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Abstract The paper presents a versatile library of quasi-analytic complex-valued
wavelet packets originated from polynomial splines of arbitrary orders. The real
parts of quasi-analytic wavelet packets are regular spline-based orthonormal wavelet
packets derived from discretized periodic polynomial splines. Imaginary parts are
the so-called complementary orthonormal wavelet packets derived from the Hilbert
transforms of regular wavelet packets. The discrete Fourier transforms of quasi-
analytic wavelet packets are located in either the positive or negative half-band of
the frequency domain. Consequently, the discrete Fourier transforms of 2D wavelet
packets, which are derived by as the tensor products of 1D wavelet packets, occupy
one of the quadrants of the 2D frequency domain. Such a structure results in the
directionality of their real parts. The shapes of real quasi-analytic wavelet packets
are close to windowed cosine waves that oscillate in several different directions at
different frequencies. The paper provides a fewexamples of the successful application
of designed quasi-analytic wavelet packets to image denoising and inpainting.

1 Introduction

It is apparent that for an image processing algorithm to be efficient, it has to take
into considerations features that characterize the images, such as edges oriented in
various directions, texture patterns, that can be approximated by patches oscillating
in various directions with various frequencies, and smooth regions. The ability to
extract such features even fromdegraded images is a key element for image denoising,
inpainting, deblurring, classification and target detection. This stems from the fact
that practically all the processed images have a sparse representation in a proper
transform domain. The sparse representation of an image means that it can be
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approximated by a linear combination of a relatively small number of 2D “basic”
elements selected from a versatile collection called dictionary, while retaining the
above mentioned components of the image.

Such a dictionary should comprise a variety of waveforms which are able to
capture edges oriented in any direction, texture patches oscillatingwith any frequency
and to represent smooth regions by a very few elements. The latter requirement can
be fulfilled if the dictionary elements possess vanishing moments at least locally. In
order to meet the former two, the dictionary elements have to be oriented in multiple
directions and to have oscillating structures with multiple frequencies.

Image processing applications are characterized by extensive research, especially
in recent decades. Naturally, a number of dictionaries are reported in the literature
and applied to image processing. We mention contourlets [13], curvelets [9, 8],
pseudo-polar Fourier transforms [1, 2] and shearlets [22, 23]. These dictionaries are
used in various image processing applications. However, while these dictionaries
successfully capture edges in images, they did not demonstrate a satisfactory texture
restoration due to lack of oscillating waveforms in the dictionaries.

A number of publications [18, 7, 16, 15, 17, 19, 20], to name a few, design di-
rectional dictionaries by tensor multiplication of complex wavelets [21, 24], wavelet
frames and wavelet packets (WPs). The tight tensor-product complex wavelet frames
(TP_CTFn)1 with a different number of directions, are designed in [16, 17, 15] and
some of them, in particular cptTP_CTF6, TP_CTF6 and TP_CTF↓6, demonstrate im-
pressive performance for image denoising and inpainting. The waveforms in these
frames are oriented in 14 directions and, due to the 2-layer structure of their spec-
tra, they possess certain, although limited, oscillatory properties. The Digital Affine
Shear Filter Transform with 2-Layer Structure (DAS-2) algorithm [10], the two-layer
structure inherent in the TP_CTF6 frames, is incorporated into shearlet-based direc-
tional filter banks introduced in [28]. This improves the performance of DAS-2 in
comparison to TP_CTF6 for texture-rich images such as “Barbara”, which is not the
case for smoother images like “Lena”.

We succeeded in the design of a family of dictionaries that maximally meet
the requirements for image processing applications. As a base for such a design,
we have a library of orthonormal WPs originating from the discretized polynomial
splines of multiple orders (see [3]). The waveforms in the library are symmetric, well
localized in time domain, their shapes vary from low-frequency smooth curves to
high-frequency oscillating transients. They can have any number of local vanishing
moments. Their spectra provide a variety of refined splits of the frequency domain
and the shapes of the magnitude spectra tend to a rectangular as the spline’s order
increases. Their tensor products possess similar properties that are extended to 2D
setting while the directionality, which is of crucial importance for image processing,
does not exist. However, the directionality is achieved by the extension of these
orthonormal WPs to the complex-valued quasi-analytic WPs (qWPs) (see Sect. 2).

