagonal element in
columns 1 and q. The elements aq1 and ar1 are the largest elements
in column 1 within and outside Ωj ∪ Ψj, respectively.

to factor some of the columns in Ωj ∪ Ψj (essentially those with relatively large
elements in rows outside Ωj∪Ψj). These columns are put into ∆j and are delayed
to π(j). After supernode j is factored, the algorithm computes its own update
matrix by adding the update from columns in Ω̃j to columns in Ξj , which may
already contain updates from j’s descendants. Note that columns in ∆j are not
updated in this step, because they have already received all the updates columns
in Ω̃j .

Our codes use a pivot search and a pivot-admissibility test proposed by Ashcraft,
Grimes and Lewis [5]. The literature also contains a number of other strategies
(including additional strategies in the paper by Ashcraft et al., which is the most
recent algorithmic paper on this subject). We used this particular strategy since
it is efficient and since it is backed up by extensive research. For further de-
tails on this and other strategies, see [11, Chapter 11] and the references therein.
Figures 2.2 and 2.3 describe the strategy that we use.

3. Left-Looking Factorization

Previous research on sparse out-of-core factorization methods for symmetric
positive-definite matrices suggests that left-looking methods are more efficient
than multifrontal ones [17, 18]. The difference between the multifrontal and the
left-looking approaches is in the way that updates to the trailing submatrix are
represented. In the multifrontal algorithm, updates are computed when a supern-
ode is factored, and they are accumulated in frontal matrices and propagated up
the tree. In the left-looking approach, updates are not represented explicitly until
they are applied to a supernode. The disadvantage of the multifrontal approach
is that it often simultaneously represents multiple updates to the same nonzero in
L. The representation of these updates, which are not part of the data structure
that represents the factor L, uses up memory and causes additional I/O activity.

Unfortunately, left-looking sparse indefinite factorizations are not described
in the literature. There is actually one in-core code that uses such a method,
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if γ1 =0 then

the first column is already factored

else if |a11|≥ α̂γ1 then

use a11 as a 1-by-1 pivot

else if |aqq|≥ α̂γq then

use aqq as a 1-by-1 pivot

else if max {|aqq| γ1 + |aq1| γq, |a11| γq + |aq1| γ1} ≤∣∣a11aqq − a2
q1

∣∣ /α̂ then

use

[
a11 aq1

aq1 aqq

]
as a 2-by-2 pivot

else

no pivot found; repeat search using next column

end if

Figure 2.3. Our pivot search and admissibility test. This strat-
egy is from [5, Figure 3.3]. The scalar α̂ is a parameter that controls
the growth. A high value prevents growth in the factor and hence
enhances numerical stability, but may cause many columns to be
delayed. We use the value α̂ = 0.001.

Spooles [4], but the algorithm that it uses is not described explicitly anywhere.
Therefore, we developed a left-looking sparse indefinite factorization algorithm,
which we describe in this section. (The source of Spooles is available, but we
have not studied its algorithm from the source code.) We describe here the formu-
lation of the in-core algorithm, and the next section explains how we implemented
it out-of-core.

The left-looking algorithm also traverses the etree and factors the matrix in
postorder, but updates to columns are performed in a different way. To process
supernode j, the algorithm creates a dense matrix L(j) that will contain all the
nonzeros in the supernode (in the columns belonging to the supernode). This
matrix is essentially the columns with indices in Ωj ∪Ψj from the frontal matrix
F (j). The columns in Ωj of this matrix are initialized to zero, and then updated
by the nonzeros of A in columns Ωj . The columns in Ψj are simply copied from
the corresponding matrices of the children. Now the algorithm traverses (again)
the subtree rooted at j to compute and apply updates to columns Ωj . At a

descendant k, the algorithm determines whether Ξ̃k ∩ Ωj �= ∅. If the intersection
is not empty, the algorithm computes the update from supernode k to the columns
with indices in Ωj and applies these updates to L(j). These updates are computed
into a dense matrix, whose elements are then scatter-added to L(j). This allows
us to compute the updates using a dense matrix-matrix multiplication routine.
The algorithm then continues recursively to k’s children. If, on the other hand,
Ξ̃k ∩ Ωj = ∅, the algorithm returns to k’s parent without searching the subtree
rooted at k for updates to j; there are none [13].
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Note that the algorithm does not test for updates from supernode k to columns
in Ψj and it does not apply updates to these columns. Since these columns were
delayed from one of j’s children, say �, all the updates from the subtree rooted
at � were already applied to these columns, and the columns in subtrees rooted
at other children of j can never update these columns. Therefore, these columns
are fully updated.

