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ABSTRACT
Exploratory Data Analysis (EDA) is an essential yet highly
demanding task. To get a head start before exploring a new
dataset, data scientists often prefer to view existing EDA
notebooks – illustrative, curated exploratory sessions, on the
same dataset, that were created by fellow data scientists who
shared them online. Unfortunately, such notebooks are not
always available (e.g., if the dataset is new or confidential).

To address this, we present ATENA, a system that takes an
input dataset and auto-generates a compelling exploratory
session, presented in an EDA notebook. We shape EDA into
a control problem, and devise a novel Deep Reinforcement
Learning (DRL) architecture to effectively optimize the note-
book generation. Though ATENA uses a limited set of EDA
operations, our experiments show that it generates useful
EDA notebooks, allowing users to gain actual insights.
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1 INTRODUCTION
Exploratory Data Analysis (EDA) is an essential component
in the data science (DS) pipeline, performed by any data
scientist when examining a new dataset – with the goal of
better understanding its nature and characteristics.

EDA is widely known to be a cumbersome process, there-
fore, numerous systems have been devised to facilitate this
process: simplified visual interfaces (e.g., [24], Tableau [2]),
data-driven tools for surfacing interesting subparts of a data
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cube [37], interesting data visualizations [39, 45], as well as
systems for recommending next exploratory steps [29], and
automatic discovery of related datasets [10].

Yet, perhaps surprisingly, an increasingly popular method
for data scientists to get a head start on their EDA process
is to view EDA notebooks – curated, illustrative exploratory
sessions prepared by other data scientists [23, 36]. Such EDA
notebooks are presented in a notebook interface, a literate
programming environment that allows users to easily doc-
ument, and share, a sequence of programmatic operations
and their results.
Existing EDA notebooks are typically available on data

science (DS) or code sharing platforms such as Kaggle [1]
and GitHub, in which users who already performed EDA
on a specific dataset (hosted on the platform as well), sum-
marize and curate it into a compelling EDA notebook to be
shared with the community. Then, when other data scien-
tists begin working on the same dataset, they first view its
accompanied EDA notebooks and trace the exploratory steps
in them, to learn how other users approached the dataset,
what insights they already discovered, and to get ideas for in-
teresting patterns to further examine when later performing
EDA themselves [36]. Consider the following example:

Example 1.1. Data scientist Clarice wants to discover causes
for flight delays, using the US flights dataset [32]. Before she
begins exploring the dataset, she examines one of its accompa-
nied EDA notebooks, containing a sequence of EDA operations
and their results: The first operation is a group-by, showing
the average flight delay per month of the year. Examining
its results, she can immediately see that delays are longer in
June, compared to the rest of the year. The second operation
in the notebook is a filter operation, selecting only flights that
took place in June. Sifting through the results does not yield
immediate insights, so she scrolls down to examine the fol-
lowing operation in the sequence – a group-by over the June
flights, depicting the average delay by origin airport. Clarice
can quickly see that delays during June in LAX and ATL are
considerably longer than in the rest of the airports.
Viewing the notebook makes Clarice’s own EDA process

much easier: She already gained some insights on particular
cases where delays are longer. Also, by tracing the user’s ex-
ploratory steps in the notebook she can infer, to some degree,
how they approached the dataset, and when relevant – reapply
parts of their methodology for her own process.
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While existing EDA notebooks are useful, unfortunately
they are not always available (e.g., when a dataset is new,
confidential, or has not yet been examined on the given DS
platform). To address this, we present ATENA, a system for
auto-generating EDA notebooks. ATENA takes as input a
relational dataset, and automatically derives and performs
an exploratory session – a meaningful, compelling sequence
of EDA operations. The results of these operations are dis-
played to the users in a notebook interface (See Figure 1),
guiding them through the dataset’s highlights and impor-
tant characteristics. Hereby, ATENA allows users to obtain
preliminary insights and ideas for further exploration, even
if notebooks made by real users are unavailable.
So what makes an EDA notebook helpful? Naturally, it

should consist of interesting views of the data. But two other
properties are equally as important [23, 36]: First, the EDA
notebook should covermultiple, diverse aspects of the dataset,
so that the user is able to learn about its different properties.
Second, it should be coherent and easy to follow – the EDA
operations need to be in a sensible order, in which subse-
quent operations are logically related (e.g., the second and
third operation in the example above). ATENA is designed
with these goals in mind. Our contributions are as follows:
i. Formulation of EDA as a control problem.We define
the problem of generating EDA notebooks as a control prob-
lem using a Markov Decision Process (MDP) model. We de-
fine a reward signal that not only enforces that each EDA
operation in the notebook is “interesting”, but also that the
entire sequence of operations is diverse and coherent, w.r.t.
the input dataset. Additionally, ATENA can take as input a
set of focal attributes, reflecting users’ particular informa-
tion needs (e.g., the delay duration in the example above) and
consider them when generating the notebook.
ii. A Novel DRL architecture. As explained in the sequel,
the EDA control problem is particularly challenging in our
context, since the MDP contains an exceptionally large num-
ber of states and actions, and the reward signal is compound
and non-differentiable. Therefore, to facilitate effective op-
timization for our goal we use a novel deep reinforcement
learning (DRL) architecture, especially designed to tackle the
large yet discrete action space (of possible EDA operations).
iii. Experimental evaluation andpublic benchmark.Our
experimental evaluation, conducted on various input datasets,
shows that the EDA notebooks generated by ATENA are in-
sightful and easy to follow, allowing users to gain actual
preliminary insights on their datasets. In addition to a com-
prehensive user study we also developed an automatic, re-
producible benchmark [5] to facilitate the comparison of
future models for auto-generating EDA notebooks.

