Nested-Dissection
Orderings for Sparse LU
with Partial Pivoting™

Igor Brainman' and Sivan Toledo'

1 Introduction

Reordering the columns of sparse nonsymmetric matrices can significantly reduce
fill in sparse LU factorizations with partial pivoting. Reducing fill in a factoriza-
tion reduces the amount of memory required to store the factors, the amount of
work in the factorization, and the amount of work in subsequent triangular solves.
Symmetric positive definite matrices, which can be factored without pivoting, are
normally reordered to reduce fill by applying the same permutation to both the
rows and columns of the matrix. When partial pivoting is required for maintaining
numerical stability, however, pre-permuting the rows is meaningless, since the rows
are exchanged again during the factorization. Therefore, we normally preorder the
columns and let numerical consideration dictate the row ordering. Since columns
are reordered before the row permutation is known, we need to order the columns
such that fill is minimized no matter how rows are exchanged. (Some nonsymmetric
factorization codes that employ pivoting, such as UMFPACK/MA38 [3, 4], deter-
mine the column permutation during the numerical factorization; such codes do not
preorder columns so the technique in this paper does not apply to them.)

A result by George and Ng [7] suggests one effective way to preorder the
columns to reduce fill. They have shown that the fill of the LU factors of PA is
essentially contained in the fill of the Cholesky factor of AT A for every row permu-
tation P. (P is a permutation matrix that permutes the rows of A and represents
the actions of partial pivoting.) Gilbert [9] later showed that this upper bound

*This research was supported by Israel Science Foundation founded by the Israel Academy of
Sciences and Humanities (grant number 572/00 and grant number 9060/99) and by the University
Research Fund of Tel-Aviv University.

TSchool of Computer Science, Tel-Aviv University.

¥School of Computer Science, Tel-Aviv University. Email: stoledo@tau.ac.il

on the fill of the LU factors is not too loose, in the sense that for a large class of
matrices, for every fill element in the Cholesky factor of AT A there is a pivoting
sequence P that causes the element to fill in the LU factors of A. Thus, nonsym-
metric direct sparse solvers often preorder the columns of A using a permutation @
that minimizes fill in the Cholesky factor of QT AT AQ.

The main challenge in column-ordering algorithms is to find a fill-minimizing
permutation without computing AT A or even its nonzero structure. While com-
puting the nonzero structure of AT A allows us to use existing symmetric ordering
algorithms and codes, it may be grossly inefficient. For example, when an n-by-n
matrix A has nonzeros only in the first row and along the main diagonal, computing
AT A takes Q(n?) work, but factoring it takes only O(n) work.

This challenge has been met for the class of reordering algorithms based on the
minimum-degree heuristic. Modern implementations of minimum-degree heuristics
use a clique-cover to represent the graph G4 of the matrix! A (see [6]). A clique
cover represents the edges of the graph (the nonzeros in the matrix) as a union
of cliques, or complete subgraphs. The clique-cover representation allows us to
simulate the elimination process with a data structure that only shrinks and never
grows. There are two ways to initialize the clique-cover representation of G r 4
directly from the structure of A. Both ways create a data structure whose size is
proportional to the number of nonzeros in A, not the number of nonzeros in A7 A.
From then on, the data structure only shrinks, so it remains small even if AT A
is relatively dense. In other words, finding a minimum-degree column ordering for
A requires about the same amount of work and memory as finding a symmetric
ordering for AT 4+ A, the symmetric completion of A.

Nested-dissection ordering methods were proposed in the early 1970’s and have
been known since then to be theoretically superior to minimum-degree methods for
important classes of sparse symmetric definite matrices. Only in the last few years,
however, have nested-dissection methods been shown experimentally to be more
effective than minimum-degree methods.

In 1980 Gilbert and Schreiber proposed a method for ordering G 4t 4 using
nested-dissection heuristics, without ever forming AT A [8, 10]. Their method uses
wide separators, a term that they coined. They have never implemented or tested
their proposed method.

The main contribution of this paper is an implementation and an experimental
evaluation of the wide-separator ordering method, along with a new presentation of
the theory of wide separators.

