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Abstract

This paper introduces an algorithm for the registration of rotated and translated volumes,
which operates in the frequency domain. The Fourier domain allows to compute the rotation
and translation parameters separately, thus reducing a problem with six degrees of freedom
to two problems of three degrees of freedom each. We propose a three-step procedure. The
rst step estimates the rotation axis. The second computes the planar rotation relative to the
rotation axis, and the third recovers the translational displacement by using the phase correla-
tion technique. The rotation estimation is based on Euler’s theorem, which allows to represent
a rotation using only three parameters. Two parameters represent the rotation axis and one
parameter represents the planar rotation perpendicular to the axis. By using the 3-D pseudo-
polar FFT, the estimation of the rotation axis is shown to be algebraically accurate. A variant
of the angular difference function registration algorithm is derived for the estimation of the
planar rotation around the axis. The experimental results show that the algorithm is accurate
and robust to noise.

1 Introduction
Rigid volume registration is a major component of 3-D object modelling in a diverse range of
applications such as assembly of 3-D models from complementary patches [1, 2, 3], range imaging
[4] and bio-informatics [5, 6].

¤This work was supported by a grant from the Ministry of Science, Israel.
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Let V1 (
¡!x ) and V2 (

¡!x ), ¡!x = (x, y, z)T 2 R3 be two partially overlapping volumes, related by
a 3-D rigid transformation, such that

V1 (
¡!x ) = V2

³
R¡!x +¡!

¢x
´

, (1.1)

where R is a 3-D rotation matrix and
¡!
¢x = (¢x,¢y,¢z)T 2 R3. The purpose of the registration

process is to estimate R and
¡!
¢x.

There are several approaches to 3-D registration, which can be categorized as either feature
or intensity based. Feature based approaches [2, 7, 8, 9] detect a set of features in the registered
volumes, and align the volumes by using the coordinates of these features. Intensity based schemes
[5, 10] align the volumes by using the intensity value of the voxels.

A large family of feature based algorithms is based on the ICP algorithm and its modications.
The ICP algorithm, rst presented in [7], is based on nding the transformation that minimizes the
Euclidean distance between pairs of corresponding points on the two surfaces. This is an iterative
approach that at each iteration computes points correspondence based on the transformation found
at the previous iteration, and then, nds the transformation that best maps points on one surface
to their corresponding points on the other surface. The method assumes that the two surfaces are
roughly aligned and therefore, each point on one surface corresponds to its closest point on the
other surface. [7] proves that this method always converges to a local minimum. Thus, to obtain
the correct registration, which corresponds to the global minimum, the ICP algorithm requires an
initial guess that is close to the correct solution.

[8] gives a modication of the ICP algorithm, called the “iterative closest reciprocal point”
(ICRP), which requires the closest-point relation to be symmetric. [11] then uses this algorithm
to derive another modication of the ICP algorithm, which tries to avoid the local minimum prob-
lem and reduces the computational complexity of the ICP and ICRP algorithms. The algorithm
computes local intrinsic differential structures using the curvature of the surface. These structures
are invariant to Euclidean transformations. By using the local intrinsic differential structures, the
algorithm generates a large numbers of potential transformations. Only transformations that pass a
verication step are rened by using the ICRP algorithm, which uses only points on the local intrin-
sic differential structures. The rened transformations are veried again using the whole surfaces.
Transformations that pass this second verication step are rened again by the ICRP algorithm
using points from the whole surfaces. In the nal step, the algorithm selects the transformation
with the minimal average Euclidean distance of reciprocal points. Using several initial hypotheses
reduces the probability that the ICRP algorithm will converge to a local minimum. The algorithm
is not fully automatic as it requires the user to supply the level of mean curvature, which depends
on the shape of the registered surfaces.

[2] gives a different acceleration scheme for the ICP algorithm. It accelerates the establishment
of point correspondences, which is a very expensive procedure in the ICP algorithm, by using a
z-buffer. This approach can be extended to simultaneous registration of N surfaces. Simultaneous
registration, as opposed to a sequence of pair-wise registrations, distributes the registration error
homogeneously between the different registered surfaces, thus reconstructing a more consistent
object.

[9] introduces a generalization of the ICP algorithm, where instead of using the Euclidean
distance as in [7], it denes a distance that is based on invariant features. Specically, it denes a
vector that contains information about curvature, moments, and spherical harmonics, and uses the
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Euclidean distance on a vector that is a combination of these invariant features and the positional
coordinates. The paper shows that like [7], the suggested algorithm converges monotonically to a
local minimum.

The robustness of various ICP algorithms to the initial registration is studied in [12]. This paper
shows that the performance of the algorithms greatly depend on the initial registration of the two
objects, the parameter setting, and the noise level.

Most registration algorithms assume that the input images are error-free. That is, they ignore
any acquisition errors. [13] suggests a method similar to the ICP that considers also the measure-
ment errors in the input images. Similarly to the ICP, the algorithm assumes that the input images
are coarsely aligned. One image is represented as a set of triangular patches and the other as a set
of points. At each iteration, the algorithm establishes patch-to-point correspondence by using the
current transformation estimate. Then, it computes a new transformation estimate by minimizing
a cost function that takes into consideration the measurement error.

