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We present an Out-of-Core Filter-Diagonalization method which can be used to solve

very large electronic structure problems within the framework of the one-electron pseudopotential-

based methods. The approach is based on the following three steps: First, nonorthogonal
states in a desired energy range are generated using the filter-diagonalization method.
Next, these states are orthogonalized using the Householder Q R orthogonalization method.
Finally, the Hamiltonian is diagonalized within the subspace spanned by the orthogonal
states generated in the second step. The main limiting step in the calculation is the orthog-
onalization step, which requires a huge main memory for large systems. To overcome this
limitation we have developed and implemented an out-of-core orthogonalization method
which allows us to store the states on disks without significantly slowing down the com-
putation. We apply the out-of-core filter-diagonalization method to solve the electronic
structure of a quantum dot within the framework of the semiempirical pseudopotential
method, and show that problems which require tens of gigabytes to represents the elec-
tronic states and electronic density can be solved on a personal computer.

Key Words: Electronic structure, singular-value decomposition, QR decomposition, out-
of-core.

1. INTRODUCTION

One of the most challenging problems of computational physics is to extend the
size of systems that can be studied computationally. For example, much attention
has been given in recent years to the development of methods for large electronic
structure calculations [1, 2].

Most electronic structure methods rely on solving an effective single-particle
Schrédinger equation
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where ¥, (r) are the orthogonal single particle electronic wavefunctions and V(r)
is the total potential of the system. The solution to the Schrédinger equation
typically requires the calculation of all occupied eigenstates, since in many situ-
ations electronic densities and molecular geometries are needed. Furthermore, in
many electronic structure theories such as the Hartree-Fock approach [3] or the
Kohn-Sham approximation to the density functional theory [4, 5], the solution to
Eq. (1) needs to be done iteratively, since V(r) depends functionally on all occupied
solutions.

For small systems that contain few tens of atoms, direct diagonalization of
the Hamiltonian in Eq. (1) in a given basis is possible. The computational effort
required by this approach scales as O(N3), where N is the total number of basis
function. As a result, the application of this approach to large systems is mainly
limited by the cubic scaling law. This problem has led to the development of direct
minimization techniques such as the conjugate gradient method [1], and to linear-
scaling techniques [2]. All these methods rely on the sparsity of the Hamiltonian
matrix. The conjugate gradient method requires the storage of all occupied states,
a task that becomes impractical for large systems, while the application of the
linear scaling techniques to realistic systems is still limited by the current available
computer resources.

In this work we present a new approach, the Out-of-Core Filter-Diagonalization
(OOC-FD) method, to solve large electronic structure problems. The method is
simple, robust and can be implemented on a personal computer. It is based on the
following three steps:

o Filtering step: States in a desired range of eigenvalues are generated and
stored in files using the filter-diagonalization method [6, 7, 8]. These states
are nonorthogonal and therefore are not eigenstates of the Hamiltonian; they
may even be linearly dependent. This step does not require large memory
and can be carried out in parallel.

e Orthogonalization step: The states generated in the first step are orthogonal-
ized using the QR and Singular-Value decomposition (SVD) methods. This
step requires the storage of all states in memory, which for large systems be-
comes the bottleneck of the computation. To overcome this limitation we have
developed and implemented an out-of-core orthogonalization method which
allows us to store the states on disks without significantly slowing down the
computation.

e Diagonalization step: The Hamiltonian is diagonalized within the subspace
spanned by the orthogonal states generated in the second step. We use an
out-of-core matrix multiplication algorithm to generate the eigenstates of the
Hamiltonian within the desired subspace.

While the first filtering step has been used for a wide variate of problems,
including the study of electronic properties of large materials [9], the last two steps
involve a novel out-of-core algorithm, which is applied to a realistic physical system
for the first time. In the application reported below we have used the OOC-FD
method to obtain the electronic states of a semiconductor nanocrystal that contains
thousands of atoms and requires approximately 50 GB of disk storage to obtain the
occupied states. To the best of our knowledge, this is significantly larger than
a typical calculation based on a conventional application of electronic structure
calculations within the same physical framework.