Modern symmetric ordering methods generally work as follows:

1. The methods find a small vertex separator that separates the graph G into
two subgraphs with roughly the same size.

2. Each subgraph is dissected recursively, until each subgraph is fairly small
(typically several hundred vertices).
3. The separators are used to impose a coarse ordering. The vertices in the top-

IThe graph G4 = (V, E) of an n-by-n matrix A has a vertex set v = {1,2,...,n} and an edge
set E = {(i,7)|a;; # 0}. We ignore numerical cancellations in this paper.

level separator are ordered last, the vertices in the second-to-top level come
before them, and so on. The vertices in the small subgraphs that are not
dissected any further appear first in the ordering. The ordering within each
separator and the ordering within each subgraph has not yet been determined.

4. A minimum-degree algorithm computes the final ordering, subject to the
coarse ordering constraints.

While there are many variants, most codes use this overall framework.

Our methods apply the same framework to the graph of AT A, but without
computing it. We find separators in AT A by finding wide separators in AT + A.
We find a wide separator by finding a conventional vertex separator and widening
it by adding to it all the vertices that are adjacent to the separator in one of the
subgraphs. Such a wide separator corresponds to a vertex separator in AT A. Just
like symmetric methods, our methods recursively dissect the graph, but using wide
separators. When the remaining subgraphs are sufficiently small, we compute the
final ordering using a constrained column-minimum-degree algorithm. We use exist-
ing techniques to produce a minimum-degree ordering of A” A without computing
G 47 4 (either the row-clique method or the augmented-matrix method).

Experimental results show that our method can reduce the work in the LU
factorization by up to a factor of 3 compared to state-of-the-art column-ordering
codes. The running times of our method are higher than the running-times of
strict minimum-degree codes, such as COLAMD [11], but they are low enough
to easily justify using the new method. On many matrices, including large ones,
our method significantly reduces the work compared to all the existing column
ordering methods. On some matrices, however, constraining the ordering using
wide-separators increase fill rather than reduce it.

The rest of the paper is organized as follows. Section 2 presents the theory
of wide separators and algorithms for finding them. Our experimental results are
presented in Section 3. We discuss our conclusions from this research in Section 4.

2 Wide Separators: Theory and Algorithms

Our column-ordering methods find separators in G 47 4 by finding a so-called wide
separator in G 47 . We work with the graph of A7 + A and not with G 4 for two
reasons. First, this simplifies the definitions and proofs. Second, to the best of our
knowledge all existing vertex-separator codes work with undirected graphs, so there
is no point in developing the theory for the directed graph G 4.

A vertex subset S C V of an undirected graph G = (V, FE) is a separator
if the removal of S and its incident edges breaks the graph into two components
G1 = (V1, E1) and G2 = (Va, Es), such that any path between ¢ € V3 and j € V3
passes through at least one vertex in S. A vertex set is a wide separator if every
path between i € V; and j € V, passes through a sequence of two vertices in S (one
after the other along the path).

Our first task is to show that every wide separator in G4r, 4 is a separator
in G ry. (proofs are omitted from this abstract due to lack of space)

Theorem 1. A wide separator in G o7 4 is a separator in G4 4.

The converse is not always true. There are matrices with separators in Gzt 4
that do not correspond to wide separators in A7 4+ A. The converse of the theorem
is true, however, when there are no zeros on the main diagonal of A:

Theorem 2. If there are no zeros on the diagonal of A, then a separator in G4z 4
is a wide separator in GoT4 4.

Given a code that finds conventional separators in an undirected graph, finding
wide separators is easy. The separator and its neighbors in either G; or G5 form a
wide separator:

Lemma 3. Let S be a separator in an undirected graph G. The sets S1 = SU{ili €
Vi,(i,5) € E for some j € S} and So = SU{ili € Va,(i,j) € E for some j € S}
are wide separators in G.

The proof of the theorem is trivial. The sizes of S; and Sz are bounded by d|S]|,
where d is the maximum degree of vertices in S. Given S, it is easy to enumerate
Sy and Sz in time O(d|S|). This running time is typically insignificant compared
to the time it takes to find S.