Last, we note that a early, high-level descriptions of ATENA
have been presented in [4, 28]. In comparison, this paper
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Figure 1: EDA Notebook Generated By ATENA

presents the laetest system in more detail, alongside a com-
prehensive experimental evaluation.

2 RELATEDWORK
Assisting users in performing EDA and gaining insights from
data has been the goal of many previous works in multiple
research domains. We review selected relevant works.
Data tours and projection pursuit. Discovering interest-
ing data “views” and presenting them in a coherent sequence
for the purposes of data exploration dates back to the 1970’s [16],
where the focus was on generating 2-d projections (i.e., scat-
ter plots) ofmultivariate, numeric data. Projection Pursuit [16]
suggested an optimization based approach to find “interest-
ing” 2-d projections of the data, while data-tours [3] focused
on generating a coherent sequence of 2-d (arbitrary) projec-
tions, s.t. there is a low variation between subsequent views,
and the sequence appears continuous to a human observer.
While EDA notebooks may be regarded as an extension to
the data “tour” experience, our work is fundamentally dif-
ferent in two parameters: (1) we assume that the dataset
may contain attributes of heterogeneous (not necessarily
numeric) types, including textual and categorical data, and
(2) correspondingly, we focus on commonly used EDA oper-
ations such as: filtering, grouping, and aggregations (with
extensions for visualizations, joins, etc.). Therefore, ATENA
cannot rely on the particular optimization problem defined
in [16] for 2-d projections, or the interpolation means of [3].
Data-driven generation of interesting views. More re-
centworks suggest to auto-generating interesting views from
an input dataset using different types of EDA operations, e.g.
[12, 37] for interesting tuple-subsets, [21] for OLAP drill-
downs, [45] for data-visualizations, and [41]. These works
typically use heuristic measures of interestingness and search
the space of all possible views, in order to return the one (or
top-k) obtaining the highest interestingness scores.

ATENA also relies on a notion of interestingness, but uses
additional menas in order to generate a compelling sequence



of operations: (1) A compound reward signal that also con-
siders the coherency and diversity of the EDA operations
w.r.t. the previous operations and resulted data views in the
sequence (2) An effective, novel DRL learning scheme to
facilitate the optimization on the entire operations sequence.
Interactive EDArecommender systems.Numerousworks
produce next-step EDA recommendations for an ongoing
exploratory session. While some use data-driven means as
described above, other lines of work use external means such
as a log of previous EDA operations [14, 29], and real-time
feedback [11, 20] from the user in order to recommend pos-
sible exploratory steps at each point in the session. These
works are shown to be useful for interactive EDA, and are
complementary to ATENA, which focuses on the genera-
tion of EDA notebooks to be examined before one actively
explores the data.
Complementaryworks for facilitating EDA. Several other
aspects of assisting users in EDA have been considered in
previous work. For example, systems like Vizier [8] facilitates
the manual creation EDA notebooks, Data Polygamy [10] as-
sist in finding related datasets, QUDE [47] ensures the safety
of EDA automation tools by preventing false discoveries,
and Northstar [24] enables non-programmers to efficiently
perform interactive exploration in a compelling UI.

3 SYSTEMWORKFLOW
In a nutshell, ATENAworks as follows: First, the user uploads
a tabular dataset to the system, then is prompted to select, if
desired, a set of focal attributes that she is particularly inter-
ested in. Next, an instance of an EDA control problem (i.e., an
EDA environment and an objective function) is created w.r.t.
the user’s dataset and focal attributes – See Section 4 for
more details. As explained, our EDA environment currently
supports filter, group-by, and aggregation operations, yet
can be extended to support, e.g., visualizations and joins (see
Section 7 for a discussion).
Then a DRL learning scheme, as illustrated in Figure 2,

is employed in order to generate an EDA notebook: First,
the neural network of the DRL agent is initialized with ran-
dom weights. Next, the agent “trains” on the dataset by self-
interacting with the input dataset via the EDA environment:
The environment (See Figure 2) allows the agent to first
employ an EDA operation, then receive back an observation-
vector that summarizes its results, as well as a positive/nega-
tive reward value, derived from the objective function (see
Section 4.2). The goal of the DRL agent is to learn, by re-
peated interactions with the environment, how to perform
a sequence of N (predefined) EDA operations which obtain
a maximal cumulative reward. Once the learning phase is
completed, the sequence of EDA operations which obtained
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Figure 2: DRL Learning Scheme in ATENA

the highest cumulative reward is used to auto-generate the
EDA notebook provided to the user.

User Experience. Figure 1 depicts an actual notebook auto-
generated by ATENA on a flights dataset [32] (see Section 6.1
for a description) As shown in the figure, The EDA notebook
lists the operations and their results in a chronological order
(operations 2-7 are omitted for brevity). For improved read-
ability, each operation is accompanied by a simple verbal
description (e.g., "filter by Month==’January’"), and on the
right-hand side of the notebook appears a dynamic tree-like
illustration of the operations, allowing the user to easily
follow the exploratory steps.

In what comes next, we present our MDP-based model for
EDA, then explain why DRL is particularly suitable to solve
it, and present a dedicated architecture we developed for it.

4 THE EDA CONTROL PROBLEM
We next explain how EDA is shaped into a control problem
using an MDP model, then describe the reward signal.

4.1 MDP Model for EDA
Typically, in EDA, a user examines a datasetD = ⟨Tup,Attr ⟩,
where Tup is a set of data tuples and Attr is the attributes
domain (We assume that the dataset includes attributes of
different types, e.g. textual, numerical or categorical).