The OOC-FD method is mostly suited for “single-point” electronic structure
calculations and for geometry optimizations. We do not claim that the method is
computationally more efficient than other sparse-Hamiltonian methods, however,
the structure of the algorithm enables an out-of-core implementation. This is the
main advantage of the OOC-FD approach; the computational cost is comparable to
other sparse-Hamiltonian methods, however it can be implemented on commodity
hardware, and applied to large system that require storage of tens of gigabytes.
This is not possible using other sparse-Hamiltonian methods, such as the Conjugate-
Gradient method, where an out-of-core implementations will significantly slow down
the computation, and therefore the application of other methods is mainly limited
by the size of main memory.

The paper is structured as follows: In Section 2 we outline the OOC-FD method,
and in Section 3 we describe in detail the most challenging phase in the OOC-FD
method, namely the second stage that involve a new out-of-core QR and SVD de-
composition methods. The code’s performance is summarized in Section 4, where
we report the performance of the out-of-core stage for a model random matrix.
The OOC-FD method is applied to study the electronic properties of a large semi-
conducting CdSe quantum dot in Section 5. Finally, in Section 6 we present our
conclusions.

2. THE OUT-OF-CORE FILTER-DIAGONALIZATION METHOD

The overall objective of the out-of-core filter-diagonalization method is to com-
pute the eigenvalues and eigenstates in a given range of eigenvalues of an equation
of the following general form:

HC =CE, (2)

where H is a sparse Hermitian matrix, the columns of C' are the coefficients of the
eigenstates, and F is a diagonal matrix containing the eigenvalues. Since the matrix
H is too large to fit in the main memory and can not be diagonalized directly, we
must use an alternative approach to obtain the desired eigenvalues and eigenstates.
The key point in the OOC-FD method outlined below is that the matrix H is
sparse,’ and that not all eigenvalues and eigenvectors are required, but rather a
small set of them.

The OOC-FD method is based on the following three steps:

1. First, nonorthogonal states in a desired energy range are generated using the
filter-diagonalization method [6, 7, 8.

2. Next, these states are orthogonalized using the singular-value decomposition
method.

3. Finally, the matrix H is diagonalized within the subspace spanned by the
orthogonal states generated in the second step.

While the first filtering step has been applied in the past for a wide variety of
problems, including the study of electronic properties of nanocrystals [9], the last
two steps involve a new out-of-core algorithm. Thus, we briefly describe all three
steps in this Section, and provide a detailed discussion of the orthogonalization step
in the next Section.

1By sparse we mean here that one can operate with the matrix H on an arbitrary vector in
the relevant space quickly.



2.1. The Filtering Step

The first step in the OOC-FD method is the filtering step. We start with n;
arbitrary initial states C; that contain all the desired eigenstates. In the application
described in Section 5 we have used a random initial state C; with values uniformly
distributed between —1 and +1, and then normalized the random states to unit
norm. This choice ensures that the initial states contain contributions from all
eigenstates. We then apply n. filters to each initial state of the form

Cy = Je(H)Cs, (3)

thus generating ny = n; x n filtered states. Each filter, f.(H), is designed to filter
out eigenstates with eigenvalues far from some target value, E.. The choice of the
filter function is not unique; in the application described below we have used a

Gaussian filter [10]
2
fe(H)zexp{_% (H;Ee) }’ (4)

but other filters can be used as well [11]. The filters in Eq. (4) are implemented
using a power series in H. In this work we have used the Newton interpolation
polynomial scheme [12], where the filters were approximated by the interpolation
polynomial

N
fe(H) = PY(H) = a;(Ee)R;(H), ()
J=0
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and the coefficients are given by

ao(Ee) = fe(ho),
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In the above equations, hj are the support points taken to be the zeros of the N +1
Chebyshev polynomial [13]. This choice defines the points on the interval [—2, +2],
and the matrix H is rescaled so that its spectrum of eigenvalues lies in the desired
interval H_E
mwn

HS 4Ema$ - Emin 2 (8)
FEpin and E,, 4, are the lowest and highest eigenvalues of the matrix H, respectively.
The final result for the filtered states is given by

