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ABSTRACT
We propose in this paper a novel approach for explaining query

non-answers in Natural Language within the context of Natural

Language Interfaces to Databases (NLIDBs). Such interfaces allow

non-expert users to pose queries over an underlying database; our

goal is to further allow users to ask why some results that they

have expected to see, are missing from the output. In a nutshell,

our approach is to “marry" NLIDBs with an existing model for

explaining missing query results by pinpointing the last query

operator that is “responsible" for the missing result. We observe

that one can often trace the parts of the original NL question that

correspond to these operators. This paves the way for intuitive

explanations of the non-answers, that are based on highlighting

the relevant parts of the question. Our architecture is generic

and is not coupled with a specific NLIDB, and our solution yields

clear explanations in interactive speed.

1 INTRODUCTION
Natural Language (NL) interfaces to database systems are of-

ten used as easy-to-understand gateways for accessing complex

databases [1, 8, 13]. The rise of NL interfaces allows non-experts

to access and query complex databases, without writing formal

queries or understanding execution plans.

Yet often, the answers returned by such queries do not quite

match the expectations of the users who formed them. Users are

then faced with the problem of understanding the gap between

their expectations and the result. Previous work has dealt with

presenting the users the reason for the presence of a certain

tuple in the result set in a manner that does not require tech-

nical proficiency [5, 6]. When users ask about a missing tuple,

however, a different form of explanation is required. Explaining

missing tuples, or non-answers, is termed why-not provenance

and has been the focus of multiple previous works [2, 3, 10].

Such information is crucial for understanding the result, debug

and improve the query and/or the input database. However, all

of these works have provided this information in the form of

internal representation, not suitable for non-experts.
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Figure 1: MAS database instance

Example 1.1. Assume the NL question depicted in Figure 2a

which was correctly translated by an NL interface to a formal

query (shown as SQL in Figure 2b) and executed on the database

instance depicted in Figure 1. The user is presented with a result
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return authors who published papers in database
conferences after 2005

(a) NL Question
SELECT DISTINCT author.aname
FROM author, writes, pub, conf,
WHERE conf.domain = `databases'

AND pub.pyear > 2005
AND author.aid = writes.aid
AND writes.pid = pub.pid
AND pub.cid = conf.cid

(b) SQL Query

return authors who published papers in database
conferences after 2005

(c) Word highlight explanation for “Why not Marge?”

Figure 2: NL query, SQL translation, and our why-not ex-
planations

set, but is surprised to see that Marge is missing. A why-not expla-

nation for this missing tuple could be the predicate pub.pyear >
2005 filtering Marge out, or a modified formal query without this

predicate. However, understanding such explanations requires,

at the very least, SQL knowledge.

In this paper, we aim to provide explanations for non-answers
through natural language. The setting is unique in the sense that

the query is given in NL and the user is not familiar with the

technical details of the query execution, and the explanation

should be tailored to bridge this knowledge gap. We rely on the

frontier picky model [3] to provide explanations to non-expert

users. Our main observation is that, if we use this model, when

the original query was given in NL, we can in many cases trace

back the responsible query operator to the part of the NL query

that corresponds to it.

Example 1.2. For the NL query in Figure 2a, the SQL in Figure

2b, and the why-not query “why not Marge?”. If we employ the

mapping from the words in the NL query to the SQL one we can

find that the words “after 2005” are connected to the operator

pub.pyear > 2005, and reveal that these words in the NL query

caused the removal of the result Marge.

To the best of our knowledge, presenting why-not provenance

to non-experts was not previously studied. This form of explana-

tions is fundamentally different from existing models that show

SQL operators or other technical representations, as it allows

users without technical knowledge to understand the gap be-

tween their expected result and the one they received. We claim

that such explanations are of even greater importance in the

context of NLIDBs, because of the cumulative errors that arise in

such systems. In this setting, users have to specify their intent in

a form of an NL sentence; a failure to specify certain conditions or

a too specific sentence might result in tuple loss, simply because

the user performed an error in the NL formulation. Since the user

has no means of viewing or understanding the SQL query, this

error may go unnoticed.