The user then executes a series of analysis operations (e.g.,
filter, aggregation, visualization, depending on the particular
UI)q1,q2, ..qn , s.t. eachqi generates a results display, denoted
di . After examining the results display of operation qi , the
user decides if and which operation qi1 to employ next.

We model an EDA process using an episodic MDP, which
consists of a set of possible states, and a set of possible ac-
tions. Intuitively, in our case, the set of actions is the set of
all possible (and supported) EDA operations, and the set of
states correspond to their results displays. In a single episode,
the agent explores a particular dataset D by preforming a
predefined number of N actions. At each step, the agent
obtains an observation vector describing its current state
in the EDA session, then it is required to choose an action.
According to the chosen action, the agent is granted a nega-
tive/positive reward then transits to a new state. The utility



of an entire episode is defined as the cumulative reward,
obtained for the actions in the current episode.
Next, we explain how actions and state observations are

represented in our model, then present the reward signal.
EDA Action Space. Our model allows for composing pa-
rameterized EDA operations, in which the agent first chooses
the operation type, then the adequate parameters. Each such
operation takes some input parameters and operates, at time
t , on the current display dt−1 (i.e., the results screen of the
last performed operation at t − 1). It then outputs a corre-
sponding new results display dt . Since ATENA is primarily a
proof of concept, we use a limited set of analysis operations,
to be extended in future work. The following EDA operations
are included:
1. FILTER(attr ,op, term) is used to select data tuples that
match a criteria. It takes an attribute, a comparison operator
(e.g. =, ≥, contains) and a numerical/textual term, and results
in a new display representing the corresponding data subset.
2. GROUP(д_attr ,aдд_f unc,aдд_attr ) groups and aggregates
the data. It takes a single1 attribute to be grouped by, an
aggregation function (e.g. SUM, MAX, COUNT, AVG) and
another attribute to employ the aggregation function on.
3. BACK() allows the agent to backtrack to the previous dis-
play (i.e, the results display of the action performed at t − 1)
in order to take an alternative exploration path.

Formally, the action space is defined as follows. LetOP be
the set of action types (in our case,OP = {FILTER,GROUP,BACK}).
Each action type o ∈ OP has a corresponding set of parame-
ters Po = {po1 ,p

o
2 , ...}, and each parameter p has a finite value

domain V (p). An action is a tuple (o,v) where o ∈ OP and v
is a valid assignment for the parameters Po (i.e., in the Carte-
sian product v ∈ V (Po), V (Po) B

>
p∈Po V (p)). The entire

action space is thus defined byA =
⋃

o∈OP
⋃

v ∈V (Po ){(o,v)}
for any valid parameters’ assignment v . In a similar manner,
our model can be extended with other operation types such
as projection, visualization, join, etc.
The advantages of our action space are: (1) the actions

are atomic and relatively easy to compose (e.g., there are no
syntax difficulties). (2) complex displays are formed gradually
(e.g., first employ a FILTER operation, then a GROUP by some
column, then aggregate by another, etc.), as opposed, e.g., to
SQL queries where the entire query is composed “at once”.
The latter allows fine-grained control over the agent, as each
atomic action obtains its own reward (see Section 4.2).

State Observation Vectors. The second part of the MDP
model is defining what information should be provided to
the agent when reaching a new state in the ongoing episode.

1Complex group-by operations, comprising multiple attributes, are possible
by employing consecutive group-by operations.

We use a simple vector representation based on the ex-
traction of key descriptive features from the previous results
displays obtained thus far. The current results display dt is
encoded to a numeric vector, denoted ®dt , that represents a
compact, structural summary of dt with the following fea-
tures: (1) three descriptive features for each attribute: its
values’ entropy, number of distinct values, and the number
of null values. (2) one feature per attribute stating whether
it is currently grouped/aggregated, and three global features
storing the number of groups and the groups’ size mean
and variance. In order to also record the broader context in
which the current display was generated, we concatenate to
®dt the display vectors of three most recent operations in the
session, i.e., the final observation vector comprises ®dt−1 and
®dt−2, in concatenation with ®dt (if dt−1 and dt−2 do not exist,
a vector of zeros is provided instead).

4.2 Reward Signal
As discussed in Section 2, numerous data-driven systems
(e.g. [12, 21, 37, 45]) use interestingness measures to assess
the utility of analytical operations and present users with
the ones obtaining top scores. In ATENA we also employ
measures of interestingness to evaluate EDA operations per-
formed by the agent, yet we use two additional signals, diver-
sity and coherency in order to ensure that the entire sequence
of operations is compelling and easy to follow.

The reward signal for a single EDA operation is a weighted
sum of the following components:
(1) InterestingnessReward. In our systemwe implemented
two different interestingness signals, one for group-by oper-
ations, and one for filter operations.
Interestingness reward for group-by operations: Our measure
follows similar lines of conciseness measures [9, 17] which
consider compact group-by results that covers many tuples
as both informative and easy to understand. Our measure
takes into account the number of groups, the number of
attributes that are currently grouped-by, and the number of
the underlying tuples, denoted д, a, and r (respectively). The
reward signal is given by h1(д ·a)

h2(r )
where h1(·) and h2(·) are

normalized sigmoid functions (see [26]) with a predefined
width and center.
Interestingness reward for filter operations: To reward filter
operations we follow commonmeasures in the literature that
assess the exceptionality of the filtered tuples, compared to
a reference, larger set. Following [37, 44, 45], our interest-
ingness reward favors filter operations whose result display
dt deviates significantly from the previous display dt−1. To
quantify such deviation, we use the Kullback-Leibler (KL)
divergence measure, that determines how different one prob-
ability distribution is from another. In case dt is not grouped,



we define the value probability distribution P tA of an attribute
A ∈ Attr to be the relative frequency of its values (i.e., for
each valuev of attributeA indt ,p(v) is the probability to ran-
domly choose v). The interestingness reward is then defined
by: h( max