N-1

Cr=7_ a;(E)C] 9)

5=0
and we use the recursion relation to generate the C? (C? = ;)

It = (H, — hy)C. (10)



Note that in Eq. (5), only the coefficients a;(E.) depend on the target value
E.. Hence, it is possible to use the same interpolation polynomial (with different
expansion coefficients) to obtain many states simultaneously, and therefore to re-
duce significantly the computational effort needed to generated the power series in
H. In addition, since many initial-guess states are required to generate the filtered
states, this step can be carried out in parallel by simply filtering out each initial
guess state on a different CPU. Finally, to reduce the computational effort in the
second step, each set of filtered states that are generated from a single Newton in-
terpolation polynomial on a random initial guess state are orthogonalized following
the same strategy described below for the second step, however, since there are very
few states involved, an in-core algorithm is used.

2.2. Out-of-Core Orthogonalization

The second step in the OOC-FD method is the out-of-core orthogonalization
step using the SVD decomposition method. Since both the input matrix Cy gener-
ated in the filtering step? and the orthonormal basis U that is used to reduce the
dimensionality of H in the third step are too large to fit in main memory, we must
store them on disks. We therefore use the following out-of-core strategy:

o An out-of-core algorithm computes the QR decomposition of Cy, Cy = QR,
using the Householder transformation. The matrix () whose columns include
an orthogonal basis for the column space of Cy is stored on disks since its
dimensions are similar to that of the matrix Cy. But the matrix R, which is
a square matrix with dimensions equal to the small dimension of C'y, is small
enough to fit in main memory.

e An in-core algorithm (from LAPACK [14]) computes the SVD of R, R =
U xvT.

e An out-of-core matrix multiplication algorithm computes U = QU;, where
@ is stored on disks, usually not explicitly, and U is written to disks. Now
Cy = UXVT is the SVD of Cy.

e We prune from U singular vectors that correspond to zero (or numerically
insignificant) singular values. The remaining vectors form U’, an orthonormal
basis for the columns of Cy.

Since this step is the most challenging phase in the OOC-FD method we return
to it in Section 3 and describe it in great detail.

2.3. Diagonalization

The last step in the OOC-FD method is the diagonalization of the matrix H
within the subspace spanned by the orthonormal vectors obtained in the second
step. Since the orthonormal basis U’ that is used to reduce the dimensionality of
H does not fit in main memory, we use the following out-of-core scheme:

e We apply H to U’ by readings blocks of columns of U’, applying H to them
using a matrix-vector multiplication routine that quickly applies H, and write
the transformed vectors back to disk.

2Typically C '+ consists of several hundreds to several thousands vectors whose length is between
200, 0002, 000, 000.
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FIG. 1 A tall and narrow QR factorization of a matrix C'y. C} is a general
rectangular matrix, ) has orthonormal columns, and R is upper triangular. In our
application, the rows/columns ratio of C'y is approximately 500/1.

e An out-of-core matrix multiplication computes H = (U’)T (HU’) to produce
the in-core product of two out-of-core matrices.

e An in-core algorithm (from LAPACK [14]) diagonalizes H to obtain the di-
agonal matrix F in Eq. (2).

¢ An out-of-core matrix multiplication algorithm computes C'=U 'U, where U
is the matrix that diagonalized H, and C' are the coefficients of the eigenstates
of H (cf. Eq. (2)) in the given energy range.

3. THE OUT-OF-CORE QR DECOMPOSITION

We now describe in detail the most challenging phase in the out-of-core SVD of
tall narrow matrices, namely the out-of-core QR decomposition. Readers who are
not interested in these details may proceed to the next Section.