Which one of the two candidate wide separators should we choose? A wide
separator that is small and that dissects the graph evenly reduces fill in the Cholesky
factor of AT A, and hence in the LU factors of A. The two criteria are usually
contradictory. Over the years it has been determined the the best strategy is to
choose a separator that is as small as possible, as long as the ratio of the number
of vertices in G1 and G5 does not exceed 2 or so.

The following method, therefore, is a reasonable way to find a wide separator:
Select the smallest of S; and So, unless the smaller wide separator unbalances the
separated subgraphs (so that one is more than twice as large as the other) but the
larger does not. Our code, however, is currently more naive and always choose the
smaller wide separator.

3 Experimental Results

This section summarizes our experimental results. We begin by describing our code,
our collection of test matrices, and the machine used to carry out the experiments.
We then describe and analyze the results of our experiments. The analyses focus
on the effectiveness of various ordering methods and on their performance. By
effectiveness we mean the number of nonzeros in the factors, the number of floating-
point operations (flops) required to compute them, and the factorization time. By
performance we mean the cost, mostly in terms of time, of the ordering algorithm
itself.

3.1 Experimental Setup

The experiments that this section describe test the effectiveness and performance
of several column-ordering codes. We have tested our new codes, which implement
nested-dissection-based orderings, as well as several existing ordering codes.

Our codes build a hierarchy of wide separators and then use the separators to
constrain a minimum-degree algorithm. We obtain the wide separators by widening
separators in G g7, 4 that SPOOLES [1] finds. SPOOLES is a new library of sparse
ordering and factorization codes that is being developed by Cleve Ashcraft and
others. Our codes then invoke a column-minimum-degree code to produce the
final ordering. One minimum-degree code that we use is SPOOLES’s multi-stage-
minimum-degree (MSMD) algorithm, which we run on the augmented matrix. The
other minimum-degree code that we used is a version of COLAMD [11] that we
modified to respect the constraints imposed by the separators.

The existing minimum-degree codes that we have tested include COLAMD,
SPOOLES’s MSMD (operating on the augmented matrix with no separator con-
straints). In an earlier experiment, reported in [2], we also tested COLMMD, a
column minimum-degree code, originally written by Joseph W.-H. Liu and dis-
tributed with SuperLU. It was not shown to be consistently superior to the other
two codes so we dropped it from the experiment reported here.

We use the following acronyms to refer to the ordering methods: MSMD refers
to SPOOLES’ minimum-degree code operating on the augmented matrix without
constraints, WS+MSMD refers to the same minimum-degree code but constrained
to respect wide separators, and similarly for COLAMD and WS+COLAMD.

In the experiments reported here, we always reduce the input matrices to block
triangular form (see [13]) and factor only the diagonal blocks in the reduced form.
Many of the matrices in our test suite have numerous tiny diagonal blocks (most of
them 1-by-1); we report the performance of factoring all the diagonal blocks of size
250 or larger.

We factor the reordered matrix using SuperLU [5, 12] version 2.0, a state-
of-the-art sparse-LU-with-partial-pivoting code. SuperLLU uses the BLAS. we used
ATLAS?, a high-performance implementation of the BLAS.

We conducted the experiments on a 600MHz dual Pentium III computer with
2 GBytes of main memory running Linux. The machine was configured without
swap space so no paging occurred during the experiments. This machine has two
processors, but our code only uses one processor.

We tested the ordering methods on a set of nonsymmetric sparse matrices from
Tim Davis’s sparse matrix collection®. We used all the nonsymmetric matrices in
Davis’s collection that are not too small (we only report results on matrices whose
factorization time with the best ordering method was at least 1 second). Two of
the matrices in Davis’s collection were too large to factor on our machine (appu
and pre2) and SPOOLES broke down on a third (av41092; we are unsure whether
the breakdown is due to a bug in our code or due to a problem in SPOOLES). The
matrices are listed in Table 1. For further details about the matrices, see Davis’s