A∈Attr
DKL(P

t−1
A , P

t
A)), where the sigmoid h(·) is used

to obtain a more significant difference in values. In case dt is
grouped, the KL divergence is compared only w.r.t. currently
aggregated attributes (rather than on all attributes, as above).
(2) Diversity Reward. We want to encourage the agent
to choose actions that induce new observations and show
different parts of the data than those examined thus far. This
is done by further utilizing the numeric vector representation
of each results display ( ®disp), namely, by calculating the
minimal Euclidean distance between the observation vector
®dt and the vectors of all previous displays obtained at time
< t , i.e., min

0≤t ′<t
δ ( ®dt , ®dt ′).

(3) Coherency Reward. We rely on an external classifier
in order to determine whether a given EDA operation is
coherent at a certain point in the notebook. Our classifier is
based on weak-supervision, using Snorkel [35] to construct
a classification model from a set of heuristic classification
rules. This solution allows us (1) to overcome the lack of
training data containing annotated EDA operations, and (2)
to easily fine-tune the classifier, if desired, w.r.t. the specific
schema and the users’ given set of focal attributes.
Each classification rule in our classifier takes as input a

subsequence of EDA operations q1,q2, . . .qt and their result
displays, and outputs whether operation qt is coherent in
the context of the previous operations. We use two types of
rules: (i) general rules – considering general properties of the
operations sequence. For example: “a group-by employed on
more than four attributes is incoherent”, and a group-by on a
continuous, numerical attribute is incoherent. Such rules are
applicable on all input datasets.
(ii) data-dependent rules – More rules can be (optionally)

written particularly for the input dataset’s semantics and
w.r.t. users’ predefined focal attributes. For example, in the
flights dataset (as described in Example 1.1), aggregating on
the column “flight-number” is largely incoherent, whereas, if
the user focuses on flight delays, aggregating on the columns
“departure-delay time” is preferred.

Snorkel is then employed over the set of classification rules
to construct a generative model for predicting if a given EDA
operation is coherent or not. The final coherency signal is
calculated using the confidence level of the generative model
(in [0, 1]). In Section 6.1 we report the types of rules used in
our experiments.

5 DRL AGENT ARCHITECTURE
We first explain the difficulties in optimizing our MDP model
for EDA, and why DRL is a sensible approach to solve it. We
then discuss what challenges remain to be overcome, and
present our novel DRL architecture for the problem.

Why use DRL for the EDA control problem? Optimizing our
EDA model is challenging because of two main reasons: (1)
theMDPmodel is exponentially large (w.r.t. the input dataset)
and high-dimensional, as the number of states corresponds
to the number of all intermediate results of any possible
exploratory operation on the input dataset. Therefore the
model cannot be fully materialized. (2) The reward signal
is compound, non-differentiable, and is cumulated over N
consecutive steps. Such settings make analytical optimiza-
tions (e.g.,linear programming, policy iterations) difficult to
employ [18], as well as classic reinforcement-learning solu-
tions [25]. In contrast, DRL has been shown to be extremely
useful for solving high-dimensional, complex control prob-
lems previously thought to be intractable [25].

However, off-the-shelf DRL solutions are inefficient for the
EDA problem, since in our MDP model, not only is the num-
ber of states large, but also the action-space is parameterized,
very large, and discrete. Even in our prototype environment,
which only supports filter, group-by and aggregate opera-
tions, the number of possible unique operations at each point
exceeds 100K . In comparison, the DRL environment of the
very challenging game of Go allows for about 250 different
discrete legal moves in every turn [40]. This setting is prob-
lematic for existing DRL architectures, since, (1) each distinct
possible action is represented as a dedicated node in the out-
put layer (see, e.g. [13, 25]), and (2) the large action space
makes the already daunting exploration/exploitation problem
even a bigger issue. As we empirically show in Section 6.4,
when using existing DRL architectures, the agent’s learning
process to converge very slowly to a local maximum, far
from the optimal.

Solution Overview. To that end, we use a novel solution
that both decreases the size of the network and facilitates an
efficient exploration/exploitation policy. Our solution can be
easily injected into off-the-shelf DRL architectures and algo-
rithms (e.g. DQN, Advantage Actor-Critic, etc.). It comprises
three parts: (1) A “twofold output” layer architecture, that
effectively utilize the parametric nature of the EDA action
space, and allows the agent to choose an EDA operation
type and a value for each parameter.(2) A dedicated “binning”
method that further reduces the vast value-domain of the
filter term parameter, which includes all available dataset
tokens, and (3) an exploitation/exploration policy that lever-
ages the gained experience not only to select the right action
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to employ at each state, but also for performing smart explo-
ration choices. We explain each of these components next.