Since the input matrix is tall and narrow, as shown in Fig. 1, we cannot use a
conventional block-column approach for the QR phase. We use instead a recursive
block-Householder QR algorithm due to Elmroth and Gustavson [15, 16] in order
to achieve a high level of data reuse. The locality of reference in block-column
approaches depends on the ability to store a fairly large number of columns in main
memory. In our case, we often cannot store more than 10 columns in main memory,
even on machines with several gigabytes of main memory. Recursive formulations
of decomposition algorithms that must operate on full columns, such as QR and LU
with partial pivoting, enhance locality of reference over block-column formulations
for matrices of all shapes. As a result, recursive formulations perform better because
they perform fewer cache misses and because they require less I/0O in out-of-core
codes [15, 16, 17], But while the benefit of recursive formulations is small when
processing square matrices, the benefit is enormous for tall narrow matrices, as
shown for the LU decomposition by Toledo in [17] and for the QR decomposition
by Elmroth and Gustavson in [15, 16]. As a result, our algorithm performs the QR
decomposition at rates that are not much slower than in-core computational rates.

We use a block-Householder QR algorithm rather than the cheaper modified
Gram-Schmidt QR algorithm since the columns of Cy in our application are often
linearly dependent, and in such cases neither classical nor modified Gram-Schimdt
is guaranteed to return an orthogonal @ due to rounding errors (see, for example,
[18, Chapter 18]). Classical and modified Gram-Schimdt perform approximately
2mn? floating-point operations (flops) when Cy is m-by-n and m > n, whereas
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FIG. 2 The software structure of SOLAR. The gray areas represent components of
SOLAR; the white areas represent other software components. The BLACS are the
communication routines of ScaLAPACK; SOLAR uses them as well. The BLACS
use, in turn, MPI, a message passing interface, which uses the operating systems.
Solar’s matrix input-output routines use the operating system to perform input
output.

Householder performs approximately 4mn?2, but the extra cost is essentially un-
avoidable when C is rank deficient.

We prefer to compute the SVD of C rather than a rank-revealing QR factor-
ization because the extra expense of computing the SVD of R is insignificant in our
application, since the input matrix is tall and thin. In addition, we are not aware
of an efficient column-pivoting scheme for out-of-core matrices. In other words, the
column pivoting actions of a rank-revealing QR factorization are likely to increase
the amount of I/O in an out-of-core factorization, but the savings in floating-point
arithmetic over the SVD are insignificant when the matrix is thin and tall. More
specifically, a rank-revealing QR factorization of C'y performs about 4mn? —2n3/3
flops, whereas the SVD performs about 4mn2+11n3 [19, Section 5.5.9]. For m > n,
the difference is negligible.

We implemented the new out-of-core QR and SVD algorithms as part of SO-
LAR [20], a library of out-of-core linear algebra subroutines, whose overall structure
is shown in Fig. 2. Before we started the current project, SOLAR already included
sequential and parallel out-of-core codes for matrix multiplication, solution of tri-
angular linear systems, Cholesky factorizations, and LU factorizations with par-
tial pivoting. SOLAR can exploit shared-memory parallel processing, distributed-
memory parallel processing (or both), parallel input-output, and nonblocking input-
output. SOLAR exploits distributed-memory parallel processing using explicit calls
ScaLAPACK, the PBLAS (ScaLAPACK’s parallel BLAS routines), and the BLACS
(ScaLAPACK’s communication routines). ScaLAPACK and the PBLAS perform
communication only through the BLACS, which use MPI internally. Thanks to
the use of ScaLAPACK, the PBLAS, and the BLACS, the code is highly portable,
at least among Unix and Linux platforms. SOLAR can process real and complex



matrices, single or double precision.

The main new addition to SOLAR is an out-of-core QR factorization. The new
code is optimized for tall narrow matrices, and uses existing subroutines extensively
to multiply matrices and to solve triangular systems. The focus on tall narrow
matrices allows us to simplify the code in two ways, which would not be possible if
the code was to work effectively on square or nearly square matrices. First, focusing
on tall narrow matrices allowed us to use the SVD rather than a rank-revealing QR
factorization without significant performance implications. Second, focusing on tall
narrow matrices allows us to assume that n-by-n matrices fit in main memory.

