
High-Performance Out-of-Core Sparse LU Factorization∗

John R. Gilbert† Sivan Toledo‡

Abstract

We present an out-of-core sparse nonsymmetric LU -factorization algorithm with
partial pivoting. We have implemented the algorithm and our experiments show that
it can easily factor matrices whose factors are larger than main memory at rates
comparable to those of an in-core solver. The algorithm is novel in several respects,
including the use of panels that are larger than memory and the use of a priority queue
of updates.

1 Introduction.

We present an algorithm for out-of-core sparse LU factorization with partial pivoting. A
user may fail to solve a large linear system because a solver breaks down numerically, runs
for too long, or runs out of memory. Although most of the research in high-performance
scientific computing has focused on reducing running times by exploiting parallelism and
locality, many users’ failure to solve large systems stems from running out of memory. Our
algorithm allows users to factor matrices that are larger than main memory and whose
factors are larger than main memory, at rates similar to those of in-core solvers.

Preconditioned iterative solvers, using either incomplete factorization preconditioners
or approximate inverse preconditioners, have been also been proposed as a way to solve large
linear systems whose LU factors do not fit within main memory. Preconditioned iterative
solvers, however, may break down numerically or fail to converge when forced to use only
a small main memory. We therefore believe that an out-of-core direct solver represents one
of the best approaches to the “black-box” solution of large sparse linear systems.

The amount of main memory that our algorithm uses is only proportional to the number
m of rows plus the number n of columns in the matrix A. We have implemented the
algorithm as a Matlab module in C. Our experience so far with the algorithm, on a Sun
Ultra workstation and on an SGI Origin 200, using standard large test matrices, has been
that the factorization is CPU bound and comparable in performance to Matlab’s sparse LU
factorization. Therefore, the new algorithm allows even naive users to solve linear systems
of almost unlimited size efficiently on computers with modest memory sizes.

Section 2 describes the algorithm. The amount of non-floating-point work that the
algorithm performs is analyzed in Section 3. Section 4 compares the design of our algorithm
to the design of a state-of-the-art in-core LU -factorization algorithm. Our implementation

∗This research was supported in part by DARPA contract number DABT63-95-C-0087 and by NSF
contract number ASC-96-26298. This research was conducted while Sivan Toledo was with the Xerox Palo
Alto Research Center.
†Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304. email:

gilbert@parc.xerox.com.
‡Computer Science Department, Tel Aviv University, Tel Aviv 69978, ISRAEL. email:

sivan@math.tau.ac.il.

1



Out-of-Core Sparse LU Factorization 2

is described in Section 5, and the results of our experiments are described in Section 6. We
present our conclusions in Section 7.

2 The Algorithm

The algorithm is a block-column left-looking factorization, but it differs substantially from
other block-column left-looking sparse algorithms. A block-column left-looking algorithm
loads a panel of columns of A into memory, updates these columns using the columns of
L to their left (smaller index), factors the panel, and appends its columns to L and U . It
then loads the next panel of columns to the right, updates it, factors it, and so on. In terms
of data locality and data reuse, wider panels typically yield better data reuse but require
more fast memory.

The factorization algorithm consists of three main phases: symbolic analysis, schedul-
ing, and numerical factorization. All three phases work well with a limited amount of main
memory. The symbolic analysis phase computes the column elimination tree (c-etree) of
the matrix, a postordering of this tree, and upper bounds on the number of nonzeros in each
column of the factors L and U . For more information on the algorithms that are used in the
symbolic analysis phase, see [4, 5]. The scheduling phase uses this information to compute
an efficient out-of-core schedule for the factorization. The numerical factorization phase
determines which column of L updates which column of A and computes the columns of U
and L. As in other pivoting LU factorization algorithms, the symbolic work to determine
which columns of L update each column is interleaved with numerical computations.

A matrix to be factored should normally be reordered to minimize fill. We currently
rely on in-core reordering algorithms, such as colamd [1]. Relying on an in-core reordering
algorithm means that matrices that fit within main memory can usually be reordered and
factored efficiently, even if their factors do not fit within memory, but that matrices that
are larger than memory might cause significant paging during the reordering phase (even
though the factorization itself is insensitive to whether the matrix is larger than memory).