1 The index n refers to the number of filters in the underlying one-dimensional complex tight
framelet filter bank.
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The paper is organized as follows. Section 2 outlines the design of directional
qWPs originated from polynomial splines and the corresponding transforms. Sec-
tion 3 presents a couple of examples of image denoising and inpainting. Section 4
comprises a brief discussion.

The following abbreviations are used:
1D One-dimensional
2D Two-dimensional
cWP Complementary wavelet packet
DFT Discrete Fourier transform
dWP Orthonormal discretized polynomial spline of different orders
FFT Fast Fourier transform
HT Hilbert transform
qWP Quasi-analytic wavelet packet
PSNR Peak Signal to Noise Ratio
SSIM Structural Similarity Index [27]

2 Quasi-analytic Directional Wavelet Packets

In this section, we depict the properties of qWPs and give some illustrations. An
outline of the qWPs design and the implementation of the corresponding transforms
is provided in [6], which describes the successful application of qWPs to image
inpainting. A detailed description of the design and implementation is given in [4].

2.1 Properties of qWPs

The qWPs are derived from the periodic WPs originating from orthonormal dis-
cretized polynomial splines of different orders (dWPs), which are described in [3,
Chap. 4] (a brief outline is given in [4]). The dWPs are denoted by ψp

[m],l
, where p

is the generating spline’s order, m is the decomposition level and l = 0, ...2m − 1, is
the index of a m-level wavelet packet. The 2m-sample shifts

{ψ
p

[m],l
(· − 2m k)}, l = 0, ...,2m − 1, k = 0, ...,N/2m − 1,

of the m-level dWPs form an orthonormal basis of the space Π[N] of N-periodic
discrete-time signals. Surely, other orthonormal bases are possible, for example, the
wavelet and Best bases [11].

The spaces of 1D and 2D N-periodic signals are denoted by Π[N] and Π[N,N],
respectively. We denote N = 2j and ω def

= e2π i/N . The sequence δ[k] ∈ Π[N] is the
N-periodic Kronecker delta. Discrete Fourier Transform (DFT) of a signal x ∈ Π[N]
is the N-periodic complex sequence
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x̂[n] =
N−1∑
k=0

ω−knx[k], n ∈ Z.

Complementary wavelet packets (cWPs) are φp
[m],l

and φp
[m], j ,l

and quasi-analytic
wavelet packets (qWPs) Ψp

±[m],l
and Ψp

+±[m],l, j
in 1D and 2D cases, respectively.

2.1.1 One-dimensional qWPs

The waveforms ψp

[m],l
[k] are symmetric, well localized in the spatial domain and

have oscillatory structure, their DFT spectra form a refined split of the frequency
domain. The shapes of the magnitude spectra tend to rectangular as the spline’s order
p grows. A common way to extend 1D WP transforms to multiple dimensions is by
the tensor-product extension. The 2D dWPs from the level m are:

ψ
p

[m], j ,l
[k,n] def

= ψ
p

[m], j
[k]ψp

[m],l
[n].

Their 2m-sample shifts along vertical and horizontal directions form orthonormal
bases of the space Π[N,N] of 2D signals N−periodic in both directions. The draw-
back is the lack of directionality. The directionality is achieved by switching to
complex wavelet packets.

For this, we start with the application of the Hilbert transform (HT) to the dWPs
ψ
p

[m],l
, to get the signals

τ
p

[m],l
= H(ψp

[m],l
), m = 1, ...,M, l = 0, ...,2m − 1.

A slight correction of these signals

φ
p

[m],l
[k] def
= ψ̂

p

[m],l
[0]/N + ψ̂p

[m],l
[N/2]/N + τp

[m],l
[k] (1)

provides us with a set of signals from the space Π[N], whose properties are similar
to the properties of the dWPs ψp

[m],l
. In particular, their shifts form orthonormal

bases in Π[N], their magnitude spectra coincide with the magnitude spectra of the
dWPs ψp

[m],l
. However, unlike the symmetric dWPs ψp

[m],l
, the signals φp

[m],l
are

antisymmetric for all l except for l0 = 0 and lm = 2m − 1. We refer to the signals
φ
p

[m],l
as the complementary orthonormal WPs (cWPs).