[14] suggests an optimization based algorithm for multiple view registration. The algorithm
consists of two phases. The rst phase, the local registration phase, registers pairs of views, while
the second phase, the global registration phase, encodes the pair-wise registration results in a model
graph, which encodes the connectivity between the overlapping views. The algorithm uses an
optimization procedure to search this graph for a connected subgraph that contains a consistent
model. This subgraph corresponds to the absolute pose of the input views.

The optimization approach in [15] denes the cost function as the sum of Euclidean distances
between corresponding points in the two range images. Point correspondence is established by
inverting the calibration equations of the acquisition device. The algorithm then uses the very fast
simulated re-annealing method [16] to nd the global minimum.

A problem that is closely related to registration is matching complementary objects. Comple-
mentary objects are objects that can be attached together to form a bigger object. Such problems
arise, for example, in computer-aided manufacturing and archaeological applications. [3] presents
an optimization based algorithm for this problem. The algorithm denes a matching error for a
given pose based on the point-to-point distance between mutually visible faces of the parts. The
matching error is efciently computed by using the z-buffer algorithm and simulated annealing is
used to minimize it.

An example for an iterative approach is presented by [17], which suggests a method for simul-
taneous registration and integration of multiple range images into a single object. The algorithm
uses the signed distance eld (SDF) for shape representation and performs integration, registra-
tion and outlier rejection by matching SDFs. The algorithm performs registration and integration
alternately, until the input images are properly registered to the integrated object.

[18] suggests a surface representation scheme that captures the surface curvature and generates
almost unique surface signatures. The registration procedure rst establishes point correspondence
by matching surface signatures, and then, uses this correspondence to estimate the transformation
parameters.

Intensity based algorithms include optimization and Fourier based schemes. Optimization
based schemes formulate the registration problem as the optimization of some cost function, such
as the L2 norm [19], and then use a general purpose optimization algorithm to optimize the cost
function. [19] extends the widely used gradient methods to 3-D image registration. It uses New-
ton’s method to minimize the L2 norm of the intensity differences as a function of the motion
parameters. Due to the properties of non-linear optimization, these algorithms are unable to es-
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timate large motions. To estimate large motions, these algorithms are used in conjunction with a
bootstrapping method, which computes a pre-alignment that is close to the optimum.

Frequency domain methods are of particular interest to the current paper. Such methods use
the properties of the Fourier transform to estimate rotation and translation separately. This reduces
a problem with six degrees of freedom to two problems with three degrees of freedom. [10] and
[20] are examples of such methods. The algorithm [10] consists of three steps. The rst recovers
the rotation axis, the second recovers the rotation angle, and the third recovers the translation
parameters. To recover the rotation parameters, the algorithm normalizes the Fourier transform
of the input objects, and integrates it in the radial direction. The direction in which this integral
is minimal gives the direction of the rotation axis. Once it recovers the rotation parameters, the
algorithm recovers the translation parameters by using phase correlation. The integration in the
radial direction suffers from inaccuracies caused by discretization. Therefore, the algorithm cannot
achieve high accuracy. Nevertheless, it can be used as a good pre-alignment method for ICP based
algorithms. Another frequency domain approach is given in [20]. This algorithm recovers the
rotation parameters by formulating the problem as a linear system, whose entries are computed
by the frequency domain relations of the two objects. As before, the translation parameters are
recovered by using phase correlation. As in [10], the algorithm requires integration in the radial
direction, which incurs inaccuracies. [5, 6] align density volumes for Protein-Protein docking by
computing the polar Fourier transform of the density volumes. Thus, rotations are reduced to
translations in the spherical coordinate system, which are recovered by using phase correlation
[21].

In this paper we present a Fourier based approach, which does not require any interpolation
to recover the rotation. It is based on the 2-D pseudo-polar FFT (PPFT2D) [22] and 3-D pseudo-
polar FFT (PPFT3D) [23], which compute the Discrete Fourier Transform (DFT) on non-Cartesian
grids. This allows a fast and algebraically accurate registration, which draws on Euler’s theorem
for the estimation of the 3-D registration parameters in three steps. First, the PPFT3D is used to
recover the rotation axis. Then, the rotation around the axis is estimated using a pseudo-cylindrical
representation computed with the PPFT2D. Finally, the translation is computed by using phase
correlation [21]. The algorithm accurately estimates arbitrary large rotations without requiring
an optimization scheme. It is robust to noise and the accuracy can be increase arbitrarily. The
implementation requires only 1-D operations and is appropriate for real-time implementations.
Moreover, the execution time is independent of the geometry of the registered volumes.

The paper is organized as follows. Section 2 gives the mathematical background relevant to
Fourier based volume registration. Section 3 applies Euler’s theorem to 3-D rotation and derives
the rotation estimation scheme. Section 4 presents the PPFT3D, which is used in section 5 to
estimate the rotation axis. Section 6 describes the computation of planar rotations and section 7
describes the estimation of the relative translation of the input volumes. Sections 8 and 9 present
the experimental results and give some concluding remarks.