The (reordered) matrix is initially stored on disk in compressed column format. The
algorithm stores the factors in the same format. The structure of the data files is described
in the next section.

The following subsections describe the three phases of the algorithm in detail.

2.1 Computing the Column Elimination Tree and Bounding Column
Counts

Our code computes the column elimination tree of a matrix with one pass over the matrix.
This part of the algorithm uses Θ(m + n) words of memory1, so it can be performed in
core with no I/O except for reading the matrix once. Older codes scan the matrix twice to
compute the column elimination tree. Since reading the matrix from disk can be expensive,
we have fused the two passes into one, but the algorithm is essentially the same.

During the computation of the column elimination tree we perform one more task. We
create the nonzero structure of another matrix SA that is later used in the computation of
column counts. For each nonzero (i, j) in A, SA has a nonzero (j, f), where f is the index
of the first column in A that has a nonzero in row i. The code writes the indices (j, f) to
disk using a large buffer, so that actual I/O is performed infrequently when the buffer fills.

1We use Θ(n) to denote functions f(n) whose growth is proportional to n.



Out-of-Core Sparse LU Factorization 3

Next, the algorithm computes a postorder of the column elimination tree using a depth-
first traversal. This computation is performed in core using Θ(m) memory.

We now have the column elimination tree and a postorder of it in memory, and the
structure of SA is stored on a file. The structure of SA is stored by row, possibly with
duplicates. Subsequent parts of the algorithm need to access the structure of SA by column
in postorder, and without duplicates, so an out-of-core sorting algorithm sorts the row-
column index pairs in the file lexicographically by column (in postorder) and by row. This
enables removal of duplicates and efficient access by column.

The out-of-core sorting algorithm is a k-way merge sort. In each iteration, the algorithm
reads k sorted runs and merges them together into a single sorted run. The larger the value
of k, the fewer the number of iterations. Each sorted run is read sequentially using a
buffer. The value of k is chosen so that there is enough main memory for k buffers, where
each buffer is large enough so that I/O is performed efficiently. (Reading few large blocks
from disks is more efficient than reading many small blocks). We currently use buffers of
size 64Kbytes. With 64Mbytes of main memory devoted to these buffers, for example, the
algorithm performs one merge to sort files of up to 64Mbytes, and two merges to sort up
to 64Gbytes.

The first iteration of this sorting algorithm is actually fused with the computation of
SA. As mentioned above, we write the elements of SA in batches using a buffer. This single
buffer is as large as main memory would hold. When the buffer fills up, we sort it, then
write it to disk as a sorted run. The merge-sort algorithm therefore skips the first merge
iteration. Using our example of 64Mbytes of main memory, files of up to 64Gbytes are
sorted in only one merge iteration.

Next, the algorithm bounds the nonzero counts for the columns of U and L. This is done
by simulating an elimination process on SA. We traverse the columns of SA in postorder
(of the c-etree of A). When the algorithm processes column j, after all of its descendants
have been processed, it uses its nonzero count as the nonzero count of the jth column of L,
and adds all of its nonzeros to the structure of the parent column p(j) of j. The algorithm
adds these nonzeros by pushing them on a stack. When the parent p(j) is processed, its
nonzero structure is determined by the union of the structure of column p(j) in SA with
the set of nonzeros that have been pushed on the stack by the immediate children of p(j).
The bounds on the column counts of U are computed by keeping track of the row counts
in this simulated elimination process.

Although this simulation process uses less memory than an actual elimination on SA,
we do not assume that it can be performed in core. The stack is therefore maintained out
of core. It is stored in a file and accessed using a large buffer.

To summarize, the symbolic elimination phase is implemented out-of-core using three
techniques. We use loop fusion to reduce the number of passes over the input matrix to one,
and to fuse the first iteration of the merge sort algorithm with the generation of the matrix
SA. We use an out-of-core merge sort algorithm to transpose SA and to remove duplicate
entries. We use an out-of-core stack data structure to implement a symbolic simulation of
an elimination process.

2.2 Scheduling

The next major phase in the algorithm is scheduling the numerical factorization. Before
we can describe the scheduler, however, we must explain how the numerical factorization
works.