Twofold Output Layer Architecture. An illustration of our
network architecture is provided in Figure 3. First, the obser-
vation vector goes through several dense hidden layers with
a ReLU activation function (this is common practice in DRL
architectures [19]). Then, instead of the standard, very large
softmax output layer, we use two new layers that we design,
to significantly reduce the network’s size:
(1) The Pre-Output Layer. This layer (colored blue in Fig-
ure 3) contains a node for each EDA operation type, and
a node for each of the parameters’ values. Each node is
connected to the previous hidden layer. The size of the
Pre-Output Layer is equal to the size of the parameters’
value domains and number of operation types, i.e., |OP | +∑

o∈OP
�� ⋃

p∈Po V (p)
��, which is significantly smaller than the

standard output layer that contains a node for each distinct
action, with a size of

∑
o∈OP

��>
p∈Po V (p)

��.
(2) The Multi-Softmax Layer. Often in DRL architecture a
softmax calculation is applied on the output of the last hidden
layer, in order to produce a probability value for each distinct
action (that sums to 1). When the action space is large, not
only is the computation time high, also the learning process
is much slower and ineffective (as we show in Section 6.4).
We therefore use a novel, Multi-Softmax layer, in which the
softmax computation is segmented and performed for each
operation type and parameter individually. Namely, Softmax
Segment σOP is linked only to the Pre-Output nodes that
correspond to operation types, then a separate Segment σp
is defined for each parameter p, linked only to Pre-Output
nodes corresponding to values in V (p).
The Multi-Softmax Layer works as follows (See illustra-

tion in Figure 3). First, Segment σo is used to generate a
probability distribution over the operation types OP , from
which the chosen operation type o ∈ OP is sampled (e.g., in
the example workflow depicted in Figure 3 see that the cho-
sen operation, obtaining the highest probability, is ‘filter’).
Next, the parameters of o are instantiated by activating only

the corresponding segments σp ∀p ∈ Po (See the red colored
segments of the Multi-Softmax layer in Figure 3).

Efficient selection of dataset values for the filter “term” pa-
rameter. The parameter term of the filter operation may be
prohibitively large, even when the selection is restricted only
to tokens appearing in the current results display. Therefore,
to avoid having a dedicated node for each dataset token in
the Pre-Output Layer, we use a simple yet effective binning
solution that maps the individual tokens (i.e., dataset values
or parts thereof) to a fixed size array of B bins, according
to the frequency of appearances of each token in the current
display. Then, instead of choosing a particular token, the
agent chooses a frequency range b[i , j]. In turn, an actual to-
ken whose frequency of appearance is within that range, is
sampled uniformly at random. Following a common assump-
tion that the frequency of tokens is exponentially distributed
(according to, e.g., Zipf’s Law), we particularly use logarith-
mic binning [31] (However, our solution is modular and any
alternative binning division may be used).

Exploration/exploitation policy. Our architecture facilitates
an effective exploration policy, based on Boltzmann explo-
ration [22], in which, originally, an action is sampled ac-
cording to the output probability distribution generated by
the softmax layer. Using the two-fold output layer allows
the agent to make an independent exploration/exploitation
decision for each operation type and parameter, since each
parameter has a dedicated softmax layer. This allows the
agent to exploit its experience, when available, for some
parameters, and explores the values of other parameters.

Also, to further encourage exploration, we use entropy reg-
ularization [30], which prevents the agent from prematurely
converging to a local optimum. With entropy regularization
the agent receives a reward bonus proportional to the en-
tropy of the policy, i.e., the probability of choosing a distinct
EDA operation (computed over the joint probability distri-
bution of the Multi-Softmax Layer). The higher the entropy
of the actions’ probability distribution, the higher the bonus.

6 EXPERIMENTAL RESULTS
Our experiments are meant to answer three main questions:
(1) Can users derive actual insights from passively exam-

ining our auto-generated EDA notebooks?
(2) How good are the notebooks generated by ATENA

compared to notebooks generated by other means?
(3) Is DRL, and specifically our architecture, necessary for

generating high-quality EDA notebooks?
As common for generativemodels (e.g., image caption [46],

machine translation [33]), we conduct two complementary
quality evaluation experiments: Human evaluation (Section 6.2),
in which participants manually reviewed the generated EDA



notebooks, and an automatic benchmark for EDA notebooks
(Section 6.3), which compares the generated notebooks to
a set of gold-standard ones. The benchmark is fully open-
source, available in [5].
Last, we performed additional experiments (Section 6.4),

comparing the convergence of ATENA to alternative opti-
mization architectures.

6.1 Experimental Setup
We next describe the experimental datasets and baselines,
and provide implementation details.

Datasets. We use two collections of input datasets, each
with a different schema and application domain, cyber-security
and flight-delays. We chose these collections because they
provide useful means to compare and evaluate the auto-
generated notebooks. We next explain the characteristics of
each collection and the purpose it serves in our experiments.
Cyber-Security Datasets. This collection comprises of 4
(completely unrelated) datasets, as detailed in Table 1. The
datasets originate from 4 different cyber analytic challenges [43],
in which participants are required to explore each dataset
to reveal a specific underlying cyber attack conveyed in the
dataset (See Table 1).We use this collection in our experiment
for three reasons:
(1) Each dataset is provided with an official solution that

contains all of the relevant insights regarding the underlying
attack. We use these lists, which contain between 9 to 15
insights, to quantify the number of relevant insights users
successfully derived from examining the EDA notebooks
generated for the experimental evaluation (See Section 6.2).
(2) Each dataset has several “walk-through” documents

manuallywritten by expert cyber-security analysts, to demon-
strate, step by step, the EDA operations they used in order to
complete the challenge. We use these documents to generate
“gold-standard” EDA notebooks, to serve as an upper bound
in our quality evaluation experiments.
(3) Last, this collection is accompanied by traces of real-

life EDA sessions made by experienced analysts exploring
the datasets (publicly available in [42]). The EDA traces were
recorded and collected by the authors of [29] for evaluating
their proposed log-based EDA recommender system (recall
from Section 2). We use the recorded traces (all performed
with the same purpose of reveling the underlying cyber-
attack hidden in each dataset), to generate corresponding
EDA notebooks (which replay these sessions), and compare
them to those generated by ATENA, as described below.