2 Rigid motion of volumes in the Fourier domain
Let V1 (

¡!x ) and V2 (
¡!x ) be two input volumes such that

V1 (
¡!x ) = V2

³
R¡!x +¡!

¢x
´

, (2.1)
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where R is a 3-D rotation matrix and
¡!
¢x = (¢x,¢y,¢z)T 2 R3. Denote by bV (¡!ω ) ¢

=
F fV (¡!x )g the Fourier transform of V , where ¡!ω = (ωx, ωy, ωz). Then, [24]

F
n

V
³
R¡!x +¡!

¢x
´o

= bV (R¡!ω ) eı(¡!ω ¢
¡!
¢x). (2.2)

By applying Eq. (2.2) to Eq. (2.1) we get

bV1 (¡!ω ) = bV2 (R¡!ω ) eı(¡!ω ¢
¡!
¢x) (2.3)

and
M1 (

¡!ω ) = M2 (R
¡!ω ) , (2.4)

where
M1 = jbV1j, M2 = jbV2j. (2.5)

Hence, M1 and M2 are related by a rotation around the origin, which can be estimated rst, re-
gardless of the translation

¡!
¢x. Given the rotation R, the translation is recovered by computing the

phase correlation C (¡!ω ) [21, 25, 26]. Specically, by using Eq. (2.3) we dene

bC (¡!ω ) = eı(¡!ω ¢
¡!
¢x) =

bV2 (R¡!ω )
bV1 (ω)

. (2.6)

The translation
¡!
¢x is given by ¡!

¢x = argmaxC (¡!x ) , (2.7)

where
C (¡!x ) , F¡1fC (¡!ω )g = δ

³¡!x ¡ ¡!
¢x

´
. (2.8)

3 Euler’s theorem and 3-D rotation estimation
Rotations in a 3-D Cartesian coordinate system may be represented using various formulations;
in this paper we adopt the Euler angles representation [27], shown in Fig. 1a. 3-D rotations
are expressed as a θ angle rotation about an axis whose direction is given by the angles α and
β depicted in Fig. 1a. The angles α and β dene the rotation axis ¡!n ¢

= (nx, ny, nz), which is
invariant under the 3-D rotation R.

Euler’s Rotation Theorem An arbitrary 3-D rotation can be described as a rotation by an angle
θ around an axis given by a unit vector ¡!n = (nx, ny, nz)

T .

The rotation matrix R is given by [27]

R = I cos θ + (1¡ cos θ)

2
4

n2x nxny nxnz

nynx n2y nynz

nznx nzny n2z

3
5+ sin θ

2
4
0 ¡nz ny

nz 0 ¡nx

ny nx 0

3
5 , (3.1)

where I is the identity matrix and ¡!n = (nx, ny, nz) is the rotation axis (see Fig. 1b). The
representation of R is not unique. The same rotation is obtained by a rotation of (¡θ) around
the axis (¡¡!n ) [27].
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X
Y

Z

(nx,ny,nz)

(a)

X
Y

Z

(nx,ny,nz)

(b)

Figure 1: Euler angles and Euler’s Rotation Theorem. (a) Denition of Euler angles: an arbitrary
rotation is given by a rotation θ around the axis (nx, ny, nz). The axis can be described by the
angles α and β. (b) Euler’s Rotation Theorem: any 3-D rotation can be expressed as a rotation
about an axis.

Both θ and ¡!n can be easily recovered from the rotation matrix R. The three eigenvalues of R
are λ1 = 1 and λ2,3 = e§ıθ. The rotation axis ¡!n can be computed as ¡!n = ¡!v1/ j¡!v1 j, where ¡!v1 is
the eigenvector corresponding to λ1, and θ can be recovered from λ2,3. Thus, following Fig. 1b,
any point ¡!v on the rotation axis ¡!n is invariant under R, as ¡!n is an eigenvector of R

R¡!v = R¡!n j¡!v j = λ1
¡!n j¡!v j = ¡!v .

The rotation axis ¡!n can be recovered by nding the vector along which the difference between the
volume and its rotated replica is minimal. Thus, given volumes V1 and V2, where V1(x) = V2(Rx),
the rotation axis can be recovered from¢V , the 3-D angular difference function (ADF)

¢V (α,β) =

1Z

0

jV1 (α, β, r)¡ V2 (α, β, r)j dr, (3.2)

where (α, β, r) are spherical coordinates, as

(α0, β0) = argmin
α̃,β̃
¢V

³
eα, eβ

´
. (3.3)

Ideally ¢V (α0, β0) = 0, but due to noise and partial overlapping, we use Eq. (3.3) instead. For
non-centered rotations, where the volumes V1 and V2 are translated and rotated, Eq. (3.2) can be
applied to M1 and M2, the magnitudes of the Fourier transforms of V1 and V2.