One unique feature of SOLAR was particularly valuable in the implementation
of the QR solver. Most SOLAR routines, such as the matrix multiplication routine
(out-of-core GEMM), can process any mix of in-core and out-of-core arguments.
For example, SOLAR can multiply an out-of-core matrix by an in-core matrix and
add the product to an out-of-core matrix. During the recursive QR factorization
of a tall narrow matrix we often multiply a large matrix, which we must store
out-of-core, by a small matrix that we prefer to leave in-core, so this feature of
SOLAR is helpful. On the other hand, SOLAR still lacks some subroutines that
could have been useful, such as a triangular matrix multiplication routine (TRMM).
Consequently, we had to use instead the more general GEMM routine, which causes
the code to perform more floating-point operations than necessary. This overhead
is relatively small, however.

We have also modified the I/O layer of SOLAR over the one described in [20].
The changes allow SOLAR to perform non-blocking I/O without relying on operating-
system support (which sometimes performs poorly), they allow SOLAR to perform
I/0O in distributed-memory environments without a data-redistribution phase, and
they allow SOLAR to perform I/O without allocating large auxiliary buffers. These
changes allow the algorithms to control main memory usage more accurately and
more easily than before.

As in many other applications of out-of-core numerical software [21], our primary
goal was to be able to solve very large systems, not necessarily to solve them quickly.
The largest computer currently at our disposal has only 14 GB of main memory,
so we simply can not solve very large systems without an out-of-core algorithm.
While we would like to solve large systems quickly, a running time of a day or two,
perhaps up to a week, is entirely acceptable to us, mainly because the SVD code
is part of a larger application and it is not the most time-consuming part, only
the most memory-consuming. We therefore used the following rule of thumb while
developing the code: keep the amount of I/O low to achieve acceptable performance,
but do not try to eliminate small amounts of I/O if doing so requires a significant
programming effort.

As a consequence of this design decision we were able to design and implement
the algorithm relatively quickly using existing SOLAR subroutines. The result-
ing algorithm often achieves over 60% of the peak performance of the computer,
but it could probably achieve more if more I/O is optimized away. I/O could be
eliminated by implementing out-of-core triangular matrix multiplication routines
in SOLAR (which currently only has a routine for general rectangular matrices)
and by avoiding the storage and retrieval of blocks of explicit zeros. The number of
floating-point operations would also be reduced by applying these optimizations.

When developing algorithms and codes for very large systems, one must consider
parallel algorithms and implementations. Designing and implementing a parallel
algorithm requires more effort than a sequential algorithm, but the performance of



the parallel code typically scales better given a sufficient number of processors. We
have decided to implement a sequential out-of-core QR decomposition algorithm,
rather than a parallel out-of-core algorithm. In our application, the filtering stage,
which has been parallelized, requires about 10 times more CPU time than the
orthogonalization step. Therefore, parallelizing the orthogonalization step can only
improve the scalability of the overall application when a fairly large number of
processors is used. Since we designed the application for small clusters, parallelizing
the orthogonalization step did not seem urgent, and is left open for future study.
We use a recursive out-of-core algorithm for computing the compact-WY rep-
resentation of Q, Q@ = I — YTYT. The basic in-core formulation of this algorithm
is due to Elmroth and Gustavson [15, 16]. The input of the algorithm is C'y and its
output is the triplet (Y, R,T). The algorithm factors an m-by-n matrix as follows:

1. If n = 1 then compute the Householder transformation Q = I — tyy” such
that QCy = (r,0,...,0)T (¢ and r are scalars, y is a column vector). Return
the triplet (y,r,t). We have Y =y, T =t, and R =r.

2. Otherwise, split Cy into [C1Cs], where Cy consists of the left ny = [n/2]
columns of Cy and C5 consists of the right no = n —n; columns.

3. Compute recursively the factorization (Y71, R11,T11) of Ci.
4. Update 02 = Q,{CQ = (I — Y1T11Y1T)02.

5. Compute recursively the factorization (Y2, Ra2,Ts2) of the last m —n; rows
of CQ.

6. Compute T12 = _T]_l(Ylji}/QQ)TQQ.

7. Form R3 which consists of the first ny rows of C}.

Ri1 Rio Ty Tio
(noed [ w0 52)

Memory management, both in- and out-of-core, is an important aspect of out-of-
core algorithms. Our recursive QR code works with one m-by-n out-of-core matrix
and three in-core n-by-n matrices. The out-of-core matrix initially stores C'y and
is overwritten by Y. One of the small in-core matrices is passed in by the user as
an argument to receive R. The code allocated internally two more matrices of the
same size, one to store T and the other, denoted Z, as temporary storage. The
remaining main memory is used by the algorithm to hold blocks of C'y and Y that
are operated upon.