2yww.netlib.org/atlas

Swww.cise.ufl.edu/~davis/sparse/

Table 1. A comparison of wide-separator and minimum-degree orderings
on matrices whose graphs are reqular 2- and 3-dimenstonal meshes. The numerical
values in the matrices are uniform random variables in [0,1]. The first two lines
show the results on 2D meshes, the rest on 8D meshes. A missing timing result
means that the factorization ran out of space (all were executed on the same 2GB
machine). Times are in seconds.

| No | Ny | N: Tll)west | Best Method || T\ist’?ﬂamd | T:;)J]raomd TVI;:(‘?ﬂQOd T::)Tn(?mmd
500|500 113 | wscolamd 150 202 150 —
750|750 496 | wscolamd 601 — 684 —
30| 30| 30 352 | colamd 399 352 1210 404
40| 401 40 786 | wscolamd 792 2340 958 —
web site.

We also run experiments on matrices whose graphs are regular 2- and 3-
dimensional meshes and whose values are random numbers in the range [0, 1].

3.2 Results and Analysis

Tables 1 and 2 summarize the results of our experiments.

Table 2 shows that wide-separator (WS) orderings are both effective. On the
largest 2D and 3D meshes WS orderings lead to the fastest factorization times and to
the fastest overall solution time (including ordering time). Beyond performance, WS
orderings enable us to solve problem that we could simply not solve with minimum-
degree orderings since the factorization runs out of space.

Table 1 summarizes the results of our experiments on matrices from a matrix
collection. Column 5-10 in the table show that wide-separator ordering techniques
are effective. Wide separator (WS) orderings are the most effective ordering meth-
ods, in terms of the factorization time, on 16 out of the 32 test matrices. WS
orderings are the most effective on 7 out of the 10 largest matrices (largest in terms
of factorization time).

The reduction in work due to wide separators is often significant. On the
largest matrix in our test suite, 1i, wide separators reduce factorization time by
almost a factor of 2. The reduction compared to the unconstrained MD methods is
also highly significant on raefsky3 and epb3.

Nonzero counts in the factors, which are not shown in the table, are generally
correlated with factorization time, so a shorter factorization time for a matrix also
imply smaller factors.

When WS orderings do poorly compared to MD methods, however, they some-
times do significantly poorer. On ex40, for example, using wide separators slows
down the factorization by a factor of 2.45 relative to COLAMD alone. The In earlier
experiments [2] in which we did not reduce the matrices to block triangular form,
we have found that on some of matrices, especially the 1hr and bayer matrices,
the slowdowns are even more dramatic. The experiments reported here show that
reduction to block triangular form resolves these problems.

Wide-separator orderings are more expensive to compute than strict mini-
mum-degree orderings. Table 1 shows that when the ordering times are taken into
account, wide-separator orderings speed up the total solution time in 9 out of the 32
matrices. In 7 other matrices a wide-separator ordering reduced the factorization
time but increased the total solution time. We note that even when a wide-separator
ordering only reduces the factorization time, it also reduces the size of the factors,
which is often highly important (since it saves memory, reduces the occurrence of
paging, and speeds up subsequent triangular solves).

4 Conclusions And Discussion

Our main conclusion from this research is that hybrid wide-separator/minimum-
degree column orderings are effective. WS orderings are clearly superior to minimum-
degree orderings alone on large 2D and 3D meshes that require pivoting. On other
matrices obtained from a matrix collection, WS orderings often reduce substantially
the amount of time and storage required to factor a sparse matrix with partial piv-
oting, compared to column-MD orderings. They are more expensive to compute
than minimum-degree orderings but the expense is often more than payed off by
reductions in time and storage during the factorization stage.

Wide-separator orderings, like other column orderings based on fill in the
factors of AT A, are robust but pessimistic. They are robust in the sense that they
reduce worst-case fill. Optimistic column orderings that attempt to reduce the fill
in the factors of AT + A tend to reduce fill better than pessimistic orderings when
little or no pivoting occurs, but can cause catastrophic fill when pivoting does occur.