Given the rotation axis ¡!n , the volumes V1 and V2 are related by

V1(Rn
¡!x ) = V2(Rz,θRn

¡!x ), (3.4)

where Rn is a 3-D rotation which aligns ¡!n with the Z axis, and Rz,θ is a rotation of angle θ about
the Z axis.

Thus, the framework of the proposed volume registration algorithm is as follows. Given vol-
umes V1 and V2, where V1 is a rotated and translated replica of V2:
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1. M1 and M2, the magnitudes of the Fourier transforms of V1 and V2, respectively, are com-
puted. According to Eq. (2.4) they are related by a rotation around the origin.

2. The rotation axis ¡!n is recovered by computing¢V (α,β) and locating its minimum.

3. Given the rotation axis ¡!n , V1 and V2 are rotated such that ¡!n is parallel to the Z axis, and
the Fourier magnitudes of the rotated volumes are denoted fM1 and fM2, respectively.

4. fM1 and fM2 are related by a planar rotation of angle θ around the Z axis, which can be
recovered by using 2-D registration.

5. Given (α, β, θ), the 3-D rotation matrix R is computed by using Eq. (3.1) and applied to V2.
V1 (

¡!x ) and V2(R
¡!x ) are related by a 3-D translation, which can be recovered using phase

correlation.

We propose a fast and algebraically accurate scheme for the computation of the difference
function ¢V in step #2, which is based on the PPFT3D [23]. A modication of the 2-D rotation
estimation algorithm, given in [28], is then used to estimate the planner rotations in step #4.

4 The 3-D pseudo-polar FFT
Given an 3-D image I of size N £ N £ N , its 3-D Fourier transform, denoted Î(ωx, ωy, ωz), is
given by

Î(ωx, ωy, ωz) =

N/2¡1X

u,v,w=¡N/2

I(u, v, w)e¡
2πı
M
(uωx+vωy+wωz), ωx, ωy, ωz 2 R. (4.1)

We assume for simplicity that the image I has equal dimensions in the x, y, and z directions
and that N is even. For ωx, ωy, and ωz sampled on the Cartesian grid (ωx, ωy, ωz) = (k, l, j),
k, l, j = ¡M

2
, . . . , M

2
¡ 1, the Fourier transform in Eq. (4.1) has the form

ÎCart(k, l, j)
¢
= Î(k, l, j) =

N/2¡1X

u,v,w=¡N/2

I(u, v, w)e¡
2πı
M
(uk+vl+wj), (4.2)

with k, l, j = ¡M
2
, . . . , M

2
¡ 1, which is usually referred to as the 3-D DFT of the image I. The

parameter M (M > N ) sets the frequency resolution of the DFT. It is well-known that the DFT of
I, given by Eq. (4.2), can be computed in O(M 3 logM) operations.

For some application it is desirable to compute the Fourier transform of I in spherical coor-
dinates. Formally, we want to sample the Fourier transform in Eq. (4.1) on the grid (ωx, ωy, ωz)
where

ωx = rk cos θl sinφj, ωy = rk sin θl sin φj , ωz = rk cosφj,

rk = k, θl = 2πl/L, φ = πj/J,

k = 0, . . . , M ¡ 1, l = 0, . . . , L ¡ 1, j = 0, . . . , J ¡ 1.
(4.3)
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The Fourier transform of I in spherical coordinates has the form

Îsph(k, l)
¢
=

N/2¡1X

u,v,w=¡N/2

I(u, v, w)e¡
2πık
M

(u cos θl sinφj+v sin θl sinφj+w cosφj). (4.4)

The spherical grid in Eq. (4.3) is equally spaced both in the radial and angular directions

¢r = rk+1 ¡ rk = 1, (4.5)

¢θ = θl+1 ¡ θl =
2π

L
, (4.6)

¢φ = φj+1 ¡ φj =
π

J
. (4.7)

Unfortunately, there is no fast algorithm for computing the Fourier transform of the image I in
spherical coordinates.

The 3-D pseudo-polar Fourier transform (PPFT3D) evaluates the 3-D Fourier transform of an
image on the 3-D pseudo-polar grid, which approximates the 3-D spherical grid, given in Eq. (4.3).
Formally, the 3-D pseudo-polar grid is given by the set of samples

P
¢
= P1 [ P2 [ P3, (4.8)

where

P1
¢
= f(k, ¡2l

N
k,¡2j

N
k)g, (4.9)

P2
¢
= f(¡2l

N
k, k,¡2j

N
k)g, (4.10)

P3
¢
= f(¡2l

n
k, ¡2j

n
k, k)g, (4.11)

and l, j = ¡N
2
, . . . , N

2
, k = ¡3N

2
, . . . , 3N

2
. See Figs. 2(a), 2(b), and 2(c) for an illustration of

the sets P1, P2, and P3, respectively. We dene the 3-D pseudo-polar Fourier transform of I as the
samples of the Fourier transform Î , given in Eq. (4.1), on the 3-D pseudo-polar grid P , given by
Eqs. (4.8) – (4.11). Formally, the 3-D pseudo-polar Fourier transform Îs