The sets of complex-valued WPs, which we refer to as the quasi-analytic wavelet
packets (qWPs), are defined as

Ψ
p

±[m],l
= ψ

p

[m],l
± iφp

[m],l
, m = 1, ...,M, l = 0, ...,2m − 1,

where φp
[m],l

are the cWPs defined in (1). The qWPs Ψp

±[m],l
differ from the analytic

WPs by adding two values ±i ψ̂p

[m],l
[0] and ±i ψ̂p

[m],l
[N/2] into their DFT spectra,
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Fig. 1 Top to bottom: signals ψ9
[3],l ; signals φ

9
[3],l , l = 0, ..., 7; their magnitude DFT spectra (right

half-band); magnitude DFT spectra of complex qWPs Ψ9
+[3],l ; same for Ψ9

−[3],l , l = 0, ..., 7

respectively. The DFT spectra of the qWPs Ψp

+[m],l
are located within positive half-

band of the frequency domain and vice versa for the qWPs Ψp

−[m],l
.

Figure 1 displays the signals ψ9
[3],l and φ

9
[3],l , l = 0, ...,7, from the third decom-

position level and their magnitude spectra (right half-band), that coincide with each
other. Adding ψ̂9

[3],l[0] and ψ̂
9
[3],l[N/2] to the spectra of φ9

[3],l , l = 0,7, results in
an antisymmetry distortion. These WPs provide a collection of diverse symmetric
and antisymmetric well localized waveforms, which range from smooth wavelets
for l = 0,1 to fast oscillating transients for l = 5,6,7. Thus, this collection is well
suited to catch smooth as well as oscillating local patterns in signals. In the 2D case,
these valuable properties of the spline-based wavelet packets are completed by the
directionality of the tensor-product waveforms.

2.1.2 Two-dimensional qWPs

Similarly to the 2D dWPs ψp

[m], j ,l
[k,n], the 2D cWPs φp

[m], j ,l
[k,n] are defined as the

tensor products of 1D WPs such that

φ
p

[m], j ,l
[k,n] = φp

[m], j
[k] φp

[m],l
[n].

The 2m-sample shifts of the cWPs {φp
[m], j ,l

}, j, l = 0, ...,2m − 1, in both directions
form an orthonormal basis for the space Π[N,N] of arrays that are N-periodic in
both directions.

The 2D dWPs {ψp

[m], j ,l
} as well as the cWPs {φp

[m], j ,l
} lack the directionality

property which is needed in many applications that process 2D data. However,
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(a) (b)

Fig. 2 a Diagram of the qWP design; b Quadrants of frequency domain

real-valued 2D wavelet packets oriented in multiple directions can be derived from
tensor products of complex quasi-analytic qWPs Ψp

±[m],ρ
. The complex 2D qWPs

are defined as follows:

Ψ
p

++[m], j ,l
[k,n] def

= Ψ
p

+[m], j
[k]Ψp

+[m],l
[n],

Ψ
p

+−[m], j ,l
[k,n] def

= Ψ
p

+[m], j
[k]Ψp

−[m],l
[n],

where m = 1, ...,M , j, l = 0, ...,2m − 1, and k,n = 0, ...,N − 1. The real parts of these
2D qWPs are

θ
p

+[m], j ,l
[k,n] def

= Re(Ψ
p

++[m], j ,l
[k,n]) = ψp

[m], j ,l
[k,n] − φp

[m], j ,l
[k,n],

θ
p

−[m], j ,l
[k,n] def

= Re(Ψ
p

+−[m], j ,l
[k,n]) = ψp

[m], j ,l
[k,n] + φp

[m], j ,l
[k,n],

(2)