It is important to stress the difference between (2) and (3):
The “gold-standard” notebooks, which originated from the
walk-through tutorials, were manually created by experts,
after completing their EDA process, with the goal of guiding
readers through the dataset and allowing them to derive

Dataset Size (rows) Description
Cyber #1 8648 ICMP scan on IP range
Cyber #2 348 Remote code execution attack
Cyber #3 745 Web-based phishing attack
Cyber #4 13625 TCP port scan
Flights #1 5661 AA Flights on Sundays
Flights #2 8172 Flights departing from BOS
Flights #3 1082 From SFO to LAX
Flights #4 2175 Short, night-time flights

Table 1: Experimental Datasets

important highlights. In contrast, the notebooks generated
from EDA traces simply capture the analysts’ EDA process,
and may not be comprehensible to other users.
Flight-delays Datasets. To examine the output quality in
another schema and application domain, we use an additional
collection of datasets, derived from the popular Kaggle 2015
Flight Delays [32] database. Each dataset contains records
of past flights (with specific characteristics, as described in
Table 1), with attributes such as origin/destination airport,
flight duration, issuing airline, departure delay times, etc.

While these datasets are not providedwith a list of relevant
insights (as in the cyber-security collection), they all have a
specific exploration goal – investigating flight delays. They
also contain the following means to produce “gold-standard”
and traces-based notebooks: (1) the Kaggle platform that
hosts the database contains several EDA notebooks, manu-
ally created by fellow data scientists to demonstrate their
EDA process in characterizing the flight delays. (2) To obtain
EDA traces of real users exploring the datasets, we recruited
10 skilled analysts and asked them to perform EDA on the
datasets, for the same exploration goal of investigating flight
delays (while recording their traces).

Baselines. We compared the quality of the notebooks by
ATENA to 4 different types of baseline notebooks.

First, the two different types of notebooks generated from
human EDA processes: 1. “Gold-Standard”: based on real
EDAnotebooks/tutorials.As explained above, theses note-
books were created by expert users for the purpose of demon-
strating their EDA process so that other users could passively
examine and understand them, therefore forming a quality
upper-bound to our auto-generated notebooks.
However, since the notebooks and tutorials contain tex-

tual captions as well EDA operations not yet supported in
ATENA, we created equivalent EDA notebooks using the
same filter, group-by and aggregate operations, in order to
facilitate balanced quality comparison between all baselines.
2. “EDA-Traces”: notebooks generated from logs of EDA
sessionsmade by experienced analysts. For each recorded
session we generated a corresponding EDA notebook. The
traces largely contain the same EDA operations as supported



in ATENA, therefore little to no curation was required. Recall
that all exploratory sessions, in each dataset collection were
made in light of the same exploration goal: discovering the
underlying attack (cyber-security datasets) and characteriz-
ing flight delays (flight-delays datasets).

We then used alternative auto-generated notebooks:
3. “Interestingness-Only”: notebooks auto-generated
based only on interestingness assessment. To examine
the necessity in our compound reward signal we use base-
lines that optimize only on the interestingness of EDA opera-
tions, ignoring the diversity and coherency of the generated
EDA operations. As mentioned above, this is a classic ap-
proach, commonly used in many data-driven assistance tools
for EDA (e.g. [12, 21, 37]). We use two different methods to
optimize on the interestingness of the entire sessions:(3A)
Interestingness-Only Greedy (Greedy-IO) computes, at
each step, the interestingness score (computed as described
in Section 4.2) of all possible operations and greedily chooses
(no machine learning), the operation obtaining maximal
interestingness, and (3B) Interestingness-Only ATENA
(ATN-IO) which uses our DRL architecture as described in
Section 5 but with the goal of optimizing only on the inter-
estingness signal.
4. “AlternativeOptimizationArchitectures”: notebooks
auto-generated using different optimization architec-
tures/techniques. To examine whether DRL and particu-
larly our architecture described in Section 5 are necessary,
we use three alternative optimization techniques for our
compound reward signal (with all three components): First,
we used two alternative DRL architectures to the one used in
ATENA: (4A) Off-the-Shelf DRL (OTS-DRL) uses a stan-
dard DRL architecture with a softmax output layer contain-
ing a node for each distinct EDA operation2. Then to partic-
ularly examine the necessity of our Twofold Output Layer
we also use (4B) OTS-DRL With Binning (OTS-DRL-B)
which has the same standard DRL architecture as in (4A),
but instead of employing explicit filter terms it uses the
frequency-based binning solution, described in Section 5.
Last, to examinewhether DRL is indeed effective for our prob-
lem we used (4A) Compound-Reward Greedy (Greedy-
CR) which does not uses DRL but a greedy, non-learned
policy to select the operation inducing the highest reward.

Implementation. We implemented the EDA environment
in Python 3, using the Pandas [27] library to perform EDA
operations. As the overall reward is a weighted sum of three
individual signals (recall from Section 4.2), we set the weight
values to obtain learning balance between the reward com-
ponents such that no component obtains below 10% of the

2To allow convergence in a reasonable time, we restricted the number of
filter terms to the ten most common tokens in each column (120 in total).

total reward (However, different weight settings can be used
to reflect different priorities of the reward components).

As for the coherency settings, for all the air-travel datasets,
where the focus is on delays, we selected the attributes “de-
parture_delay” and “arrival_delay” as focal attributes. For
the cyber datasets, where the exploration goal is to reveal
underlying network attacks, we set the focal attributes to be
“source_ip” and “destination_ip”.