PP (s = 1, 2, 3) is a linear
transformation, which is dened for k = ¡3N

2
, . . . , 3N

2
and l, j = ¡N

2
, . . . , N

2
, as

Î1PP (k, l, j)
¢
= bI(k,¡2l

N
k, ¡2j

N
k) =

N/2¡1X

u,v,w=¡N/2

I(u, v, w)e¡
2πı
M
(ku¡ 2l

N
kv¡ 2j

N
kw), (4.12)

Î2PP (k, l, j)
¢
= bI(¡2l

N
k, k, ¡2j

N
k) =

N/2¡1X

u,v,w=¡N/2

I(u, v, w)e¡
2πı
M
(¡ 2l

N
ku+kv¡ 2j

N
kw), (4.13)

Î3PP (k, l, j)
¢
= bI(¡2l

n
k, ¡2j

n
k, k) =

N/2¡1X

u,v,w=¡N/2

I(u, v, w)e¡
2πı
M
(¡ 2l

N
ku¡ 2j

n
kv+kw), (4.14)

where Î is given by Eq. (4.1).

8



(a) 3D pseudo-polar sector
P1

(b) 3D pseudo-polar sector
P2

(c) 3D pseudo-polar sector P3

Figure 2: The 3-D pseudo-polar grid

As we can see from Figs. 2(a)–2(c), for xed angles l and j, the samples of the 3-D pseudo-
polar grid are equally spaced in the radial direction. However, this spacing is different for each
angle. Also, the grid is not equally spaced in the angular direction, but has equally spaced slopes.

Two important properties of the 3-D pseudo-polar Fourier transform are that it is invertible and
that both the forward and inverse pseudo-polar Fourier transforms can be implemented using fast
algorithms. Moreover, the implementations require only 1D equispaced FFT’s. In particular, the
algorithms do not require re-gridding or interpolation.

The algorithm for computing the 3-D pseudo-polar Fourier transform is based on the fractional
Fourier transform. The fractional Fourier transform [29], with its generalization given by the chirp
z-transform [30], is an algorithm that evaluates the Fourier transform of a sequence X on any
equally spaced set of N points on the unit circle. Specically, given a vector X of length N ,
X = (X(j), j = ¡N/2, . . . , N/2 ¡ 1), and an arbitrary α 2 R, the fractional Fourier transform
is dened as

(FαX)(l) =

N/2¡1X

u=¡N/2

X(u)e¡2πıαlu/N , l = ¡N/2, . . . , N/2. (4.15)

The fractional Fourier transform samples the spectrum of X at the frequencies

ωk = αl/N, l = ¡N/2, . . . , N/2, (4.16)

and its complexity for a given vector X of length N and an arbitrary α 2 R is O(N logN)
operations.

The algorithm for computing the 3-D pseudo-polar Fourier transform samples the Fourier trans-
form of an image I on the pseudo-polar grid, with arbitrary frequency resolution in the radial and
angular directions. The algorithm we present uses frequency resolution of 3N + 1 in the radial
direction and N + 1 in the angular directions. Denote,

1. E– Zero padding operator that accepts a 3-D image I of size N £ N £ N and zero pads it
to size (3N + 1)£ N £ N (along the x direction).
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2. F – 1D DFT.

3. F3 – 3-D DFT.

4. Fα
m – Fractional Fourier transform with factor α. The operator Fα

m accepts a sequence of
length N , pads it symmetrically to length 3N+1, applies to it the fractional Fourier transform
with factor α, and returns the N + 1 central elements.

5. Gk,n
¢
= F

2k/n
m ± F¡1

n

The algorithm for computing Î1PP , given by Eq. (4.12), is then given by

1. Let
bId Ã F3(E(I)).

2. For each k and l
U = bId(k, l, ¢)

and compute
T1(k, l, ¢) = Gk,nU.

3. For each k and j
V = T1(k, ¢, j)

and compute
T 0
1(k, ¢, j) = Gk,nV.

4. For each k,l,j
Î1PP (k, l, j) = T 0

1(k, ¡l, ¡j).

The algorithm for computing Î2PP and Î3PP , given by Eqs. (4.13) and (4.14), is similar. The
complexity of the algorithm for computing Î1PP is O(N3 logN). Since the complexity of com-
puting Î2PP and Î3PP is also O(N3 logN), the total complexity of computing the 3-D pseudo-polar
Fourier transform is O(N3 logN ).

5 Rotation axis estimation
An important property of ¢V (α, β), given by Eq. (3.2), is that it can be discretized using very
general sampling grids. Specically, the discretization of ¢V does not require a uniform spherical
representation of the Fourier transforms of V1 and V2. We present a discretization of ¢V that is
based on the PPFT3D, presented in section 4. We denote by ¢V d the discretization of ¢V . The
algorithm for computing¢V d is

1. Compute Md
1 and Md

2 , where M d
j is the magnitude of the PPFT3D of Vj , j = 1, 2.
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2. Evaluate Eq. (3.2) as

¢V d
¡
αi, βj

¢
=

X

0·rk·π

¯̄
Md
1

¡
rk, αi, βj

¢
¡ Md

2

¡
rk, αi, βj

¢¯̄
¢ri,j , (5.1)

where ¢ri,j is the radial sampling interval. Note that the integration is computed over rays
of the same length (0 · rk · π) within the sphere bounded in a N £ N £ N cube in the
Fourier domain.