Figure 2(a) illustrates the design of qWPs.
TheDFT spectra of the 2D qWPsΨp

++[m], j ,l
, j, l = 0, ...,2m−1, are tensor products

of the one-sided spectra of the qWPs

Ψ̂
p

++[m], j ,l
[p,q] = Ψ̂p

+[m], j
[p] Ψ̂p

+[m],l
[q]

and, as such, they fill the quadrant q0 of the frequency domain, while the spectra
of Ψp

+−[m], j ,l
, j, l = 0, ...,2m − 1, fill the quadrant q1 (see Fig. 2). Figure 3 displays

the magnitude spectra of the ninth-order 2D qWPs Ψ9
++[2], j ,l and Ψ

9
+−[2], j ,l from the

second decomposition level.
Figure 3 shows that the DFT spectra of the qWPs Ψ9

+±[m], j ,l
effectively occupy

relatively small squares in the frequency domain. For deeper decomposition levels,
sizes of the corresponding squares decrease as geometric progression. Such config-
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(a) Ψ9
++[2], j ,l (b) Ψ9

+−[2], j ,l

Fig. 3 Magnitude spectra of 2D qWPs from the second decomposition level

uration of the spectra leads to the directionality of the real-valued 2D WPs θp
±[m], j ,l

defined in (2). The directionality of the WPs θp
±[m], j ,l

is discussed in [4]. It is estab-
lished that if the spectrum of WP Ψp

+±[m], j ,l
occupies a square whose center lies in

the point [κ0, ν0], then the respective real-valued WP θp
±[m], j ,l

is represented by

θ
p

±[m], j ,l
[k,n] ≈ cos

2π(κ0k + ν0n)
N

θ[k,n],

where θ[k,n] is a spatially localized low-frequency waveform which does not have
a directionality.

But the 2D signal cos 2π(κ0k+ν0n)
N oscillates in the direction D, which is orthogonal

to the vector V = κ0i+ν0j. Therefore, WP θp
±[m], j ,l

can be regarded as the directional
cosinewavemodulated by a localized low-frequency signal θ. The cosine frequencies
in the vertical and horizontal directions are determined by the indices j and l,
respectively, of the WP θp

±[m], j ,l
. The bigger the index is, the higher is the frequency

in the respective direction. The situation is illustrated in Fig. 4. The imaginary parts
of the qWPs Ψp

+±[m], j ,l
have a similar structure. Figures 5 and 6 display the WPs

θ9
+[2], j ,l , and θ

9
−[2], j ,l , j, l = 0,1,2,3, from the second decomposition level and their

magnitude spectra, respectively. WPs θ9
+[3], j ,l and θ

9
−[3], j ,l , j, l = 0,1, ...,7, from the

third decomposition level are shown in Fig. 7.

Remark 1 Note that all theWPs θp
+[m], j ,l

whose spectra are located along the vectorV,
have approximately the same orientation. It is shown in Figs. 5, 6 and 7. For example,
all the “diagonal” qWPs {θp

±[m], j , j
}, j = 0, ...,2m − 1, are oscillating with different

frequencies in the directions of either 135◦ (for θ+) or 45◦ (for θ−). Consequently,
the number of orientations of the m-th level WPs is less than 2 × 4m which is the
number of WPs. These orientational numbers are given in Table 1.
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(a) (b)

Fig. 4 a Magnitude spectra of 2D qWP Ψp

++[3],2,5[k , n]; b WP θp

++[3],2,5 = Re(Ψ
p

++[3],2,5)

(a) (b)

Fig. 5 a WPs θ9
+[2], j ,l from the second decomposition level; b Their magnitude spectra

Table 1 Numbers of different orientations of qWPs {θp

±[m], j ,l
}, j , l = 0, ..., 2m − 1, for different

decomposition levels

Level m Number of directions

1 6
2 22
3 86
4 314
5 1218
6 4606

2.2 Implementation Scheme for 2D qWP Transforms

The spectra of 2D qWPs {Ψp

++[m], j ,l
}, j, l = 0, ...,2m − 1, fill the quadrant q0 of

the frequency domain (see Fig. 2), while the spectra of 2D qWPs {Ψp

+−[m], j ,l
} fill

the quadrant q1. Consequently, the spectra of the real-valued 2D WPs {θp
+[m], j ,l