The combined results of this paper and of an earlier paper [2] show that first
permuting the matrix to block triangular form reduces the wide-separator ordering
times and improves the quality of the ordering on some matrices.

This work can be extended in several directions. First, improving the perfor-
mance of the ordering phase itself would be significant. This can be done by tuning
the parameters of the ordering code (stopping the recursive bisection on fairly large
subgraphs) or by improving the wide-separator algorithm itself. Second, one can try
to improve the orderings by trying to derive smaller wide-separators from a given
conventional separator. Third, one can interleave the ordering and factorization in
a way that widens separators only when necessary. That is, we would find a conven-
tional separator S in G, recursively order G; and factor the columns corresponding
to G1. Once this phase is completed, we can widen the separator by adding to S
the neighbors of vertices that were used as pivots. We now recursively order and
factor the (shrunken) Gs.

Acknowledgments: Thanks to John Gilbert for telling us about wide-separator
orderings. Thanks to John Gilbert and Bruce Hendrickson for helpful comments on
an early draft of the paper. Thanks to Cleve Ashcraft for his encouragement, for
numerous discussions concerning this research, and for his prompt response to our
questions concerning SPOOLES.

Table 2. A comparison of wide-separator and minimum-degree column
orderings. Column 2 shows the number of blocks in the block-triangular form of
the matriz and column & the number of blocks larger than 250-by-250. Column 4
shows the fastest factorization time and column 5 shows the ordering method that
led to the fastest time. Column 6 shows the ratio of the factorization time using
WSCOLAMD ordering relative to the factorization time using COLAMD. Values
smaller than 1 mean that the wide-separator ordering reduced the factorization time.
Column 7 shows the ratio of the sums of the factorization and ordering times. A
value smaller than 1 in column 6 but larger than 1 in column 7 mean that the wide-
separator ordering reduced the factorization time, but due to the overhead of the
factorization itself, the total solution time increased. Columns 8 and 9 are similar
to 6 and 7 with MSMD replacing COLAMD.

COLAMD |COLMSMD

N >250 best WS | TR | TS | TR
ame Nurr | Ngir Tp=" | Best Method T | Tovo | 7o | Trso
bayer01 8861 1/1.01e+00 | colamd 1.301 3.25| 1.73| 1.84
ex35 173 411.03e+00 | colamd 1.57| 4.09| 1.14| 3.62
utm5940 147 1|1.15e+00 | colamd 1.17| 1.48| 1.40| 1.34
epbl 1 1|1.41e+00 | colamd 1.00(1.40| 1.05| 1.30
lhr34 3533 10 | 2.06e4-00 | colamd 1.39 5.83| 1.52| 7.87
lhr34c 3533 10| 2.08e+-00 | colamd 1.49| 6.00| 1.62| 7.98
shyy161 |25761 1|4.55e+00 | wscolamd 0.62| 1.51| 0.74| 2.05
goodwin 2 1]4.73e+00 | wscolamd 0.36f 0.70(1.21| 141
epb2 1 15.43e+00 | wscolamd 0.93| 1.18| 0.89| 1.10
raefsky?2 1 1{6.80e+00 | wscolmsmd | 0.39| 0.55| 0.59| 0.87
raefskyl 1 1]6.81e+00 | wscolmsmd | 0.39| 0.55| 0.59| 0.87
graham1 478 1|8.80e+00 | wscolamd 096 1.43(1.00| 1.12
ex40 1 119.18e+00 | colamd 2.45| 2.50| 0.88| 0.78
garon2 1 1]9.44e+00 | colamd 1.82] 1.93| 1.00| 0.99
epb3 1 1/1.02e+01 | wscolmsmd | 0.69| 1.03| 0.49| 0.97
rim 2 1(1.69e+01 | wscolamd 0.36| 0.72|1.14| 1.34
olafu 1 1(2.02e+01 | wscolmsmd | 0.86| 1.04| 0.86| 1.03
rmal0 1 1|3.25e+01 | colmsmd 0.96| 1.25| 1.15| 1.31
venkat01 1 1|3.44e+01 | colmsmd 1.00] 1.18| 1.01| 1.21
venkat25 1 1|3.46e+01 | colmsmd 0.99| 1.18]1.01| 1.20
venkat50 1 1|3.46e+01 | colmsmd 0.99| 1.17|1.01| 1.20
raefsky3 1 1{3.85e+01 | wscolmsmd | 0.52| 0.61| 0.51| 0.65
af23560 1 1(4.00e+01 | colamd 1.98] 1.90| 1.31| 1.25
raefsky4 1 1]5.83e+01 | wscolmsmd | 0.78| 0.86| 0.49| 0.59
exl11 1 1|8.44e+01 | wscolamd 0.93| 1.00(0.76| 0.83
psmigr-2 1 1]1.43e+02 | wscolamd 0.99| 1.03(0.99| 1.00
psmigr-3 1 1]1.43e+02 | wscolamd 0.99| 1.03(1.02| 1.01
psmigr-1 1 1|1.52e+02 | colamd 1.01| 1.05|0.97| 1.01
wang3 1 1]1.65e+02 | wscolmsmd | 0.95| 0.95| 0.59| 0.60
wang4 1 1]2.26e+02 | wscolmsmd | 0.89| 0.90| 0.71| 0.72
bbmat 1 1|4.08e+02 | colamd 1.24] 1.31| 0.76| 0.72
li 2 2|6.96e+02 | wscolamd 0.51| 1.05]| 0.35| 0.73