Out-of-Core Sparse LU Factorization 4

The matrix is factored in panels. Each panel consists of a group of consecutive (in the
postorder) columns. Conceptually, after the columns in panels 1 through J − 1 have been
factored, the algorithm loads panel J , performs all the updates from columns in previous
panels to columns in panel J , and factors panel J .

Wider panels require less I/O. Consider a column j that eventually updates, say, 100
other columns to the right of it. If these 100 columns belong to 11 panels besides the panel
that j belongs too, we must read j 11 times from disk. If, on the other hand, these 100
panels belong to only 3 other panels, then j is read only 3 times during the algorithm.
Thus, wider panels lead to less I/O.

In fact, storing all of panel J simultaneously in memory is often unnecessary. If columns
j1 and j2 are both in panel J , and if neither one is an ancestor of the other in the c-etree,
then they do not need to be stored in memory simultaneously, because only columns that
are on a single root-to-leaf path in the tree update each other. The structure of the c-etree
tells us that column j1 will not update j2 or vice versa. The c-etree also tells us that if
a column j3 might update j1, then it will not update j2. Thus, not having j1 and j2 in
memory simultaneously does not prevent any updates from occurring and does not require
loading columns of L more than once per panel.

Thus, our scheduler decomposes the matrix into panels that cannot, in general, be
stored in main memory. The decomposition is done, however, such that each part of a
root-to-leaf path within a panel can be stored in memory. To ensure that paths in the
panel can be stored in main memory, the scheduler uses the upper bounds on the column
counts that were computed in the first phase of the algorithm. The scheduler decomposes
the matrix using a depth-first traversal of the c-etree.

Besides decomposing the matrix into panels, the scheduler builds the complete sequence
of columns to be read from disk and columns to be factored and written to disk. Since
we do not have enough memory to hold an entire panel, columns within the panel must
be factored and written to disk as soon as all the necessary updates have been applied to
them, so that other columns in the panel can be read from disk. The schedule is broken into
steps. In each step one or more columns of A are read from disk, updated (the updating
column may also update other columns in the panel), and one or more columns are factored
and written to the file containing L. The set of columns to be factored may be a subset
or a superset of the columns that are loaded in the same step. The complete schedule is
described by four integer vectors of size n. One vector specifies the sequence of columns
to be read from disk into panels, a second the sequence of columns to be factored, a third
the step in which each column is loaded into a panel, and the fourth the step in which each
column is factored.

2.3 Numerical Factorization

The numerical factorization step factors A according to the schedule that was previously
computed.

In the beginning of each step in the factorization, the algorithm has a set P (possibly
empty) of columns in memory. The columns in memory are part of a root-to-leaf path in
the c-etree. Step s starts with loading an additional set Fs of columns of A into the active
set P . The augmented set P is still a partial path in the c-etree. Next, the algorithm
performs several updates. These updates load columns of L from disk and use them to
update columns in P . Now the algorithm factors and writes to disk a subset Es (possibly
all) of the columns of P . Each column in Es, in postorder, is factored, used to update the



Out-of-Core Sparse LU Factorization 5

rest of the columns in P , and written to disk as part of U and L.
The sets of columns Fs and Es for each step s are given by the schedule. The set of

columns of L that are loaded from disk in step s and update P is not given by the schedule,
because it depends on pivoting decisions that are made during the numerical factorization
phase.

The algorithm uses a priority queue, implemented as a binary heap, to determine which
columns of L must be loaded in step s. When a column of A is loaded into P and when
a column of L is loaded for an update, the indices of the nonzeros that are in rows that
have already been used as pivot rows are inserted into the heap. The algorithm maintains
a bitmap specifying which row indices are already in the heap, to avoid duplicate indices
in the heap.

Row indices in the heap are ordered according to the indices of the columns for which
they served as pivots. That is, row index i will be extracted from the heap before row
index i′ if the pivot in column j was i and the pivot in column j′ was i′ and j < j′. During
the update phase of step s, the algorithm repeatedly extracts from the heap the row i
index with the smallest corresponding column index j. If j is in the panel that is currently
being factored, it is skipped. (Because column j of L already updated the columns in P .)
Otherwise, the algorithm loads the jth column of L from disk, uses it to update the columns
of P , and adds row indices of nonzeros in column j to the heap as appropriate. That is,
indices of rows that have already served as pivot rows and which are not already in the
heap are added.