},
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(a) (b)

Fig. 6 a WPs θ9
−[2], j ,l from the second decomposition level; b Their magnitude spectra

(a) θ9
+[3], j ,l (b) θ9

−[3], j ,l

Fig. 7 WPs from the third decomposition level

j, l = 0, ...,2m − 1, and {θp
−[m], j ,l

} fill the pairs of quadrant q+ = q0 ∪ q2 and
q− = q1 ∪ q3, respectively. By this reason, none linear combination of the WPs
{θ

p

+[m], j ,l
} and their shifts can serve as a basis in the signal space Π[N,N]. The same

is true for WPs {θp
−[m], j ,l

}. However, combinations of the WPs {θp
±[m], j ,l

} provide
frames of the space Π[N,N].

The transforms are implemented in the frequency domain using modulation ma-
trices of the filter banks, which are built from the corresponding wavelet packets. It
is important to mention that the structure of the filter banks Q+ and Q− for the first
decomposition level is different for the transforms with the “positive” Ψp

+[m],l
and

“negative” Ψp

−[m],l
qWPs, respectively. However, the transforms from the first to the

second and further decomposition levels are executed using the same filter banks
Hm for the “positive” and “negative” qWPs. This fact makes it possible a parallel
implementation of the transforms.
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The one-level 2D qWP transforms of a signal X = {X[k,n]} ∈ Π[N,N] are
implemented by a tensor-product scheme. To be specific, for the transform with
Ψ

p

++[1],F the 1D transform of columns from the signal X is executed using the
filter bank Q+, which is followed by the 1D transform of rows of the produced
coefficient arrays using the same filter bank Q+. These operations produce the
transform coefficient array

Z+[1] =
1⋃

j ,l=0
Zj ,l

+[1]

comprising of four blocks. The transformwithΨp

+−[1] is implemented by a subsequent
application of the filter banks Q+ and Q− to columns from the signal X and rows of
the produced coefficient arrays, respectively. This results in the coefficient array

Z−[1] =
1⋃

j ,l=0
Zj ,l

−[1].

The further transforms starting from the arrays Z+[1] and Z−[1] produce two sets of
the coefficientsZ+[m] =

2m−1⋃
j ,l=0

Zj ,l

+[m]

 ,
Z−[m] =

2m−1⋃
j ,l=0

Zj ,l

−[m]

 , m = 2, ...,M,

respectively. The transforms are implemented by the application of the same filter
banks Hm, m = 2, ...,M , to rows and columns of the “positive” and “negative”
coefficient arrays. The coefficients from a level m comprise of 4m “positive” blocks
of coefficients {Zj ,l

+[m]
}, l, j = 0, ...,?2m−1, and the same number of “negative” blocks

{Zj ,l

−[m]
}.

The coefficients from a block are inner products of the signal X = {X[k,n]} ∈
Π[N,N] with the shifts of the corresponding wavelet packet:

Z j ,l

±[m]
[k,n] =

N−1∑
λ,µ=0

X[λ, µ]Ψp

+±[m], j ,l
[λ − 2mk, µ − 2mn],

Y j ,l

±[m]
[k,n] = Re(Z j ,l

±[m]
[k,n]) =

N−1∑
λ,µ=0

X[λ, µ] θp
±[m], j ,l

[λ − 2mk, µ − 2mn].

The inverse transforms are implemented accordingly. Prior to the reconstruction,
some, possibly different, structures (e.g., 2D wavelet, Best Basis or single-level
wavelet packets) in the sets {Zj ,l

+[m]
} and {Zj ,l

−[m]
}, m = 1, ...M , are defined, and some

manipulations of the coefficients (e.g., thresholding, shrinkage, l1 minimization) are
executed.