The PPFT3D was shown to be algebraically accurate [23], and hence, the approximation error
in Eq. (5.1) results from the integration being computed over 0 · rk · rmaxi,j instead of 0 · rk · π,
where for each ray rmaxi,j is the sample nearest to r = π such that rmaxi,j · π. The integration interval
error for each ray is

¯̄
π ¡ rmaxi,j

¯̄
<

π
p
2

N
.

Furthermore, the interval
£
rmaxi,j , π

¤
is located at the high frequency range, where the magnitude of

the PPFT3D is negligible.

5.1 The Normalized 3-D ADF
In order to improve the robustness of the algorithm with respect to noise and intensity changes, the
L1 norm used in Eq. (5.1) is replaced with the normalized correlation [31]. Thus. we dene the
normalized correlation ¢V d

N as

¢V d
N

¡
αi, βj

¢ ¢
=

X

0·rk·π

³
Md
1

¡
rk, αi, βj

¢
¡ M d

2

¡
rk, αi, βj

¢´2

σr

¡
Md
1

¢
σr

¡
Md
2

¢ , (5.2)

where
Md

i (rj, θi)
¢
= Md

i

¡
rk, αi, βj

¢
¡ 1

jmax

X

0·rk·π

Md
i

¡
rk, αi, βj

¢
,

r (kmax) = π,

and

σr

¡
M d

i

¢ ¢
=

s
1

jmax

X

0·rk·π

³
M d

i

¡
rk, αi, βj

¢
¡ Md

i

¡
rk, αi, βj

¢´2
. (5.3)

An example of ¢V d
N for the Skull volume (Fig. 6e) is shown in Fig. 3. Fig. 3a is the surface

¡ log(¢V d
N ), where the maximum is clearly visible and detectable. Figure 3b shows the small

support of the minimum of ¢V d
N and demonstrates the importance of using the PPFT3D. Achiev-

ing the same accuracy when computing ¢V d
N using interpolation [10] would require signicant

computational complexity.
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Figure 3: The angular difference function¢V d
N for the rotated Skull volume shown in Fig. 6e. (a)

A surface visualization of ¡ log
¡
¢V d

N

¢
. The surface’s peak corresponds to the minimum of the

¢V d
N . (b) ¢V d

N overlaid on a sphere. The “hot” values correspond to the minimum. Notice the
small angular support of the minimum.

(a) (b)

(c) (d)

Figure 4: Alignment of the rotation axis. The volumes in (a) and (b) are the input volumes, which
are related by a rotation about the rotation axis. After recovering the rotation axis, the volumes are
rotated such that the rotation axis is parallel to the Z axis. Thus, the volumes in (c) and (d) are
related by a translation and a planar rotation about the Z axis.
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6 Planar rotation
Given the rotation axis ¡!n , we use Eq. (3.4) to rotate V1 and V2 (Figs. 4a and 4b) such that the
rotation axis ¡!n is parallel to the Z axis (Figs. 4c and 4d). This results in translated and rotated
volumes, whose relative rotation is around the Z axis.

The 3-D rotation that aligns ¡!n with the Z axis can be computed using Quaternions [32].
Specically, given two vectors ¡!n 1,

¡!n 2 2 R3, the 3-D rotation that transforms ¡!n 1 to ¡!n 2 is given
by eR = (¡!n , ψ), where

ψ = arccos

µ ¡!n 1 ¢ ¡!n 2

j¡!n 1j j¡!n 2j

¶
(6.1)

is the rotation angle and
n = ¡!n 1 £ ¡!n 2 (6.2)

is the rotation axis. In order to align the rotation axis computed by Eq. (3.3) with the Z axis, we
set ¡!n 1 = (0, 0, 1), compute ¡!n 2 by using Eq. (3.3), and use Eqs. (6.1) and (6.2) to compute the
alignment parameters.

X
Y

Z
n1

n2

n

Figure 5: Computing the axes alignment parameters. Given two vectors ¡!n 1 and ¡!n 2, the rotation
axis ¡!n is given by ¡!n = ¡!n 1 £ ¡!n 2 and the rotation angle is given by ψ = arccos

¡!n 1¢¡!n 2

j¡!n 1jj¡!n 2j .

We apply eR, given by Eqs. (6.1) and (6.2), to V1 and V2 and denote the resulting volumes by eV1
and eV2, respectively. eV1 and eV2 are related by a translation and a planar rotation about the Z axis
(see Fig. 4b). While it is possible to estimate the planar rotation by using any corresponding pair
of XY planes in eV1 and eV2 [33, 34], we increase the robustness of the estimate by using a variant
of the angular differencee function (ADF) [28] registration algorithm. The general framework in
introduced in section 6.1 while the implementation issues are discussed in section 6.2.