The heap allows the algorithm to determine that a column j of L must update some of
the columns in P , but it does not tell it which ones. To determine efficiently which columns
of P must be updated by a given column j of L, the algorithm also maintains the nonzero
structure of P in a collection of row lists (in addition to a column-oriented representation).
The structure of each row is maintained as a linked list, possibly empty. Elements are
inserted into the row lists when they are loaded from disk or when fill elements are created.

The algorithm maintains the active set of columns P in one of two ways, selectable
at runtime. The columns can be stored in compressed column format with space reserved
for fill elements. The algorithm allocates each compressed column with enough space to
store worst-case fill, as predicted by the symbolic analysis phase. Or, the columns can be
stored in a sparse accumulator (spa) data structure, in which the indices of the nonzeros
are stored in a compressed format, but the nonzeros themselves are stored in a full array of
size m. The compressed column format allows the algorithm to hold more columns in main
memory. When the columns of P are stored in compressed columns, each column must be
scattered into a size-m array before a column-column update operation and gathered after
the operation. The spa structure requires more space per column, so fewer columns can be
stored in main memory, which leads to more I/O, but it reduces scatter-gather overhead.
Which data structure is appropriate depends on whether the computation is CPU bound
or I/O bound.

3 Analysis

The performance of an out-of-core algorithm may be limited either by I/O performance
or by in-core computations. We have structured our algorithm to perform as little I/O as
possible, and in practice it does not spend significant amounts of time waiting for I/O. We
thus turn to estimating the amount of work spent in symbolic non-floating-point operations,
which can consume a significant fraction of the running time.



Out-of-Core Sparse LU Factorization 6

The amount of symbolic overhead in the symbolic analysis and scheduling phases is
typically insignificant. The computation of the elimination tree and its postorder are done
in O(n + m) time. Computing the upper bounds on the column counts of L and U cannot
be bounded by a simple expression, but it is typically insignificant as well, as shown by our
experimental results in Section 6. Computing the schedule requires O(n) work.

Most of the symbolic overhead is incurred during the numerical factorization phase.
The amount of work to maintain the list of row indices of P is Θ(nnz(U + L)), since

each nonzero of A and each fill element is inserted once into the appropriate row list, visited
once, and deleted. Each operation costs a constant amount of work because insertions are
always done at the head of the lists2.

Estimating the work spent on heap operations is more complex. The work required to
insert or extract an element from the heap is Θ(log h), where h is the size of the heap at
the time of the operation. In our algorithm the size of the heap is bounded by the number
of nonzero rows in a set P of columns. Each heap operation can be charged against the
loading of one column of L from disk and performing one or more column-column updates.
The cost of each column-column operation is proportional to the number of nonzeros in the
column of L. Although we do not know how to theoretically relate the number and cost of
heap operations to the number of nonzeros or floating point operations in the algorithm,
this overhead is low. The cost of the two heap operations associated with a row index is
likely to be insignificant relative to the cost of loading the corresponding column from disk
and the cost of performing several column-column updates. In practice, the measured cost
of heap operations is low: the number of heap operations is often more than 3 orders of
magnitude less than the number of floating-point operations.

We now turn to symbolic overhead in the inner loop of the algorithm, during column-
column update operations. If the columns of P are stored in compressed format, each
column must be scattered to a size-m array before each column-column update and gathered
back after the operation. This is a major cost. The amount of work in these scatter-gather
operations cannot even be bounded by the number of floating-point operations, since a
column that is scattered-gathered can have many more nonzeros than the column that
updates it. We thus usually elect not to store columns in compressed format.

If columns are stored in a spa, then the cost of all the scatters is Θ(nnz(A)) and the
cost of all the gathers is Θ(nnz(L + U)). This overhead is usually small compared to the
cost of floating-point operations, and most sparse LU algorithms incur it.