The reconstruction produces two complex arrays X+ and X−. The signal X is
restored by X̃ = Re(X++X−)/8. Figure 8 illustrates the “Fingerprint” image restora-
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(a) (b) (c) (d)

Fig. 8 a Image Re(X+); b Its magnitude DFT spectrum; c Image Re(X−); d Its magnitude DFT
spectrum

tion by the 2D signals Re(X±). The signal Re(X−) captures oscillations oriented to
north-east, while Re(X+) captures oscillations oriented to north-west. The signal
X̃ = Re(X+ + X−)/8 perfectly restores the image achieving PSNR = 312.3538 dB.

2.3 Summary of 2D qWPs

The qWP waveforms have the following characteristics:

1. The qWP waveforms are oriented in multiple directions;
2. The qWP waveforms have oscillating structure with multiple frequencies;
3. The qWP waveforms have local vanishing moments;
4. The qWP waveforms are well localized in the spatial domain;
5. The DFT spectra of the qWPs produce a refined frequency separation;
6. The corresponding transforms are implemented in a fast way using the FFT;
7. The transform coefficients have a clear (explainable) physical meaning.

Due to a variety of orientations, the qWPs capture edges even in severely degraded
images and their oscillatory shapes with a variety of frequencies enable to recover
fine structures. Multiple experiments on image denoising [5] and inpainting [6]
demonstrate that qWP-based methods are quite competitive with the best state-of-
the-art algorithms.

However, qWPs have a strong potential to handle a new important class of prob-
lems. Namely, the above properties of qWPs provide a perfect tool for feature ex-
traction from images and, in that capacity, can serve as a significant component for
Deep Neural Networks (DNNs). Due to the versatility of testing waveform and, most
importantly, the explanatory physical meaning of the transform coefficients resulting
from image convolution with a variety of qWPs waveforms, it is possible to replace
at least some of the convolution layers in convolutional DNNs by convolving the
image with qWPs. This will lead to a significant reduction of the training dataset
size. Our preliminary experiments demonstrate the feasibility of qWPs for such a
task.
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3 Numerical Examples

In this section, we present several examples.

3.1 Image Denoising

The BM3D algorithm [12] is one of the best image denoising method that exploits
the self-similarity of patches and sparsity of the image in a transform domain. This
method is efficient in restoration of moderately noised images. However, the BM3D
tends to over-smooth and to smear the image fine structure and edges when noise
is strong. Also, the BM3D is unsuccessful when the image contains many edges
oriented in multiple directions. On the other hand, algorithms that use directional
oscillating waveforms provide the opportunity to capture lines, edges and texture
details. Therefore, it is natural to combine the qWP-based and BM3D algorithms in
order to retain strong features of both algorithms and to get rid of their drawbacks. The
description of two hybrid qWPBM3Dalgorithms and results ofmultiple experiments
on image denoising are presented in a paper submitted to a journal (see the preprint
[5]).

The original four images of the experiments are “Fingerprint”, “Fabric”, “Bridge”
and “Man”2 (see Fig. 9). The images were degraded by zero-mean Gaussian noise
with STD σ = 5,10,25,40,50,80,100 dB. The images restored by two hybrid al-
gorithms, denoted H1 and H2, were compared with BM3D-restored images based
on PSNR and SSIM values3 as well as visual perception. The diagrams in Fig. 10
illustrate the results of the experiments.

It is seen that although the PSNR values of all three algorithms are very close
to each other, the SSIM achieved by the hybrid algorithms is significantly higher
than that achieved by the BM3D. This is especially true for texture-rich images
like “Fingerprint” and “Bridge”. Figure 11 displays restoration of the “Bridge”

(a) “Fingerprint” (b) “Fabric” (c) “Bridge” (d) “Man”

Fig. 9 Original images

2 These images were not reported in [5].
3 We used the Matlab 2020b function ssim.m to calculate SSIM values.



Directional Wavelet Packets for Image Processing 13

Fig. 10 Diagrams of PSNR and SSIM values for restoration of “Fingerprint”, “Fabric”, “Bridge”
and “Man” images degraded by noise

image from the input degraded by Gaussian noise with STD σ = 50 dB. In this
experiment, the image restored by H1 has PSNR = 23.76 dB and SSIM = 0.4963
vs. PSNR = 23.61 dB and SSIM = 0.4625 achieved by BM3D. Consequently, H1
managed to restore some fine structures which were blurred by BM3D. Figure 12
displays restoration of the “Fingerprint” image from the input degraded by strong
Gaussian noise with STD σ = 100 dB. In this experiment, the image restored
by H1 has PSNR = 21.68 dB and SSIM = 0.7019 vs. PSNR = 21.65 dB and
SSIM = 0.6643 achieved by BM3D. Because of a strong noise, BM3D blurred some
fragments of the image while H1 managed to restore them.