The out-of-core implementation of the recursive QR algorithm does not stop
the recursion when n = 1, but when n is small enough so that the block of C/
to be factored fits within the remaining main memory (taking into account the
memory already consumed by R, T, and Z). If the block of Cy fits within main
memory, the code reads it from disk, computes (Y, R,T) in core, and writes YV
back to disk, overwriting columns of C'y. The in-core factorization algorithm is,
in fact, an implementation of the same recursive algorithm. We use this recursive
algorithm rather than an existing subroutine from, say, LAPACK [14], because the
matrices that this routine must factor are extremely thin, such as 2,000, 000-by-20,
and as shown in [15, 16], the recursive algorithm outperforms LAPACK’s blocked

8. Return
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FIG. 3 Updating Cs.

algorithm by a large factor in such cases. (The in-core QR factorizations of narrow
panels constitute a small fraction of the total work in this algorithm, however, so
this optimization is unlikely to significantly impact the total running time.)

If the block of Cf to be factored does not fit within main memory, the algorithm
splits it into C; and Cy and factors the block recursively. Computing Cy = QYCy =
(I — Y T11Y{")Cy is done in three out-of-core steps, each of which involves a call
to SOLAR’s out-of-core matrix-multiply-add routine: Cy = Cs + Y1(T11 (Y{ECo)).
This process is shown in Fig. 3. The first intermediate result Y;¥ Cs is stored in the
Z12 block and the second intermediate result in T2 (which is still empty). Next,
the code reads the first ny rows of C’g into R12. The code then writes out a block
of zeros into the first n; rows of Csy, since Y is lower trapezoidal, and recursively
factors the last m — nq rows of Cs.

We compute T2 = (—T11(Y{]Ya2))To2 in three steps, using T for the first
intermediate result (Y;]Ys2), and Z5 for the second intermediate result. The first
multiplication multiplies two out-of-core matrices, the remaining two multiply in-
core matrices. We then zero T5; and Rs1, since both 7" and R are upper triangular.

Following the computation of the compact-WY representation of ) our code
actually proceeds to compute @ or the SVD, depending on the routine called by the
user. If the user requested a QR decomposition, the code uses SOLAR’s out-of-core
matrix multiplication to compute the first n columns of Q = I — I —YTY7T. If
the user requested an SVD, the code first computes the SVD U1 ZV7 of R in-core,
and then applies @ to U; to get the left singular vectors U of C¢. The best way to
apply @ is to use the compact-WY representation directly and apply I — YTY T

10



Machine Mem. m n no T T; T; M M.

Pentium A 1.5 GB 10% 105 120 39,932 12,280 27,647 100 325

Pentium A 1.5GB  5x10° 2x10® 260 54,339 23,373 30,960 147 342

Pentium B 1.5GB 2x10°8 4288 60 401,739 222,172 179,360 384 694

Origin 2000 2GB 2x10% 2x103 70 122,379 69, 722 52,630 261 459
TABLE 1

The performance of our out-of-core QR factorization code including the formation
of the explicit Q. The table shows the machine used (one processor was used in
all cases), the amount of main memory that was actually used, the number of
rows m and columns n in Cp, the number ng of columns that the code was able to
process in-core, the total factorization time (in seconds), the time spent on in-core
computations and the time spent on I/O. The last two columns show the
computational rate M of the entire factorization in millions of floating-point
operations per second (Mflops), and the computational rate of the in-core
computations alone.

directly to U;. Our code currently uses a slightly less efficient method but we plan
to improve it.