The other costs in the column-column update loop are indexing overhead to address
the spa and insertion of new fill elements into the row lists. In addition, the code also
checks for each nonzero in the updating column of L whether the column being updated
already has a nonzero in that row (using a bitmap), and if not, the row index is inserted
into the column structure and into the row lists. Actual insertions into the row lists cost
Θ(nnz(L + U)) total, as explained above.

4 Comparison with SuperLU

We now compare our out-of-core algorithm to a state-of-the in-core algorithm. SuperLU [7]
is block-column left-looking algorithm designed to achieve high performance on machines
with data caches. But although the general design objectives of the two algorithms are
closely related (to achieve good data reuse in cache or in main memory), the differences

2We denote by nnz(A) the number of nonzeros in A and by nnz(U + L) the number of nonzeros in the
factors of A, assuming that no exact cancellation occurs.



Out-of-Core Sparse LU Factorization 7

in the performance characteristics of the slow memories (main memory vs. disks) dictate a
different design.

The symbolic analysis phases in the two algorithms are similar algorithmically, but ours
in designed to perform as little I/O as possible. To achieve this goal we fused loops that
read the matrix and implemented an out-of-core sorting algorithm.

Most of the differences, however, are in the numerical factorization phase. Perhaps
the most significant difference is the use of a priority queue in our algorithm versus the
use of depth-first search (dfs) in SuperLU. To determine which columns of L must update
the active panel, SuperLU uses a dfs technique [6]. The graph being searched represents
a subset of the nonzeros of L [3]. Earlier algorithms searched in a graph that represents
the entire nonzero structure of L, in which case the cost of the searches is proportional to
the number of floating-point operations in the algorithm. Searching in the so-called pruned
graph [3], as done in SuperLU, reduces the cost of the searches to a small fraction of the
cost of floating-point operations. We decided not to use the dfs technique because the
pruned graph may be larger than main memory, and searching in a graph stored on disk
may be slow. To the best of our knowledge, efficient depth-first searching in a graph that is
stored on disk and which grows during the course of the algorithm is not a well-understood
problem. Instead, our algorithm uses a priority queue to maintain the set of nonzero rows
in the active panel. We cannot provide a simple bound for the cost of the priority queue
operations, but their measured cost is small.

Another important difference between SuperLU and our algorithm is that our algorithm
maintains a sparse representation of the rows structures in P , whereas SuperLU does not.
When SuperLU determines that a column of L must update some columns in the active
panel, it cannot determine which columns in the panel must be updated. SuperLU inspects
the entire row to determine which column must be updated. Since SuperLU stores the
active panel in a dense array, the row is stored in a one-dimensional subarray and it is
easy to search it for nonzeros. Also, since in SuperLU the number of columns in a panel is
typically small, usually 8–16, so scanning the row is fast. In contrast, in our algorithm the
active panel may contain hundreds or thousands of columns, so scanning dense rows can
be expensive. Also, when the columns in P are stored in compressed format and not in a
dense array, scanning the row cannot be easily done. To summarize, maintaining the row
lists allows our algorithm, at a low cost, to avoid unnecessary tests and to store the panel
in compressed format.

Also, as explained above, the panel in our algorithm can be larger than memory. In
SuperLU the entire panel is stored in memory. Since SuperLU has been shown to achieve
high performance with relatively narrow panels, making the panels wider is not important
for SuperLU. But for an out-of-core algorithm to achieve high performance, higher levels of
data reuse are necessary, and our design enables us to use wider panels without additional
I/O.

A significant difference between SuperLU and the current implementation of our
algorithm is the fact that SuperLU uses supernode-panel updates whereas our algorithm
only uses column-panel updates, which are actually implemented as a sequence of column-
column updates. (Supernodes are groups of consecutive columns with similar nonzero
structures.) Performing most of the floating-point operations in SuperLU within a
supernode-panel update subroutine is an important reason for the high computation rate
of SuperLU. Since our algorithm performs the same floating-point operations within a
column-column update subroutine at a much slower rate, its overall performance is lower.
This difference, however, is not an essential difference between the two algorithms, and



Out-of-Core Sparse LU Factorization 8

supernode-panel updates can be incorporated into our algorithm. As a matter of fact, our
algorithm already detects supernodes, but we have not yet implemented a supernode-panel
update subroutine.