Now that all the updates from already-factored columns have been applied to
L(j), the algorithm tries to factor the columns in Ωj ∪ Ψj. This factorization is
performed using exactly the same strategy as in the multifrontal algorithm. The
set of columns Ω̃j that were successfully factored is added to the factor matrices
L and D, and the remaining columns, ∆j , are delayed to j’s parent. By the time
these columns are delayed, all the updates from the subtree rooted at j, including
from j itself, have been applied to them.

There is a simpler but less efficient way to handle column delays. The algo-
rithm can simply propagate to π(j) the index set ∆j , but discard the columns
themselves. The parent π(j) would then read these columns from A and would
apply updates to them, as it does to columns in Ωπ(j). This is simpler, since all

the columns of L(j) now receive exactly the same treatment, where as the previ-
ous strategy treated columns in Ωπ(j) differently than those in Ψπ(j). However,
this strategy performs the same numerical update operations to a delayed column
more than once, which increases its computational cost. Due to this increased
cost we decided to use the previous strategy.

4. The Out-of-Core Factorization Algorithm

When the factor L does not fit in main memory, out-of-core algorithms store
factored supernodes on disks. In a left-looking algorithm, a factored supernode
k is read into memory when it needs to update another supernode j. In a naive
algorithm, supernode k is read from disk many times, once for each supernode
that it updates. More sophisticated algorithms try to update as many supernodes
as possible whenever a factored supernode is read into main memory [10, 18].
Such algorithms maintain in main memory a set of partially-updated but yet-
unfactored supernodes, called a panel. The panel forms a connected subtree of
the elimination tree. These algorithms read from disk the supernodes that must
update one of the leaves of the panel, say j. A supernode k that is read updates
the leaf j for which it was brought to memory, then all the other supernodes in the
panel that k updates, and is then evicted from memory. Once j is fully updated,
it is factored, it updates all the other supernodes in memory, and is evicted.
Supernode j is now pruned from the panel, and the factorization continues with
another leaf. Such algorithms are not pure left-looking algorithms: they are
hybrids of left-looking updates and right-looking updates. They are classified as
left-looking because right-looking updates are only applied to supernodes that
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continue to reside in main memory until they are factored; partially-updated
supernodes are never written to disk.

The next subsection explains how we adapted this strategy to the factorization
of symmetric indefinite matrices. Our algorithm differs from the symmetric-
positive definite algorithms of [17, 18] not only in that it can factor indefinite
matrices, but also in some aspects of the automatic planning of the factorization
schedule. The second subsection highlights these differences.

4.1. The Left-Looking Out-Of-Core Symmetric Indefinite Algorithm.
Our out-of-core algorithm applies the left-looking panel-oriented strategy to the
out-of-core factorization of symmetric indefinite matrices. The algorithm works
in phases. At the beginning of each phase, main memory contains no supernodes
at all. The supernodes that have already been factored are stored on disk. The
algorithm begins a phase by finding a panel, a forest of connected leaf subtrees of
the residual etree (the etree of the yet-unfactored supernodes). By a leaf subtree
we mean a subtree whose leaves are all leaves of the residual etree; the leaves
of the leaf subtree are either leaves in the full etree, or all their children have
already been factored. The algorithm then allocates in-core supernode matrices
for the supernodes in the panel and reads the columns of A into them. Then, the
algorithm uses the general strategy outlined in the previous paragraph to factor
the supernodes of the panel one at a time. Whenever a supernode is factored, it
updates its ancestors in the panel and is evicted from main memory. Hence, when
the phase ends, no supernodes reside in memory, and a new phase can begin.

The application of this strategy to symmetric-indefinite factorizations faces
two challenges. The first and more difficult lies in selecting the next panel to
be factored. Delaying a column often causes additional fill in L, so the amount
of memory required to store supernodes, even if they are packed and contain no
zeros, grows. Therefore, it is impossible to determine in advance the exact final
size of each supernode. As a consequence, the panelization procedure cannot
ensure that the panel that it selects will fit in main memory.