The solution is based on word highlighting in the original

sentence form: we highlight the reason for the missing tuples,

manifested as one or more words in the original NL query.

Example 1.3. In our running example, an operator-based why-

not model would return the selection operator filtering tuples

before 2005 as the explanation, i.e. pub.pyear > 2005. Using
our system, the user will be shown her original NL query, with an

emphasis on “after 2005" as the relevant words that caused this

absence (see Figure 2c). This enables the user to better understand

the query, validate the translation process and the credibility of

the database, and reformulate her NL query accordingly.

We have implemented our solution and demonstrated it [7].

We now provide an experimental evaluation, showing multiple

use-cases where the system provides useful explanations and

showing that generating such explanations does not incur sub-

stantial time cost compared to the other steps in the computation.

Related Work: NLIDBs are aimed at bridging the gap between

database systems that use formal query languages such as SQL

for interaction, and users who are not experts in forming formal

queries, yet posses domain knowledge [1, 8, 13, 16]. These inter-

faces allow users to form questions in English, and be presented

with a set of results which satisfy the query. The whole process of

converting the NL question to a formal SQL query can be treated

by the users as a black box. Explaining query results that were

returned in NL has been the focus of previous work [4].

There are multiple approaches and models for explaining why

a certain piece of information that is expected to be returned

from a query was actually discarded. We can broadly divide the

approaches by their type.

(1) Operator-based explanation models (e.g. [2, 3]) aim to pro-

vide one or more query operators that are responsible for

omitting a tuple in the query execution process.

(2) Query modification models (e.g. [9, 17]) try to broaden the

given query to include the missing tuple. Depending on

the model and the query, the change to the query may be

as minor as replacing a constant, or even modifying the

query completely by joining other tables etc.

(3) Tuple modification / generation models (e.g. [10, 11]) cre-

ate or modify factoids in a way that will ensure that the

required tuple will be returned from the query evaluation.

We focus here on explaining non-answers using the frontier picky

model showing the “last” responsible operator [3]. To the best of

our knowledge, no previous work in this field has dealt with the

challenge of explaining missing tuples to non-expert users.

2 MODEL
In this section we review necessary notions in Natural Language

Processing, formal queries and relevant provenance models.

From Natural Language to Formal Queries: Thiswork relies
on an NL interface named NaLIR [13] for translating English

questions to SQL queries. The translation utilizes a data structure

called query dependency tree, designed for conveying the rela-

tions between words in a sentence and their syntactic roles. A

dependency treeT = (V , E, L) is a node-labeled tree where labels

consist of two components, as follows: (1) Part of Speech (POS):
the syntactic role of the word [12] ; (2) Relationship (REL): the
grammatical relationship between the word and its parent in the

dependency tree [14].

After the translation phase, an SQL query Q is being gener-

ated along with a query plan. The query plan is a directed tree

TQ = (VQ , EQ ), where VQ is the set of query operators in Q and

the database table names which Q takes as input, and EQ is a set

of directed pairs (u,v). Table names form the leaves of TQ and

an edge (u,v) indicates that during the evaluation of Q over the

database, all tuples outputted by the operator u are inputted to

the operator v . Finally, the output implied by TQ is the output

of Q . Importantly, NaLIR maps the words in the NL query to

their respective operators in the generated query plan. Revers-

ing this mapping and augmenting it allows us to map why-not

provenance back to NL.
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(b) NL query dependency tree
Figure 3: Query plan and dependency tree

Definition 2.1. Given anNLIDB, a dependency treeTd = (Vd , Ed ,
Ld ) and a query planTQ = (VQ , EQ ), a operator-to-word mapping
is a partial functionMops : VQ → Vd , whereMops is the reverse

of the mapping created by the NLIDB during the mapping from

NL query to SQL.