4. PERFORMANCE OF THE OUT-OF-CORE QR FACTORIZATION

Table 1 summarizes the results of three performance-evaluation experiments
that were designed to assess the performance of the out-of-core QR factorization
code. The experiments used our QR code to factor double-precision-real m-by-
n matrices. In three of the experiments we used matrices with random elements
(i.e., the matrices were not produced by filter diagonalization); the exception is the
experiment on Pentium B, which is part of the filter-diagonalization run described
in the next section.. We chose the sizes for the random matrices so they approximate
our needs in a realistic physical application.

Two experiments were conducted on a 600 MHz dual Pentium III machine
running Linux (denoted Pentium A), another on a similar machine with a different
disk configuration (denote Pentium B), and a fourth and another on a 400 MHz,
112-processor SGI Origin 2000. We used only one processor on Pentium A the
Origin, two on Pentium B. Pentium A did not have sufficient attached disk space,
so we used four other similar machines as I/O servers. Communication between
the machine running the code and the I/O servers was done using a remote-1/0O
module that is part of SOLAR. The I/O servers used one 18 GB SCSI each, and were
connected to the other machine using fast Ethernet (100 Mbits/sec). The effective
I/O rate that we measured on this setup was about 9.8 MB/sec. Pentium B had
sufficient local disk space, with a transfer rate of approximately 20 MB/sec. The
Origin had an attached disk array with approximately 300 GB.

The purpose of the random-matrix experiments was to assess the impact of 1/O
on the overall performance of the orthogonalization code. I/O impacts most the
105-by-10% Pentium run, in which I/O takes 69% of the total running time. The
next Pentium run, which orthogonalized a wider and shorter matrix, performed
better, with only 57% of the total running time devoted to I/O. The difference is a
result of the recursive nature of the algorithm, which recurses only on the columns

11



of the matrix, not on the rows. On a wide matrix, the recursion is deeper and
a large fraction of the total work is performed on at the top levels, where out-of-
core performance is good. On a narrow matrix a significant amount of work is
performed at the bottom levels of the recursion, where the level of reuse of data in
main memory is low. The Origin experiment confirms our expectation that faster
I/0 reduces the fraction of the running time devoted to I/O.

The main conclusion from these results is that on these machines, the code
runs at 30 — 55% of the effective peak performance of the machine, and is hence
highly usable. Clearly, on faster machines or machines with slower I/O or on even
narrower problems, I/O would become a bottleneck. On the other hand, wider
problems should lead to better performance.

5. APPLICATION TO THE ELECTRONIC STRUCTURE OF CDSE
QUANTUM DOTS

In this Section we describe the use of the OOC-FD method to study the elec-
tronic structure of a realistic system, namely a large semiconducting CdSe quantum
dot. The electronic structure of the CdSe quantum dot was described within the
framework of the empirical pseudopotential method [22]. In this approximation the
electronic states of the quantum dot were computed from a single electron picture
similar to a density functional approach. We used a screened nonlocal pseudopo-
tential developed recently by Wang and Zunger [23] for the cadmium and selenium
atoms. These pseudopotentials produce local-density approximation quality wave-
functions with experimentally fit bulk band-structure and effective masses. The
full-scale version of the pseudopotentials without including uncontrolled approx-
imations that result in a reduction of the energy range of the Hamiltonian were
used. For simplicity the spin-orbit interactions were neglected.

We represent the electronic wavefunction on a three dimensional grid in real-
space, rather than the traditional plane-wave basis, with grid spacing of approx-
imately 0.5 atomic units. In this representation both the nonlocal potential and
kinetic operators can be evaluated using linear scaling methods (finite difference), or
alternatively one can use the more accurate Fast Fourier Transform (FFT) method
which has O(N log N) scaling, where N is the number of grid points. Both choices
ensure that the Hamiltonian matrix is sparse, and the OOC-FD method can be
applied to obtain the desired eigenvalues and eigenvectors.

The columns of Cf, the matrix whose columns span the desired eigenspace, were
generated by the filtering processes that starts from random initial vectors, as de-
scribed in Section 2. Each filtering process generates approximately 10 orthogonal
columns of C in our desired energy range (—25eV to 0eV') for a Newton interpo-
lation length of 1024. Since the filtering processes are completely independent, we
ran many of them on a cluster of Linux workstations or on multiple processors of
a parallel computer (a 112-processor SGI Origin 2000 in our case). At the end of
each filtering process we stored the columns that were generated in a separate file.
The total computational effort to generate the filtered states was approximately
1000 CPU hours.