Our new algorithm addresses this issue in two ways. First, when a column
is delayed, we update the symbolic structure of the factorization by moving the
delayed row and column to the structure of the parent supernode. This ensures
that at the beginning of the next phase, the panelization algorithm uses the
most up-to-date information regarding the size of supernodes. They might still
expand more after the panel is selected, but at least all the expansion that has
already occurred is accounted for. Second, the panelization procedure only adds
supernodes to the panel as long as the combined predicted size of the panel is at
most 75% of the available amount of main memory (after setting aside explicitly
memory for other data structures of the algorithm). This helps minimize the
risk that supernode expansion will overflow main memory. Normally, if the panel
overflows, this causes paging activity and some slowdown in the factorization,
but it could also lead to memory-allocation failure. As in [18], we also limit the
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size of each supernode, to help ensure that an admissible panel can always be
found.

The other difficulty lies in delaying columns across panel boundaries. Suppose
that columns are delayed from the root supernode j of a panel. The next panel
might not include π(j), so there is no point in keeping these columns in memory,
where they will use up space but will not be used soon. Instead we write them
to disk, and read them again together with the factored columns of j when j
updates π(j). They will not be needed again. (Due to a limitation in our I/O
abstraction layer, the so-called store [18], we actually write j again to disk without
the delayed columns once the delayed columns have been added to π(j).)

4.2. Comparison with Algorithms for Symmetric Positive-Definite Ma-
trices. Out-of-core factorization algorithms for sparse symmetric positive-definite
algorithms can panelize the entire factor prior to the numeric factorization. When
the matrix is positive definite, there is no need to delay columns, so the size of
each supernode is known in advance. This allows the panelization algorithm to
decompose the etree into panels before the factorization begins. This has been
done by Gilbert and Toledo’s [10], by Rotkin and Toledo’s [18], and in a more
limited way by Rothberg and Schreiber’s [17]. As we have explained, this is not
possible in the indefinite case, so we adopted a dynamic panelization strategy.

We also note that [10] and [18] actually used a more sophisticated panelization
technique than the one that we described above. A supernode only updates its
ancestors in the etree. Therefore, there is no benefit in simultaneously storing in
memory supernodes that are not in a descendant-ancestor relationship. There-
fore, [10] and [18] allow panels to be larger than the amount of available main
memory, and they page supernodes in and out of panels without incurring extra
I/O. This reduces the total amount of I/O. Since experiments in [18] have shown
that the reduction is not highly significant, however, we have not adopted this
strategy in the new indefinite code.

4.3. Implementation. Our implementation of the out-of-core indefinite algo-
rithm is an adaption of the sparse Cholesky code of Rotkin and Toledo [18], and
in particular, the new code is now part of Taucs, a suite of publicly-available
sparse linear solvers1. We use the same hardware-abstraction layer, which is based
on a disk-resident data structure called a store. The algorithm is implemented in
C, with calls to the level-2 and level-3 Basic Linear Algebra Subroutines (blas).

To factor individual supernodes, which are stored as rectangular dense matri-
ces, we have developed a specialized blocked dense code. The code implements
the pivoting strategy that we explained above. The code is right-looking and
blocked, to exploit the level-3 blas and achieve high performance. The blocking
strategy is based on the lapack code dsytrf, a blocked Bunch-Kaufman sym-
metric indefinite factorization code. We could not use the lapack code, mainly

1http://www.tau.ac.il/~stoledo/taucs/
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because our code actually factors the diagonal block of a rectangular matrix, not
a square matrix, and the elements in the subdiagonal block affect the admissi-
bility of pivots (in an LU factorization with partial pivoting, such elements can
be used as pivots, but here doing so would ruin the symmetry). In addition, our
pivoting strategy allows pivots with smaller norms than dsytrf, to reduce the
number of delayed columns and the additional fill that follows. In addition to
more growth in L, the smaller pivots could also lead to inaccuracies in computing
columns of L that correspond to 2-by-2 pivots, since dsytrf uses the inverse of
the diagonal blocks; we use an LU factorization with partial pivoting to reduce
that risk.

Our implementation also includes a multiple-right-hand side solve routine.
Once the factor has been computed and is stored on disk, the time it takes
to solve linear system is determined mostly by the time it takes to read the factor
from disk. The factor must be read twice, once for the forward solve and once for
the backward solve. By solving multiple linear systems with the same coefficient
matrix during one read-solve process, we can amortize the cost of reading the fac-
tor over many linear systems. Even for fairly large numbers of right-hand-side,
the solution time is determined mostly by the disk-read time, so the marginal
cost of simultaneously solving additional linear system is close to zero.