6.1 ADF based estimation of planar rotations
In order to recover the relative planar rotation of eV1 and eV2, we dene FC , the Cylindrical FFT.
Let V (x, y, x) be a 3-D volume. FC is computed as follows:

1. Compute the 1-D Fourier transform in the Z direction

VZ (x, y, ωz) = FZ
1D fV (x, y, z)g .
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2. compute the 2-D Fourier transform of each XY plane in VZ (x, y, ωz)

V (θ, r, ωz) = F2D fVZ (x, y, ωz)g ,

where F2D is the 2-D Fourier transform.

Denote
fM1 =

¯̄
¯FC(eV1)

¯̄
¯ , fM2 =

¯̄
¯FC(eV2)

¯̄
¯ . (6.3)

fM1 and fM2 are related by a planar rotation around the Z axis, with no relative translation. In other
words, each XY plane in fM1 is a rotated replica of the corresponding plane in fM2

fM1 (θ, r,ωz) = fM2 (θ +¢θ, r,ωz) . (6.4)

Next, we recover the rotation ¢θ by computing the difference function¢fM (θ)

¢fM (θ) =

πZ

0

πZ

0

¯̄
¯fM1 (θ, r,ωz)¡ fM2 (¡θ, r,ωz)

¯̄
¯ dr dωz. (6.5)

We substitute Eq. (6.4) into Eq. (6.5) and get

¢fM (θ) =

πZ

0

πZ

0

¯̄
¯fM1 (θ, r,ωz)¡ fM1 (¡θ ¡¢θ, r,ωz)

¯̄
¯ dr dωz,

where the value of ¢fM (θ0) is zero if

θ0 +¢θ = ¡θ0 or θ0 +¢θ = ¡θ0 + π, (6.6)

and the second zero in Eq. (6.4) is due to the conjugate symmetry of fM1 and fM2. Thus, the two
zeros of ¢fM (θ), obtained at θ10 and θ20, are related to the rotation ¢θ by

θ
(1)
0 = ¡¢θ

2
, θ

(2)
0 = ¡¢θ

2
+

π

2
. (6.7)

We see from Eq. (6.7) that the zeros θ10 and θ20 are π/2 radians apart and this property is true in
general. For each zero θ0 of ¢fM(θ), θ0 +

π
2

is also a zero. Therefore, we dene the 2-D angular
difference function by

­ (θ) = ¢fM (θ) + ¢fM
³
θ +

π

2

´
, θ 2

h
0,

π

2

i
. (6.8)

The zero θ0 of ­ (θ) is related to the rotation angle¢θ by

θ0 = ¡¢θ

2
. (6.9)

Due to the conjugate symmetry, the rotation angle can be either ¢θ or ¢θ + π. The ambi-
guity is resolved by rotating V1 using the rotations dened by (α0, β0,¢θ) and (α0, β0,¢θ + π),
recovering the translation, and choosing the parameters the correspond to the best alignment.
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6.2 Numerical implementation
The scheme is discretized similarly to the 2-D rotation estimation algorithm presented in [28].
Given the discrete input volumes eV d

1 and eV d
2 , the discrete Cylindrical FFT FC

d is computed by
applying the 1-D FFT in the Z direction

V d
Z (i, j, ωk) = FFT Z

1D fV (i, j, k)g .

and computing the 2-D pseudo-polar FFT of each XY plane in V d
Z (i, j, ωk)

V d (θi, ri, ωk) = PPFT2D
©
V d

Z (θi, ri, ωk)
ª

.

The reversal of the angular axis in Eq. (6.5) is given by

fM2 (¡θi, ri, ωk) =
¯̄
FC

d

©
F lipLRXY

©
V d
2 (i, j, k)

ªª¯̄
,

where F lipLRXY fV (i, j, k)g is a discrete volume where each XY plane is a ipped left-right
replica of the corresponding plane in V . In the 2-D pseudo-polar grid, for each angle θ, the grid
also contains the angle θ + π/2, and therefore, Eq. (6.8) can be accurately computed.

7 3-D Translation estimation
Given the rotation parameters (α, β,¢θ), the 3-D rotation matrix R is given by Eq. (3.1). Denote
by eV2 the replica of V2 rotated by R. V1 and eV2 are related by a 3-D translation, which is recovered
using the phase-correlation algorithm [21, 33, 34], given in Eqs. (2.7) and (2.8). The peak of the
phase correlation function C (¡!x ) measures the quality of the alignment. Thus, given the hypothe-
ses (α, β,¢θ) and (α, β,¢θ + π), computed in section 6.1, the hypothesis that corresponds to the
highest correlation peak is chosen as the correct registration. The accuracy of the phase correlation
scheme is limited to integral values. Subpixel accuracy and improved robustness to noise can be
achieved by applying either [26] or [35].