Example 2.2. Consider the MAS database instance in Figure

1, and the NL query in Figure 2a. NaLIR parses this sentence to
create the dependency tree shown in Figure 3b and returns the

SQL query shown in Figure 2b; its query evaluation plan depicted

in Figure 3a. The operator-to-word mapping,Mops , includes the

mappings:Mops [σpyear>2005] = “2005”,Mops [σdname=databases ] =

“database”, andMops [Πaname ] = “authors”.

Why-not provenance: We start by defining a why-not ques-
tionWNQ . Intuitively each hypothetical output tuple of Q that

matches the criteria ofWNQ is a tuple whose non-existence in

the answer we wish to explain.

Definition 2.3. Given an database instanceD and an SQL query

Q , a why-not questionWNQ is an SQL query such that (1)Q and

WNQ have the same result schema, and (2)Q(D)∩WNQ(D) = ∅.

The why-not question might be more complex than the ini-

tial query, as long as the query it represents has the same result

schema. This allows the user to pose constraints on other at-

tributes as well.

Example 2.4. Reconsider the database instance in Figure 1 and

the SQL query in Figure 2b. Assume the user expects to see the

author Marge in the result set, and surprised when she is not a

part of the answer. The user may form a why-not question, “Why

not Marge?", which would be translated by NaLIR to the query:

SELECT DISTINCT author.aname FROM author
WHERE author.aname = 'Marge'

The query is over the projected attribute of the original query

(author names), and that the author Marge is returned byWNQ .

Some why-not provenance models allow users to define ques-

tions over attributes not in the result schema. We focus here on



the subset of queries over the projected attributes, as we think

that it is the most natural approach for posing why-not questions.

We will focus on frontier picky model [3]. This model for

why-not provenance focuses on explaining non-answers using a

single query operator. Intuitively, the last operator to contain in

its input a tuple matching the why-not predicate. The motivation

for explaining tuple loss with the frontier picky operator is that

the answer is compact, easy-to-understand and provides a real

value in the sense that it is necessary to modify the returned

operator in order to include the tuple in the result list.

Definition 2.5 (adapted from [3]). Given a database D, a query
Q with its query plan TQ = (VQ , EQ ), aWNQ , and a tuple t ∈
WNQ(D), a picky operator w.r.t. t is a node v ∈ VQ that gets t (or
a predecessor of t in the evaluation process) through one of its

incoming edges, as its input, and does not output it through its

outgoing edge. An operator v ∈ VQ is frontier picky if:

(1) v is a picky operator for at least one tuple inWNQ(D).
(2) There is no tuple t ∈WNQ(D) in the input of any operator

u ∈ VQ such that u is a successor of v in TQ .

According to this model, the answer to a why-not question is

the frontier picky operator. Notice that the frontier picky operator

might be different even if for the same query, evaluated with

different query plans, as it depends on the structure of the query

plan, i.e., the ordering of the operators in the plan.

Example 2.6. Consider the SQL query in Figure 2b and its query
plan in Figure 3a, with theWNQ from Example 2.4. If Marge has

not published papers after 2005, the operator node σpyear>2005
is picky w.r.t. the tuple that containsMarдe . As all successors of
this operator do not contain a tuple with aname = Marдe , the
node σpyear>2005 is the frontier picky operator w.r.t. this tuple.

3 HIGHLIGHT ALGORITHM
Our approach is composed of two stages: find the frontier picky

operator for every removed tuple, and, given a why-not questions,

find the relevant words that correspond to the frontier picky

operator of the tuple in question.