Many applications can exploit the code’s ability to efficiently solve a large
number of linear systems with the same coefficient matrix. For example, there
are several shift-invert eigensolvers that solve multiple indefinite linear systems in
every iteration, such as block Lanczos algorithms and subspace iteration (see [20]
and the references therein).

Finally, we mention that we have added not a single factorization code to
Taucs, the out-of-core sparse factorization code, but also two in-core sparse
symmetric indefinite codes, one multifrontal and the other left-looking.

5. Tests and Results

We now describe experimental results. The goal of these experiments is to
demonstrate that our implementation of the new algorithm performs well, and
to provide a deeper understanding of the behavior of the algorithm.

The experiments are divided into two sets. The first set presents the perfor-
mance of our in-core implementation of the algorithm and of in-core components
of the out-of-core algorithm. The objective of this set of experiments is to estab-
lish a known baseline for the in-core algorithms, so that we can later use them to
assess the performance of the out-of-core algorithm. In this set of experiments
we compare the performance of our in-core code to the performance of another
recent, well-known, and high-performance code. We also compare the perfor-
mance of our symmetric-indefinite and Cholesky in-core codes, the performance
of left-looking and multifrontal variants, and the performance of kernels for the
in-core factorization of dense diagonal blocks.
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Name Source SPD? dim(A) nnz(A)
s0tau Bustany no 53794 715858
sme1 Ekroth no 89337 571914
inline-1 parasol yes 503712 18660027
ldoor parasol yes 952203 23737339
audikw-1 parasol yes 943695 39297771
femlab1 Ekroth no 1063680 15490073

Table 1. Test matrices from real-world applications. Some
of the matrices are from the parasol test-matrix collection
(www.parallab.uib.no/parasol/data.html), some were donated by
Ismail Bustany from Barcelona Design, and some were donated by
Anders Ekroth from Comsol. The third column specifies whether
the matrices are symmetric positive-definite, the fourth their di-
mension, and the fifth the number of nonzeros in their lower trian-
gle.

In the second set of experiments we compare the performance of our out-of-core
code to the performance of our best in-core code, to measure the performance
penalty imposed by disk I/O. Other experiments in this set explore other aspects
of the algorithm. One experiment compares the algorithm to the out-of-core
sparse Cholesky algorithm of Rotkin and Toledo [18], to measure the effect of
indefiniteness on the performance of out-of-core sparse factorization codes. Other
experiments explore the effects of the inertia (number of negative eigenvalues)
and main-memory size on the performance of the algorithm. We also present
performance results that show the performance benefit of simultaneously solving
multiple linear systems with the same coefficient matrix.

Before we present the results of the experiments, however, we present the
matrices and the computer that we used in the experiments.

5.1. Test Matrices. We performed our experiments on three sets of symmetric
matrices; each set contains both indefinite and positive-definite matrices. The
first set, listed in Table 1 consists of matrices that arise in real-world applications.
This set is quite small, since there are not many matrices in test-matrix collections
that are large enough for evaluating the performance of out-of-core codes. To
maximize the utility of these matrices, some of which are positive definite, we
generated indefinite matrices from the definite ones by shifting the diagonal.

The second set of matrices consists of synthetic matrices whose graphs are
regular three-dimensional meshes. The set consists of positive-definite matrices,
which are discretizations of the Laplacian on a 3D mesh using a 7-point stencil,
and of indefinite matrices. The indefinite matrices are generated by using the
same underlying graph, but assigning symmetric random values (uniform in [0, 1])
to the elements of the matrix. These matrices tend to have roughly n/2 positive
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Figure 5.1. Sparse test matrices. Names printed in upright (ro-
man) font signify positive-definite matrices, whereas names printed
in italics signify indefinite matrices. Positive-definite matrices
whose graph is an x-by-y-by-z mesh are named “lapx-y-z” and
indefinite meshes are named “rndx-y-z”. The numbers that follow
two dashes are shift values, for matrices whose diagonal was shifted
to make them indefinite. The x-axis is simply an index; these ma-
trices are shown using the same x-axis in all subsequent graphs.
The y-axis shows the number of nonzeros in the symmetric indef-
inite lower-triangular factor of each matrix, following a reordering
using metis.

and n/2 negative eigenvalues, where n is the dimension of the matrix. Some of the
meshes that we use are perfect cubes, such as 140-by-140-by-140, and some are
longer in one dimension than in the others, such as 500-by-100-by-100. Generally
speaking, perfect cubes lead to more fill in the factorization than meshes with
wide aspect ratios.

