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Abstract 

We present an algorithm for the efficient and reliable computation of the Grassberger-Procaccia correlation dimension in 
cases where the correlation integral is constructed using all pairs of points. This algorithm is explicitly designed for modem 
super-scalar processors. 0 Published by Elsevier Science B.V. 
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Nonlinear dynamics techniques have recently be- 
come valuable tools for analyzing and evaluating 

dynamical systems in many fields. The 
Grassberger-Procaccia correlation dimension [ 11, in 

particular, is used by many investigators since it is 
applicable for experimental data and provides a 
quantitative measure of the system’s complexity. In 
this Letter we introduce a vectorized algorithm for 
the estimation of the correlation dimension from 
time series. This algorithm computes the correlation 
dimension accurately, unlike other proposed efficient 
algorithms in the literature. In addition, it is well- 
suited for high-performance modem processors. 
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Estimation of the correlation dimension (com- 
monly referred to as D,) involves embedding the 

time series with delay coordinates and estimating the 
probability density function of the distance between 
pairs of points in an m-dimensional space [2]. The 
formal definition of D, is 

D 
2 

= lim d ln C(r) 

r+O dln r ’ 

C(r) is the correlation integral, 

(1) 

1 
= lim c+- II Xi_Xjll) 

N-M N(N- 1) i+j 
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where c( r> is the standard correlation function, H(X) 
is the Heaviside step function. Ci(r), the pointwise 
correlation integral, is a histogram of the distance 
between point xi and all the other N - 1 points in an 
m-dimensional space, 

(3) 

The correlation integral can also be interpreted as the 
mean over all the pointwise correlation integrals. 
Real time series can only provide an estimation of 
the correlation integral, since the length of the time 
series is limited. 

The most straightforward implementation of cor- 
relation dimension estimation of a chaotic time series 
of length N has a computational complexity of 
O(N *). Furthermore, in practice, a reliable estima- 
tion of the correlation dimension must rely on the 
estimation for several embedding dimensions, thus 
increasing the computational complexity to O(N * . 
No), where Nn is the number of embedding dimen- 
sions. This high complexity places practical bounds 
on the signal’s length that can be analyzed and has 
urged investigators to look for more efficient algo- 
rithms [3-71. 

(coarse grid or m-dimensional trees) that reduces the 
time needed for finding all the neighbors of point xi 
within distance E to O(N. C(E)) and the total com- 
plexity to o(N* . C(E) . 0). Those algorithms 
achieve the maximal accuracy available and a con- 
siderable reduction in complexity, since C(E) < 1 
for small E. The major limitation of those algorithms 
is that the estimation of the correlation integral is 
calculated for a bounded range of r. This limitation 
becomes significant when real signals are discussed, 
since noise plays a crucial role in real data. It is a 
well known fact that additive noise obscures the 
correlation integral for r < 77, where r~ represents the 
amount of noise added to the chaotic signal [8]. 
However, in most cases the amount of noise is 
unknown a priori, therefore the estimation of C(r) is 
required over the entire range of r [S]. Furthermore, 
the existence of noise compels us to estimate C(r) 
for larger distances, thus causing the algorithms opti- 
mized for small r to be inefficient. In those cases 
they become even more wasteful than the straightfor- 
ward algorithm [3]. 

One possible way to reduce the complexity is to 
estimate the correlation integral from a sample of 
size M from the pointwise correlation integrals, 
reducing the complexity to O(N. M. N,) [6]. Al- 
though the complexity is reduced, this reduction is at 
the expense of accuracy. Chaotic attractors have a 
correlation integral of the form C(r) a rD2 for small 
r, i.e. as the distance approaches zero the probability 
to find pairs of points closer than that distance 
decreases exponentially to zero. Therefore, a large 
sample of pointwise correlation integrals is required 
to accurately determine the probability density func- 
tion of the distance between points, rendering the 
correlation integral a poor estimator, when obtained 
from a small sample of the pointwise correlation 
integrals. 

As mentioned above, there are cases in which an 
analysis over all the N(N - 1) pairs is required and 
an algorithm with computational complexity of 
O( N* . D) is unavoidable. The only improvement 
relevant for those cases is lowering the coefficient 
before the N*D. We present in this paper an algo- 
rithm, optimized for vector computation and, there- 
fore, reduce CPU time by a factor of 2-3 relative to 
a naive algorithm, when using advanced CPUs. 