Provenance-Aware Query Evaluation: As a first step, we eval-
uate the query while storing why-not provenance. We start by

translating the NL query to a formal one, via NaLIR [13] aug-

mented so that we keep track of which word in the original NL

query has been mapped to which operator of the formal query,

as done in [4]. The reverse of this mapping is stored in the data

structure Mops . Then, the query is evaluated. During evalua-

tion, whenever a tuple is removed (due to a selection operator

or as part of a filtering join), we update the mapping Mf il ter ,

which maintains the relation between the query operators and

the tuples that were removed by them.

Example 3.1. Reconsider the NL query translated by NaLIR to

the query in Figure 2b. First, we store the operator-to-word map-

ping between the query operators and their respective words in

the original NL query, shown in Example 2.6. During evaluation,

Mf il ter includes intermediate tuples such as (Marge, Paper x,

2001) and its respective picky operators σpyear>2005 (additional
attributes, such as pid , are omitted for brevity).

Finding Relevant Words to Answer Why-Not: After view-

ing the evaluation results, the user now formulates a why-not

query in NL. Algorithm 1 gets as input the results of the evalu-

ation, i.e., the result, Q(D), the mapping Mf il ter , the mapping

Mops , the why-not query formulated in NL QWN , the depen-

dency tree of the NL query Td , and the database D. Its output
is the set of word indices that correspond to the reason for ex-

cluding the tuple of interest. Algorithm 1 operates as follows.

It uses a sub-mechanism of NaLIR to convert the NL why-not

query QWN into a formal why-not selection queryWNQ (line

1). In lines 2–3 it checks whetherWNQ is valid, i.e. if there are

indeed no output tuples satisfying both the why-not query and

the original query (this is a sort of sanity check). If this is not the

case, it finds the frontier picky operator (line 4) for each of the

tuples satisfying the formal why-not query inWNQ and returns

the last of them which is the frontier picky operator w.r.tWNQ .

We may get NULL as the operator in the case where there is no

match toWNQ in the input; in this case we consider the last

projection operation that took place to be the “reason" (lines 5–6).

For instance, if someone asked about “why not Krusty?", who

is not an author in the example database, the reason would be

Πaname which is mapped to the author table.
We then use the mapping outputted by the evaluation process

to trace back the words corresponding to the operator. Themap()
function exploits the data structureMops , and gets as input vari-

able names, values or table names that can be mapped back into

words in the original query. Lines 13-18 are used to help link

back the join operators which could not be directly mapped to

words. The main idea is to exploit the typical scenario where

unmapped joins are used as means for the query generation en-

gine to link two other relations, which are directly referenced

in the NL query. The algorithm traverses the ancestor and suc-

cessor join operations of the given join operator (by repeatedly

calling Get JoinedRelations()), until two operators, one ancestor

and one successor of the join, which can be mapped into words

(le f t, riдht), are found. The returned indices are not of these

two words, but rather of the words between le f t and riдht inTd
(by calling GetPath()), corresponding to the intuition that the

answer to the why-not query is an unmapped operator between

the two mapped operators.

Example 3.2. Consider the NL query in Figure 2a, its SQL query
plan in Figure 3a, and the database in Figure 1. The author Bart

exists in the author table, but has no published papers. Therefore,
the frontier picky operator for the NL why-not query ”why not

Bart?" is the join operator ▷◁aid (see Figure 3a), connecting the

author table with thewrites table, which is a join table, contain-

ing author ids and publication ids. Algorithm 1 will first convert

QWN to its SQL form and check that Bart is indeed not in the

result set ofQ in Figure 2b (lines 1–3). It will then get the frontier

picky operator ▷◁aid , depicted in Figure 3a, which took the tuple

(4,Bart, 1) as input and did not output it (line 4). Since the output
of this line is not NULL, it will continue to line 9. The writes
table cannot be mapped into a word in the NL query in Figure 2a

because the wordwrites does not even appear in it. The reason

for the join operation being included is that NaLIR has used this

table as a link between the authors table and the papers table.