The matrices in the first two sets are listed in Figure 5.1. The matrices are
ordered in this figure by the number of nonzeros in their symmetric indefinite
factor. The same ordering is used in all the other plots. In other words, we
identify matrices by their index in Figure 5.1.
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Figure 5.2. Dense test matrices. The axes are the same as those
of Figure 5.1. The matrix name consists of its dimension and wether
it is symmetric-positive definite (spd) or symmetric-indefinite.

The third set, which we use in only one limited experiment, consists of dense
matrices. They are shown in Figure 5.2. These dense matrices consist of symmetric-
positive definite matrices, and symmetric-indefinite matrices, which have about
half positive and half negative eigenvalues.

5.2. Test Environment. We performed the experiments on an Intel-based work-
station. This machine has a 2.4 GHz Pentium 4 processors with a 512 KB level-2
cache and 2 GB of main memory (dual-channel with ddr memory chips). The
machine runs Linux with a 2.4.22 kernel. We compiled our code with the gcc C
compiler, version 3.3.2, and with the -O3 compiler option. We used the imple-
mentation of the blas (Basic Linear Algebra Subroutines) written by Kazushige
Goto, version 0.92. This version exploits vector instructions on Pentium 4 proces-
sors (these instructions are called sse2 instructions). This setup allows our code
to compute the Cholesky factorization of large sparse matrices at rates exceeding
3 × 109 flops (e.g., the Laplacian of a 65-by-65-by-65 mesh).

The graphs and tables use the following abbreviations: taucs (our sparse
code), mumps (mumps version 4.3), ll (left-looking), mf (multifrontal), ooc

(out-of-core), ic (in-core) and spd (symmetric positive definite). We also use ll
T

and ldl
T for the Cholesky and symmetric-indefinite factorizations respectively.

2http://www.cs.utexas.edu/users/flame/goto/
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Figure 5.3. The performance of the in-core factorization codes
in taucs. The figure only shows the performance on the subset
of matrices that could be factored in core. The computational
rates, in floating-point operations per second, are canonical rates,
as explained in the text. In particular, a higher rate indicates faster
completion time, not a higher operation count.

5.3. Baseline Tests. To establish a performance baseline for our experiments,
we compare the performance of our code, called taucs, to two in-core codes.
One is the in-core sparse factorizations in taucs, both Cholesky and symmet-
ric indefinite. Our in-core codes can use either a left-looking or a multifrontal
algorithm, and we test both. The other code that we use for the baseline tests
is mumps version 4.3 [1, 2, 3]. Mumps is a parallel and sequential in-core mul-
tifrontal factorization code for symmetric and unsymmetric matrices. We used
metis

3 [12] version 4.0 to symmetrically reorder the rows and columns of all the
matrices prior to factoring them. We tested the sequential version of mumps,
with options that instruct it to use metis to preorder the matrix and tell mumps

that the input matrix is symmetric, and positive definite when appropriate. We
used the default values for all the other run-time options.

We compiled mumps, which is implemented in Fortran 90, using Intel’s Fortran
Compiler for Linux, version 7.1, and with the compiler options that are specified
in the mumps-provided makefile for this compiler, namely -O. We linked mumps

with the same version of the blas that are used for all the other experiments.

3http://www-users.cs.umn.edu/~karypis/metis/
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Figure 5.4. The performance of taucs vs that of mumps, again
in canonical rates.

The results of the baseline tests are shown in Figures 5.3, 5.4, and 5.5. The
results, both here and later, display performance in terms of canonical floating-
point-operations per second. This metric is the ratio of the number of floating-
point operations in the out-of-core symmetric-indefinite factorization in taucs to
numeric factorization time in seconds. Thus, if one code achieves a canonical rate
of 2×109 and another code achieves a rate of 4×109, then the second code ran in
exactly half the time, independently of how dense a factor each code produced.

Figure 5.3 compares the performance of the left-looking and multifrontal fac-
torizations in taucs. The plot only shows a subset of the matrices, those small
enough to be factored in core. The results show that the left-looking codes, both
Cholesky and symmetric-indefinite, are consistently faster. Therefore, in subse-
quent graphs we only show the performance of the faster left-looking algorithms.

Figure 5.4 shows the performance of taucs relative to that of mumps. Mumps

ran out of memory on many of the matrices that taucs was able to factor in
core. Mumps also reported that s0tau is singular and halted; this is not a defect,
but simply reflect different built-in thresholds in taucs and mumps. The data
shows that on this setup, taucs is consistently faster. This result does not
imply that one code is superior to the other in general, since our comparison is
quite limited. This result merely indicates, for the purpose of our experimental
evaluation, that the performance of the in-core routines of taucs are comparable
to the performance of mumps.
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nels in taucs.