In order to estimate the correlation integral from 
which we estimate D, we need to calculate the 
histogram of the distances between all pairs of points. 
The most naive way is to iterate through all the 
distances of the histogram and for each distance 
count how many pairs of points are distant from each 
other by that specific distance. This is indeed a very 
time-consuming algorithm and it is undoubtedly 
preferable to update the histogram while iterating 
over all the pairs rather than iterating over the bins 
of the histogram. 

Another way to overcome the high complexity is The more sophisticated algorithm consists of three 
to use the fact that D, is defined for small r. phases: for every pair of m-dimensional points we 
Therefore, in order to estimate D,, knowledge of 
C(r) is needed only for small r [3,7]. The core of 

calculate the distance between the two points, then 

the efficient algorithms described in Refs. [3-5,7] is 
we compute the logarithm of the distance, and finally 
we add 1 to the bin of the histogram containing the 

placing the time series in a smart data structure logarithm of that distance. Although computing the 
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logarithm of the distance is not obligatory, we prefer 
to do so since the definition of the correlation dimen- 
sion involves the logarithm of the distance. There- 
fore, building the histogram out of linear distances 

would cause biasing of the slope of C(r) towards the 
larger r [9]. 

The drawback of this implementation is its unfit- 
ness for modem processors, since the modem super- 

scalar processors achieve high performance computa- 

tion speed when the process can be fed into a 

pipeline [lo]. When a process is composed of simple 

tasks like addition, subtraction and so on, the proces- 
sor can start one task before it has finished the 

previous task. This increases the net computation 

speed considerably although each single task takes 
the same time. When computing the distance, com- 
puting the logarithm and then updating the histogram 
the processor is unable to use its pipeline capabili- 

ties, thus slowing the computation speed consider- 

ably. 
The innovation of our algorithm consists in sepa- 

rating the three phases that manipulate the pairs, 

namely the calculation of the distance between a 
group of points, the computation of the logarithm of 
the distances and the update of the histogram. The 

separation of the three parts and the processing of a 
group of pairs enables the processor not only to use 
its pipeline capabilities but also to use CPU vector 
instructions, which accelerate the computation time 

by a factor of 2-3. 
The separation of the computation into simple 

elements is enabled using the following recursion 
rules: Let 

I?- I 

RT;‘= C (Xi+tr-Xi+kT)2 
k=O 

be the square of the Euclidean distance between the 
points xi and xj with delay coordinate T in embed- 
ding dimension m. It is easily seen that 

Rm:r=R~_+,jli.-(xi_.-xj_.)2 1.J (5) 

and that 

R$’ = Ry!‘& - ( xi_ 7 - xj_ 7)2 

+( Xi+(m- I)TeXj+(m- 1)~)~. (6) 

Consider a table d whose elements are di,j = (xi - 
xj)’ where di,j = dj,i. The three phases are per- 
formed on the diagonals of d and R rather than on 
the rows. Eqs. (5) and (6) show that after the initial- 

ization, every distance between the points xi and xj 
in embedding dimension m can be easily calculated 

using the distance between points xi,, and xi, on the 

same diagonal (i - j = i’ - j') and the already calcu- 
lated (m + I)-dimensional distance between points 

on the same diagonal of R. Therefore, the calcula- 

tion of (xi - .x~+~)’ for all i and a fixed p is fed 
into the processor’s pipeline. Then the calculation of 

the distances is fed to the pipeline using Eq. (5) for 

an embedding dimension lower than the maximal 
dimension desired and using Eq. (6) for the maximal 
dimension. After calculating all the distances in the 

matrix R, the logarithm is computed for all the 
elements of the matrix. Since the matrix is arranged 
in the computer memory as a vector, a vectorized 

logarithm instruction can be issued, saving consider- 
able CPU time. We then update the histogram and 
repeat the procedure for the increased values of p. 

We compared our algorithm to the naive one on 
two computers. On a Silicon Graphics PowerChal- 
lenge with 200 MHz RlOOOO processor, we found an 

improvement by a factor of 2 in CPU time. On a 143 
MHz Sun UltraSparc the improvement was by a 
factor of 3. 

We claim that in cases which require computation 
of the correlation integral over all the N( N - I)/2 
pairs, reduction in CPU time can be achieved through 

adaptation of the naive algorithm to the computer’s 
architecture. Our algorithm by virtue of its structural 
simplicity achieves a considerable time saving. Fur- 

thermore, the algorithm provides the most accurate 
correlation integral estimation possible for the time 

series under study. 
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