Most of the essential differences cannot be considered as universal improvements
to SuperLU, in the sense that they are unlikely to make SuperLU run faster in core.
Instead, these differences represent a design that is more appropriate for the performance
characteristics of disks than the design of SuperLU.

5 Implementation

We have implemented the algorithm in C as a Matlab-callable module. Parts of the
algorithm that are not performance critical, such as the overall driver routine and the
scheduler are currently written in Matlab. We have compiled and used the code under
several operating systems, including Sun’s Solaris, SGI’s Irix, and Microsoft’s Windows NT.

We have chosen to implement the code as a collection of C routines callable from Matlab
for two reasons. First, this development environment enabled us to quickly prototype key
subroutines in Matlab, then convert them to C. The existence of the prototypes in Matlab
simplified the debugging phase of the C code, since we could compare the results of runs
with the Matlab code to results of runs with the C code. Second, our Matlab-callable solver
is easy to use, almost as easy as Matlab’s internal solver (the main exception being that
the user of our solver must specify a directory for the matrix files). A more flexible way
to achieve the ease-of-use goal is to write C or Fortran routines that are independent of
Matlab and a Matlab interface, as the implementors of SuperLU and colamd did. This
design allows Matlab users to use the software, it allows other users to use the software
in independent C and Fortran applications, but it does not provide the implementors with
the convenience of developing in the Matlab environment.

We have encountered no problems with porting the code from one Unix platform to
another, but we did encounter a problem when we ported the code to Windows NT. Under
Windows NT our code cannot open a file in one Matlab-callable C subroutine and use
it in another. Each Matlab-callable C subroutine is compiled into a dynamically-linked
library called a mex file. Our code normally opens files in one mex file and stores the file
descriptors in Matlab data structures. Mex files that are subsequently called retrieve the
file descriptors and use them to access the files. We have found that in Windows NT file
descriptors are private to each dynamically-linked library, so we had to store file names
instead of file descriptors in the Matlab structures and open and close the files in each mex
file.

Our algorithm uses matrices stored on disks in compressed column format in files with
a special structure. A matrix is stored in one meta-data file and one or more data files. The
meta-data file stores the size and location on disk of each column. The location information
consists of the index of the data file that contains the column and the offsets within the file
of both the vector of row indices and the vector of values. The code automatically splits
large matrices into several data files so that no file is larger than about 1Gbytes. We limit
files to 1Gbytes so that offsets can be kept in 32-bit integers and so that large matrices can
be stored on several file systems. This scheme allows our code to handle matrices that are
larger than 4Gbytes on virtually any computer system with sufficient disk space. Although
some computer systems directly support files larger than 4Gbytes, 64-bit file offsets, and
single files that are stored on several disks, we decided not to rely on such features because
many systems do not offer them.



Out-of-Core Sparse LU Factorization 9

Table 1

The performance of our out-of-core solver on an Origin 200 machine, using one processor and
128Mbytes of main memory. The table shows the time T sym to perform the symbolic analysis, the
time Tnum for the numerical factorization, the time T cc spent on column-column updates within
the numerical factorization phase, the time T io spent on I/O within the numerical factorization, the
number W of columns in P , the computational rate and the size of the factors. Times are reported
in seconds.

Matrix T sym Tnum T cc T io W Mflops Mbytes
twotone 18 1889 1575 187 90 5.1 264
wang4 12 10483 10055 206 143 7.3 470
raefsky4 13 2482 2226 90 188 13.0 320
venkat50 15 674 517 89 59 9.2 229

6 Experimental Results

Experiments that we have performed with the new code indicate that it can easily factor
matrices whose factors are larger than memory at reasonable rates. Matlab was not able
to factor any of the test matrices matrices in core on our computers.

We ran experiments on two machines. The matrices were large nonsymmetric matrices
from Davis’s matrix collection ([2]; the matrices and their descriptions are available online).
The columns of the matrices were ordered using Matlab’s colmmd ordering subroutine. Our
algorithm was configured in all cases to store the active part P of the panel in a sparse
accumulator rather than a compressed column format.