Figure 5.5 shows that the routine that we have implemented to factor the
diagonal block of supernodes is efficient. The data that the figure presents com-
pares the performance of five dense factorization kernels: lapack’s potrf (dense
Cholesky), lapack’s sytrf (dense LDLT symmetric-indefinite factorization),
our new blocked factorization, an unblocked right-looking version of our new
dense kernel, and mumps’ kernel. The first four were called from within our
sparse indefinite factorization code, but on a dense matrix with only one su-
pernode. The data shows that our code slightly outperforms blocked lapack’s
factorization code, and that it is faster than mumps’.

The data indicates that taucs factors sparse matrices faster than it factors
dense matrices (and hence faster than lapack factors dense matrices). The
same is true for mumps. This result, which is somewhat surprising, is most likely
due to the fact that the dense codes factor the matrix by partitioning it into
fairly narrow blocks (20 columns by default). In the sparse codes, supernodes are
sometimes much wider than 20 columns, which allows the blas to achieve higher
performance in the update operations.

5.4. The Performance of the Out-of-Core Code. Having established the
baseline performance of our codes, we now describe the experiments that evaluate
the performance of the new out-of-core code.
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Figure 5.6. The performance of the new out-of-core symmetric
indefinite factorization code. For comparison, the graph also shows
the performance of three other taucs codes: the in-core symmetric
indefinite factorization and the in- and out-of-core Cholesky fac-
torizations.

Figure 5.6 presents the performance of the new out-of-core symmetric-indefinite
factorization algorithm. As expected, the performance of the code is always lower
than the performance of the in-core symmetric indefinite code and of the Cholesky
codes, when the other codes do not break down. However, the performance
difference between the in-core and the out-of-core symmetric indefinite codes
is usually small, which suggests that the performance penalty paid for the extra
robustness is small. The performance difference between the symmetric-indefinite
and the Cholesky codes is sometimes quite large, but this is not due to out-of-
core issues. The out-of-core factorization code often runs at between 1× 109 and
2 × 109 floating-point operations per second.

Figure 5.7 shows the performance of the solve phase for a few large matrices.
When solving a single linear system, the solve time is dominated by the time to
read the factor from disk. However, the disk-read time can be amortized over mul-
tiple right-hand sides. When multiple linear systems are solved simultaneously,
the solve-time per system drops dramatically.

Figure 5.8 shows that our factorization code is relatively insensitive to the
inertia of the input matrix. The running times do not vary significantly when a
matrix is shifted and when its inertia changes.
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Figure 5.9 shows that the out-of-core code slows down when it must run with
limited main memory. To conduct this experiment, we configured the test ma-
chine so that the operating system is only aware of 512 MB of main memory. In
the runs that we conducted with 512 MB, we instructed the factorization code to
use only 384 MB of memory, 75% of the available memory, the same fraction we
used in the experiments with 2 GB of memory. On small matrices the slowdown
is not significant, but on large matrices it can reach a factor of 2.6. Furthermore,
the largest matrices, lap140-140-140 and rnd140-140-140, could not be factored
at all with only 512 MB of memory. Still, this experiment shows that even on a
machine with a relatively small amount of memory, 512 MB, our code can factor
very large matrices. But a larger memory helps, both in terms of the ability to
factor very large matrices, and in terms of running times.

6. Discussion and Conclusion

To the best of our knowledge, this paper presents the first out-of-core sparse
symmetric indefinite factorization algorithm. Our implementation of the algo-
rithm is reliable and performs well. Its performance is slower than but com-
parable to that of recent high-performance in-core sparse symmetric indefinite
factorization codes and out-of-core sparse Cholesky codes.
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Figure 5.8. The performance of the symmetric indefinite codes as
a function of the percentage of negative eigenvalues in the matrix.
The figure shows the performance of the code on shifted versions
of three large positive-definite matrices.

The new code allows its users to directly solve very large sparse symmetric-
indefinite linear systems, even on conventional workstations and personal com-
puters. Even when the factor size is 10 GB or more, the factorization time is often
less than an hour, and subsequent solves take about 10 minutes. The code’s abil-
ity to simultaneously solve for multiple right-hand sides reduces even further the
per-system cost of the solve phase.
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