The neural network agent uses the current DRL state-
of-the-art Asynchronous Actor Critic (A3C) [30] enhanced
with Proximal Policy Optimization (PPO) [38]. Our Twofold
Output Layer is injected into the “Actor” network, replacing
its softmax output layer. The algorithms and neural network
are implemented in ChainerRL [34], a common DRL Python
library. For training the agent network we used an Intel Xeon
CPU based server with 24 cores and 96 GB of RAM.

6.2 Qualitative Human Evaluation
We performed a user study, with 40 volunteers, all computer
science (BSc) graduates or graduate (MSc/PhD) students with
some background in data analysis. We generated EDA note-
books using ATENA for each of the datasets listed in Table 1,
as well as by a baseline from each type as described above.

Each participant was presented with four EDA notebooks
(each on a different dataset), one at a time, and asked to
examine each notebook w.r.t. the same exploration goals as
described above. After inspecting the notebook, we asked
the participants to rate it according to several quality aspects,
as well as to list the insights they gathered on the dataset
just from examining the notebook.
We first discuss the overall rating for each type of EDA

notebook, then compare the number of gathered insights.

Qualitative evaluation. After inspecting each notebook,
users were asked to rate it, on a scale from 1 (lowest) to 7
(highest), according to the following criteria: (1) Informa-
tivity — How informative the notebook is and how well
does it capture dataset highlights? (2) Comprehensibility
— To what degree is the notebook comprehensible and easy
to follow? (3) Expertise — What is the level of expertise of
the notebook composer? (4) Human Equivalence — How
closely the notebook resembles a human-generated session?
Figure 4a shows for each of the criteria above the aver-

age scores obtained by ATENA and the baseline notebooks:
The human-generated baselines Gold-Standard and EDA
traces, and a representative for each type of auto-generated
notebooks – Greedy-IO and OTS-DRL-B (these baselines out-
performed the other ones in their respective categories, as
shown in Section 6.3). The scores differences between each
two baselines were verified to be statistically significant (us-
ing a paired T-test), with p-values far below 0.00001.



(a) User Ratings of Examined notebooks (on a scale of 1 to 7) (b) % of Gathered Insights

Figure 4: Qualitative Human Evaluation – Overall rating and insights gathered from viewing EDA notebooks

The gold-standard notebooks are marked by the dashed
line (with an error band of ±1 standard deviation), obtaining,
as expected, almost top scores (6.8/7 on average) in all crite-
ria. As for the generated notebooks, first see that the alterna-
tive auto-generation approaches Greedy-IO and OTS-DRL-B
obtain the lowest ranking, with an average score of 1.4/7 and
3.4/7. Then, see that notebooks generated from EDA traces,
obtain an average rating of 4.3/7. The substantial difference
in scores w.r.t. the gold-standard notebooks stems from the
fact that the EDA-traces notebooks, although performed for
the same EDA goal, were not generated for demonstrative
purposes, and meant to be watched by other users. In com-
parison, the notebooks of ATENA obtained an average
score of 5.4/7, i.e., more than a full-grade better than
the EDA-traces notebooks. This happens since ATENA is
specifically geared to generate notebooks that are coherent
and easy to follow (using its compound reward signal).

Comparison of Gained insights. For each of the cyber-security
datasets, we measured how many relevant insights were dis-
covered by our users, just from viewing an EDA notebook,
out of the total number of insights as described in the solu-
tion. (we disregarded “irrelevant” user insights that did not
appear on the lists).

Figure 4b shows the (average) percentage of insights gath-
ered by users from examining the notebooks generated by
ATENA and the baselines as described above.

We can see that ATENA, in correspondence with the user
ratings in all criteria, outperforms the alternative approaches.
See that just by passively examining the notebooks gen-
erated by ATENA, users successfully derived an aver-
age of 46% of the datasets’ relevant insights. However,
see that there is still room for improvement, as the gold-
standard notebooks, created by experts, allow users to gain
a higher number of insights.

The variance in the number of gathered insights, observed
for all baselines (including the gold-standard), stems from
the challenges’ varying difficulty level.

As a representative example, consider dataset “Cyber #1”
which contains data regarding a complex network scan is-
sued by an attacker (as listed in Table 1). Out of a total of 9
insights (such as the attacker IP address, victim’s exposed ad-
dresses, network protocols used, etc.), most users discovered

more than 5 insights by viewing the notebook generated
by ATENA, which helped them to successfully detect the
attacker IP address, the victim organization’s IP range, and
exposed addresses. This is potentially a great starting point
to discover additional details about the attack, e.g., a smaller
scale TCP scan performed by the attacker only on the vic-
tim’s exposed IP addresses.

6.3 Automatic Benchmark
The user study clearly shows that ATENA significantly out-
performs notebooks generated by other means. However,
since user-studies are difficult to reproduce, we next describe
a benchmark for auto-generated EDA notebooks (denoted A-
EDA) that can be easily reproduced in other settings, hereby
facilitating the comparison of future models and approaches.