One machine that we used for testing is a 143Mhz Sun UltraSparc workstation with
324MBytes of memory, using a 4GBytes SCSI disk to store matrices and their factors. The
solver was allowed to use only 128Mybtes of memory. We used Matlab 5.0. On this machine,
Matlab factors sparse matrices that do fit within memory at rates of 6 to 6.5 Mflops. We
report on the factorization of two matrices on this machine, vavasis3 and venkat01. Our
overall Mflop rates are between 5.27 and 5.47 Mflops. Factoring vavasis3 took about 16,850
seconds, of which less than 700 were spent on I/O. The size of the factors was more than
580 Mbytes. Factoring venkat01 took about 1,040 seconds, of which less than 110 were
spent on I/O. The size of the factors was about 220 Mbytes.

We performed additional tests on a 180Mhz SGI Origin 200 computer with two
processors, 256Mbytes of main memory, and a 2Gbytes SCSI disk. The solver was allowed
to use only 128Mbytes of main memory and used only one out of two processors. We
used Matlab 5.2. On this machine, Matlab factors large sparse matrices that do fit within
memory (no paging) at rates of 13 to 16 Mflops. It factors dense matrices at rates of
43 Mflops. Our results on this machine are summarized in Table 1. The table shows that
only a small fraction of the time is spent on the symbolic analysis phase and on I/O during
the numerical factorization phase. Most of the time is spent in column-column updates.
The average number of columns of P that a column of L updates when it is loaded from
memory ranged from 18 (venkat50) to 66 (raefsky4).



Out-of-Core Sparse LU Factorization 10

7 Conclusions

We have described an out-of-core sparse LU -factorization algorithm, its implementation,
and its performance.

The algorithm is novel in several respects. The algorithm uses a novel schedule that
allows panels in a left-looking factorization to be larger than memory without performing
additional I/O. The algorithm uses a priority queue to find columns of L that must update
the current panel and row lists to find columns in the panel that must be updated.

The main contribution of the algorithm and its implementation is that is allows users
to solve very large sparse systems that cannot be solved by existing in-core direct solvers
because they run out of memory. Although it is sometimes possible to use virtual memory
to factor large matrices with an in-core solver, the performance is usually poor because the
paging rate is high. Also, on many computers virtual memory is limited to 2 or 4Gbytes,
thereby limiting the size of systems that can be solved. In contrast, our code was designed
to perform as little I/O as possible, and it can handle matrices larger than 4Gbytes on
virtually any computer.

We plan to implement and describe a supernodal version of this algorithm, which should
further improve the performance of the code.

References

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering algorithm,
SIAM J. Matrix Anal. Appl., 17(4) (Oct. 1996), pp. 886-905.

[2] T. Davis, University of Florida sparse matrix collection, NA Digest, v.92, n.42, Oct. 16, 1994
and NA Digest, v.96, n.28, Jul. 23, 1996, and NA Digest, v.97, n.23, Jun. 7, 1997. available at:
http://www.cise.ufl.edu/∼davis/sparse/.

[3] S. C. Eisenstat and J. W. H. Liu, Exploiting structural symmetry in a sparse partial pivoting
code, SIAM J. Scientific and Statistical Computing, 14 (1993), pp. 253–257.

[4] John R. Gilbert, Predicting structure in sparse matrix computations, SIAM J. Matrix Analysis
and Applications, 15 (1994), pp. 62–79.

[5] J. R. Gilbert and E. Ng, Predicting structure in nonsymmetric spase matrix factorizations,
in Alan George, John R. Gilbert, and Joseph W. H. Liu, editors, Graph Theory and Sparse
Matrix Computations, Springer, 1993.

[6] J. R. Gilbert and T. Peierls, Sparse partial pivoting in time proportional to arithmetic
operations, SIAM J. Scientific and Statistical Computing, 9 (1988), pp. 862–874.

[7] Xiaoye S. Li, J. Demmel, S. Eisenstat, J. Gilbert, and J. Liu, A supernodal approach to sparse
partial pivoting, SIAM Journal on Matrix Analysis and Applications, to appear. Previously
published as UC Berkeley Tech Report CSD-95-883, September 1995, revised December 1997.