8 Experimental Results
The proposed algorithm was applied to the volumes shown in Fig. 6. For each input volume, a
set of rotated and translated replicas was created using bilinear interpolation, without applying any
other processing, such as smoothing and denoising. All the volumes were of size 643 voxels, and
the average spacing of the PPFT3D grid was ¢α = 90±

2N
= 0.7± and ¢β = 180±

N
= 1.4±. The

translations were randomly chosen in the range of [¡10, 10] pixels in each axis. We do not present
the accuracy of neither the translation estimation nor the resolving between θ and θ+π, since these
are computed by a straightforward implementation of the 2-D phase-correlation algorithm and are
not the focal point of this paper.

The results, given in Table 1, show the accuracy of the proposed algorithm. In all cases the
registration accuracy was in the order of the angular spacing of the 3-D pseudo-polar grid. The
accuracy of the registration was the same for all volumes.

Figure 7 presents σε, the standard deviation (STD) of the angular registration error, as a func-
tion of σn, the STD of the additive White Gaussian Noise (WGN). The results were computed by
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(a) (b) (c)

(d) (e) (f)

Figure 6: Volumes used to evaluate the algorithm. (a) and (b) are iso-surface of the same MRI
scan of a human head. (c) A CAD generated model of an engine. (d) A MRI scan of a human
spine. (e) A CT scan of a human skull. (f) A MRI scan of human feet.

Actual parameters Estimated parameters Estimated errors
α β θ α β θ jεαj

¯̄
ε

β

¯̄
jεθj

82.89 45.00 28.21 83.39 47.81 28.11 0.50 2.81 0.10
Human Head 80.98 25.84 44.50 80.36 25.11 44.80 0.62 0.73 0.30

12.02 15.11 78.47 11.89 15.70 79.42 0.13 0.59 0.95
82.89 45.00 28.21 81.37 43.19 27.78 1.51 1.80 0.42

Engine 80.98 25.84 44.50 80.78 24.15 44.86 0.19 1.68 0.36
12.02 15.11 78.47 12.88 15.67 76.94 0.86 0.56 1.52
82.89 45.00 28.21 84.46 43.76 26.36 1.57 1.23 1.84

Spine 80.98 25.84 44.50 80.07 27.21 44.33 0.90 1.37 0.16
12.02 15.11 78.47 11.03 13.80 79.94 0.98 1.30 1.47
82.89 45.00 28.21 84.35 43.68 29.94 1.46 1.31 1.73

Skull 80.98 25.84 44.50 79.90 27.81 43.55 1.0 1.97 0.94
12.02 15.11 78.47 13.23 14.86 77.11 1.21 0.24 1.35
82.89 45.00 28.21 84.52 44.36 29.70 1.63 0.63 1.49

feet 80.98 25.84 44.50 79.90 25.09 43.45 1.0 0.74 1.0
12.02 15.11 78.47 10.97 14.57 79.05 1.0 0.53 0.58

Table 1: Registration results using the non-normalized ADF¢V d for the volumes shown in Fig. 6.
Actual rotation parameters (columns 1 through 3) and their estimates (columns 4 through 6), with
relative errors, (columns 7 through 9). All the volumes were of size 64£ 64£ 64.
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adding a range of noise signals to the Skull and Head volumes, shown in Fig. 6, and averaging the
results that correspond to the same noise level σn. It follows that for non-noisy input volumes the
accuracy of the proposed algorithm is in the range of 0±¡1±, which corresponds to the average an-
gular spacing of the 3-D pseudo-polar grid. The error of the normalized ADF¢V d

N is less sensitive
to additive noise. Up to σn = 200 the scheme is not affected by the noise, and from that point on,
its accuracy degrades as a function of the noise. The non-normalized¢V d achieves an accuracy of
σε < 1 for non-noisy volumes and then degrades. To conclude, the proposed algorithm is capable
of giving reasonable estimates in extremely noisy situations.
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Figure 7: Angular registration error as a function of the standard deviation of the noise. α and β are
the errors in the estimation of the rotation axis when using the non-normalized angular difference
function ¢V d. αn and βn are the estimation errors when using the normalized difference function
¢V d

N . Using¢V d
N results in improved accuracy especially for the noisy volumes.

The execution time on a P2800 computer is approximately 3 minutes for volumes of size 643
using a non-optimized C++ implementation. Most of the time (2 minutes) is spent on computing
the PPFT3D. The difference in the execution time between¢V d

N and ¢V d is negligible.

9 Summary and conclusions
The paper presents a general purpose volume registration algorithm which operates in the fre-
quency domain and solves the alignment problem by computing the ADF in two and three dimen-
sions. By using Euler’s theorem, the original problem, which involves six parameters, is decoupled
into three sub-problems: estimating the rotation axis, estimating the planar rotation, and computing
the translation. The computation of the ADF is based on the PPFT2D and PPFT3D and is alge-
braically accurate. This results in improved registration accuracy and robustness to noise. Future
work includes the application of the proposed algorithm to medical imaging problems utilizing its
robustness to noise.
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