A-EDA, similarly to benchmarks for other generative mod-
els (e.g., machine-translation [33] and auto-generated image
captions [46]), assess the quality of a notebook based on its
distance from a set of curated, ground-truth notebooks.
As ground-truth we use the gold-standard notebooks de-

scribed above, which obtained close to perfect score in the
human evaluation. For each dataset we used a set of 5 − 7
gold-standard notebooks.We then used several metrics to
evaluate the distance between the generated notebooks and
the gold-standard ones, with different degrees of flexibility:
(1) Precision. This measure compares consider the EDA
notebooks as sets of distinct views (ignoring their order),
counting a “hit” if a view occurs in one of the gold-standard
notebooks and a “miss” otherwise. It is calculated by hits

hits+misses .
(2) T-BLEU-1, (3) T-BLEU-2, (4) T-BLEU-3. These mea-
sures are based on the well known BLEU [33] score, used for
comparing sentences in image captions and machine trans-
lations [7, 15] (in our case the “sentence” is the sequence of
views in the notebook). T-BLEU is more strict than Preci-
sion, since it also considers the prevalence of each view in
the gold-standard set, as well as their order, by comparing
subsequences of size n (rather than single views). We use n
between 1 to 3 for T-BLEU-1 through T-BLEU-3.
(5) EDA-Sim. Last, we use a dedicated distance metric de-
vised in [29] to estimate the similarity for exploratory ses-
sions (the source code is available in [42]). EDA-Sim also
considers the order of views yet allows for a fine-grained



Baseline Precision T-BLEU-1 T-BLEU-2 T-BLEU-3 EDA-Sim
ATN-IO 0.10 0.10 0.05 0.03 0.22

Greedy-IO 0.12 0.11 0.07 0.04 0.23
OTS-DRL 0.26 0.16 0.12 0.06 0.23
Greedy-CR 0.27 0.21 0.16 0.07 0.23
OTS-DRL-B 0.33 0.24 0.21 0.16 0.27
EDA-Traces 0.45 0.30 0.27 0.22 0.40
ATENA 0.45 0.45 0.41 0.31 0.46

Table 2: Overall A-EDA Benchmark Results
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Figure 5: Learning Convergence Comparison

comparison of their content (i.e., almost identical views are
considered “misses” in the above measures, yet EDA-Sim will
evaluate them as highly similar, as described in [29]). For the
final EDA-Sim score, we compare the generated notebook to
each of the Gold-Standard notebooks and take the maximal
EDA-Sim score obtained.

Results. Table 2 depicts the scores of all baselines, averaged
across all 8 experimental datasets listed in Table 1. First, see
that A-EDA scores closely correlate with the overall scores of
the human evaluation and the gathered-insights comparison:
All alternative auto-generation approaches obtain the low-
est scores, outperformed by EDA-traces notebooks, which
are then surpassed by ATENA w.r.t. each of the evaluation
measures described above.

Next, examining the scores of all alternative auto-generation
baselines, we can derive the following conclusions:
(1) Interestingness-Only baselines, which ignores the co-
herency and diversity of the EDA operations, obtain the
lowest scores – whether using a simple greedy optimiza-
tion (Greedy-IO) or when using DRL (ATN-IO). This means
that generating useful EDAnotebooks requires amore
elaborate reward signal than just the data-driven in-
terestingness score.
(2) While, indeed, Baselines 4A, 4B and 4C (which optimize
on our compound reward signal) obtain better scores than the
Interestingness-Only baselines – they are still significantly
outperformed by ATENA. The off-the-shelf DRL architec-
ture (OTS-DRL) is on par with the greedy-based optimization
(Greedy-CR), but both are surpassed by OTS-DRL-B which
uses our frequency-based binning solution. Yet all alterna-
tive optimizations are significantly outperformed by ATENA.
Hence, DRL, and particularly the novel architecture
we use in ATENA, are highly effective for generating
useful EDA notebooks. We also derive an analogous con-
clusion from the learning-convergence perspective, as ex-
plained in Section 6.4 below.

6.4 Learning Convergence Comparison
Last, we compare the effectiveness of our solution with the
performance obtained by alternative optimization architec-
tures (baselines 4A-4C).
Figure 5 shows the mean episode reward (i.e., the cumu-

lative, non-normalized reward) as a factor of the number of

training steps obtained by ATENA, for two representative
datasets (similar trends occur in the rest). First, as Greedy-
CR uses a non-learning greedy policy, it is indifferent to the
number of training steps, therefore depicted as the dashed
horizontal line in each graph. See that Greedy-CR obtains a
much lower reward than ATENA. Baseline OTS-DRL, which
corresponds to standard DRL architectures with a softmax
output layer, demonstrates inferior learning effectiveness,
as it requires more than a million training steps to stabilize
on a suboptimal reward (close to 0). The effectiveness of
OTS-DRL-B, which uses the same architecture as OTS-DRL,
refined with our frequency-based binning solution, is higher
than of OTS-DRL, as it is able to converge, after more than
a million steps (6-11 hours on our server), to a higher re-
ward. Nevertheless, the full ATENA outperforms all three
baselines – it converges about 2-3X faster, to a signif-
icantly higher mean reward. Furthermore, see that the
convergence of ATENA is stable, i.e., reaching a high reward
regardless of the explored dataset, while the performance of
the other baselines varies.

7 CONCLUSION
We presented a system for auto-generating EDA notebooks.
Our solution is based on a dedicated MDP model and a DRL
architecture, used for generating notebooks that not only
contain a set of interesting views, but, importantly [23], de-
rive views that show diverse aspects of the dataset in a co-
herent narrative.Our experiments demonstrate the quality
of the generated notebooks, and that users actually derive
insights only from examining them.
Nevertheless, As the first of its kind, ATENA has several

limitations that are left to be handled in future work, such
as expanding its supported set of exploratory operations,
facilitating the production of personalized sessions, and gen-
eralizing its learning process across datasets. We refer the
reader to [6] for a discussion on what other components are
required to produce customizable and more refined EDA ses-
sions, in pursuit of a longer-run goal of reducing the manual
effort in EDA, making it fully “hands-free”.
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