Lines 13-18 are then used to trace back the joined relations. Left

and right would be “authors” and “papers” respectively, and the

returned path would include only the word “published” as this

is the word connecting “authors” and “papers” as seen in the

dependency tree of the NL query in Figure 3b, thus our word

highlight answer is “return authors who published papers in

database conferences after 2005".



Algorithm 1: Highlight
input :Q(D),Mf il ter ,Mops ,QWN ,Td , and D
output :Word highlight set

1 WNQ = NLToFormal(QWN );

2 if Q(D) ∩WNQ(D) , ∅ then
3 return ∅;

4 op ← FrontierPicky(Mf il ter . f ind(WNQ(D)));

5 if op = NULL then
6 op ← GetProjectionOperator (Mf il ter );

7 if op is σA=x then
8 returnmap(A,Mops ) ∪map(x,Mops );

9 if op is T ▷◁ R where R is a new input table then
10 if map(R,Mops ) , ∅ then
11 returnmap(R,Mops );

12 else
13 (le f t, riдht) ← Get JoinedRelations(R);

14 whilemap(le f t,Mops ) = ∅ do
15 (le f t, _) ← Get JoinedRelations(le f t);

16 whilemap(riдht,Mops ) = ∅ do
17 (_, riдht) ← Get JoinedRelations(riдht);

18 return GetPath(le f t, riдht,Td );

4 IMPLEMENTATION AND EXPERIMENTS
We describe various use cases and our scalability evaluation.

Use cases:

Table 1: Sample of Natural Language queries along with
Why-Not questions and “Why-Not answers"

ID

NLQuery With

Highlight Explanation

Why-Not

Question

Selection Frontier Picky Operator

1

Return authors who published in

database conferences after 2015 Catriel Beeri

2

Return authors who published in

database conferences after 2015 Yishay Mansour

3

Return authors from “Tel Aviv
University" who published in VLDB

Benny Kimelfeld

4

Return authors from "Tel Aviv University"

who published in VLDB Yishay Mansour

5

Return organizations of authors who

wrote in database journals
AI University (org.

without DB authors)

6

Return papers of authors in “Artificial
Intelligence” after 2005 and before 2007

Active Views for

Electronic Commerce

7

Return papers of authors in "Artificial

Intelligence" after 2005 and before 2007

Stochastic Link and

Group Detection

8

Return authors from “North America”
who presented in VLDB in 2000

Tova Milo

9

Return authors from "North America"

who presented in VLDB in 2000
Geoffrey E. Hinton

10

Return authors from "North America"

who presented in VLDB in 2000 Christopher Ré

11

Return publications about graphics
after 2005

Overflow Controled

SIMD Arithmetic

Join Frontier Picky Operator

12

Return organizations of authors
who wrote in database journals

MadeUp College (org.

without authors)

13

Return authors who published in

database conferences

John Doe (author

without publications)

Table 1 depicts representative examples of NL queries along

with relevant why-not questions that were executed on the MAS

database [15]. The first 11 examples demonstrate cases in which

the reason for the tuple absence was a selection operator. Queries

12 and 13 demonstrate the operation of Algorithm 1 when the

frontier picky operator is a join operation, this is often an indi-

cation of missing tuples in the dataset. Overall we can see that

for the vast majority of NL queries and why-not questions the

explanations supply valuable information that justify in concise

manner the absence of the tuples in question.

Scalability: Here again we have used the MAS database whose

total size is 4.7 GB, and queries 1–11 from Table 1, running the

algorithm to generate word highlight and NL explanation. The

computation steps execution times, for each query, are depicted in

Figure 4. The computation times are given in nanoseconds and the

y axis is log-scaled. As evident from the graph, most of the time is

spent on NL to SQL conversion, query evaluation and identifying

the relevant tuples for the why-not queries. Generating the why-

not explanations incurs a negligible performance cost (less than

a millisecond on average for selection frontier picky operators),

and thus provides an interactive experience for the user.

Figure 4: Average computation time by step (log scale, val-
ues in nanoseconds)
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