[1]

2]

Bibliography

Cleve Ashcraft and Roger Grimes. SPOOLES: An object-oriented sparse ma-
trix library. In Proceedings of the 9th SIAM Conference on Parallel Processing
for Scientific Computing, San-Antonio, Texas, 1999. 10 pages on CD-ROM.

Igor Brainman and Sivan Toledo. Nested-dissection orderings for sparse LU
with partial pivoting. Proceedings of the 2nd Conference on Numerical Anal-
ysis and Applications, 8 pages, Rousse, Bulgaria, June 2000. (To appear in a
forthcoming Springer LNSC volume.)

T. A. Davis and I. S. Duff. An unsymmetric-pattern multifrontal method for
sparse LU factorization. SIAM Journal on Matrixz Analysis and Applications,
19:140-158, 1997.

T. A. Davis and I. S. Duff. A combined unifrontal/multifrontal method for
unsymmetric sparse matrices. ACM Transactions on Mathematical Software,
25:1-19, 1999.

James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and
Joseph W. H. Liu. A supernodal approach to sparse partial pivoting. SIAM
Journal on Matrix Analysis and Applications, 20:720-755, 1999.

A. George and J. W. H. Liu. The evolution of the minimum-degree ordering
algorithm. SIAM Review, 31:1-19, 1989.

Alan George and Esmond Ng. On the complexity of sparse QR and LU factor-
ization on finite-element matrices. SIAM Journal on Scientific and Statistical
Computation, 9:849-861, 1988.

John R. Gilbert. Graph Separator Theorems and Sparse Gaussian Elimination.
PhD thesis, Stanford University, 1980.

John R. Gilbert. Predicting structure in sparse matrix computations. SIAM
Journal on Matriz Analysis and Applications, 15:62—79, 1994.

John R. Gilbert and Robert Schreiber. Nested dissection with partial pivoting.
In Sparse Matriz Symposium 1982: Program and Abstracts, page 61, Fairfield
Glade, Tennessee, October 1982.

10

[11] S. 1. Larimore. An approximate minimum degree column ordering algo-
rithm. Master’s thesis, Department of Computer and Information Science
and Engineering, University of Florida, Gainesville, Florida, 1998. Also
available as CISE Tech Report TR-98-016 at ftp://ftp.cise.ufl.edu/cis/tech-
reports/tr98,/tr98-016.ps.

[12] Xiaoye S. Li. Sparse Gaussian Elimination on High Performance Computers.
PhD thesis, Department of Computer Science, UC Berkeley, 1996.

[13] Alex Pothen and Chin-Ju Fan. Computing the block triangular form of a
sparse matrix. ACM Transactions on Mathematical Software, 16(4):303-324,
December 1990.