Once the filtering processes was terminated and the output files were ready, our
out-of-core QR code collected the columns of Cy from these files, where multiple
columns were stored one after the other. All the columns were collected into one
SOLAR matrix file which was stored by block to optimize disk accesses. Our
code can collect filter output files from files stored on locally accessible file systems

12



800 B

o2}
Q
(=}
T
|

Density of States (eV'l)
5
o
I
|

200

\ \
925 -20 -15 -10 -5 0

Energy (eV)

FIG. 4 The electronic density of states of a large CdSe quantum dot computed
within the framework of the semiempirical pseudopotential method using the out-
of-core filter-diagonalization method.

(typically local disks or NFS mounted file systems) or on remote machines. The
code collects columns from remotely-stored files using scp, a secure remote file
copying program.

Next, we computed the SVD UXVT of C;. We used the singular values to
determine the numerical rank r of C'r. We then used the first 7 columns of U, cor-
responding to the r largest singular values, as an orthonormal basis for C'y, reduced
the order of H, and computed the eigenvalues and eigenvectors of the Hamiltonian
H and then the eigenvectors of H. We assumed that 3 7-by-r matrices of size r fit
in the main memory, which allowed us to compute the eigendecomposition of H in
the main memory (we used LAPACK’s DSYEV routine).

The results for the electronic density of states are shown in Fig. 4 for the largest
system studied so far. The total number of atoms in the quantum dot is 1277, with
648 cadmium atoms and 629 selenium atoms. The dangling bonds of the cadmium
and selenium surface atoms were terminated with ligand potentials to eliminate
all surface states from the band gap [9, 24]. The total number of states that
were generated in the filtering process is 4288, somewhat larger than the number
of occupied states (2515) to ensure that all occupied states are recovered in the
process. The number of grid points in each dimension was 128, resulting in a QR
decomposition of a matrix of size 2097152 by 4288, which amounts to 67 GB of
memory! The resulting HOMO-LUMO band gap is 2.19 eV in agreement with
other approximated methods [9, 24].

The out-of-core steps (steps two and three) were obtained on a 600 MHz dual
Pentium III machine with 2 GB of main memory and four 75 GB, 7,200 rpm IDE
disks, running Linux. The disks were controlled by an ATA-33 controller. The
transfer rate of a single disk was approximately 20 MB/sec. The orthogonaliza-
tion step took 401, 739 seconds, consisting of 222, 172 seconds in actual numerical
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computations and 179,360 seconds in I/O. These numbers are also reported in
Table 1. We then performed the diagonalization step which consists of three out-
of-core matrix multiplications, each took 137,341 seconds, 118,313 seconds and
134, 336 seconds, respectively. The main conclusion that can be drawn from these
results is that the I/O in the out-of-core orthogonalization step slows down the
computation by less than a factor of two!

6. SUMMARY

We have presented an out-of-core filter-diagonalization method that computes
the eigenvalues and eigenvectors of a large sparse matrix within a desired range of
eigenvalues. The method is based on the following three steps: The first filtering
step produces nonorthogonal states in a desired range of eigenvalues. These states
are then orthogonalized using the out-of-core SVD decomposition method. Finally,
the Hamiltonian is diagonalized within the subspace spanned by the orthogonal
states generated in the second step. We have demonstrated that the code is efficient
and that it can be used to solve problems whose size is much bigger than main
memory. This has been shown both for a random matrix model, and for a more
realistic physical system.

We believe that the OOC-FD method would be useful for more realistic elec-
tronic structure theories, such as the density functional theory. The main advantage
of the OOC-FD approach over other existing methods, is that a single orthogonal-
ization of all states is required. This is the key point for an out-of-core algorithm
to succeed. We also expect that the out-of-core algorithm would be useful in other
situations that require large-scale orthogonalization.
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