3.2 Image Inpainting

The designed qWPs demonstrated high efficiency in dealing with the image inpaint-
ing problem, that means restoration of images degraded by loss of significant share
of pixels and possible addition of noise. State-of-the-art results in image inpainting
were achieved by the iterative algorithm using decreasing thresholding values pre-
sented in [26, 25]. In [10], the performance of that algorithm with different filter
banks was investigated. To be specific, the set DAS-2, DAS-1 [28], TP-CTF6 and TP-
CTF↓6 of filter banks, which we call SET-4 filter banks, were utilized. Note that for
different types of images, different filter banks from the SET-4 were advantageous.

We designed a qWP-based iterative algorithm, which combines the split Bregman
iteration scheme [14] with the adaptive decreasing thresholding. In multiple exper-
iments on restoration of images corrupted by missing a large amount of pixels and
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(a) Degraded image (b) Image restored by BM3D,
PSNR = 23.61 dB and SSIM =
0.4625

(c) Image restored by H1,
PSNR = 23.76 dB and SSIM =
0.4963

(d) Fragment of the image a (e) Fragment of the image b (f) Fragment of the image c

Fig. 11 Restoration of “Bridge” image from input degraded byGaussian noise with STDσ = 50 dB

addition of Gaussian noise with various intensities, we compared the performance
of our qWP-based algorithm with the performance of the SET-4 algorithms. The
description of the algorithm and results of multiple experiments on image inpainting
are presented in the paper [6]. The results are compared according to PSNR and
SSIM values and by visual perception. Similarly to denoising experiments, the qWP
algorithm prevailed in restoration of edges and fine structure even in severely de-
graded images. This fact is reflected in highest values of SSIM. A typical example
is displayed in Fig. 13. In this example, the qWP restoration of the “Bridge” image4
degraded by missing 50% of pixels and additive Gaussian noise with σ = 50 dB
is compared with the restoration by DAS-2, which was the best out of the SET-4
algorithms.

4 Discussion

The paper describes the design of one- and two-dimensional quasi-analytic WPs
(qWPs) originating from polynomial splines of arbitrary order and corresponding

4 The “Bridge” image did not participate in the experiments presented in [6].
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(a) Degraded image (b) Image restored by BM3D,
PSNR = 21.65 dB and SSIM =
0.6643

(c) Image restored by H1,
PSNR = 21.68 dB and SSIM =
0.7019

(d) Fragment of the image a (e) Fragment of the image b (f) Fragment of the image c

Fig. 12 Restoration of “Fingerprint” image from input degraded by Gaussian noise with STD
σ = 100 dB

transforms. The qWP transforms operate in spaces of periodic signals. The periodic
setting provides a lot of substantial opportunities for the design and implementation
of WP transforms. The exceptional properties of the designed qWPs, such as wave-
forms’ orientation in multiple directions combined with oscillations with multiple
frequencies (to name a few) proved to be highly beneficial for the image restoration.
Our experiments on image denoising and inpainting using qWP-based algorithms
produced state-of-the-art results.

In summary, with this versatile and flexible tool, we are able to solve multiple data
processing problems, such as image deblurring, superresolution, segmentation and
classification, and target detection. In the latter, directionality is extremely important.
Directional 3D wavelet packets under design can be useful in seismic and hyper-
spectral processing.
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(a) Clean image (b) Image degraded by missing 50% of pixels
and Gaussian noise with σ = 50 dB

(c) Restoration by qWP, PSNR = 22.08 dB,
SSIM = 0.3917

(d) Restoration by DAS-2, PSNR = 22.07 dB,
SSIM = 0.3238

Fig. 13 Restoration of “Bridge” image
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