
SemSim: Combining Structural and Semantic
Similarity (Full Version)

Tova Milo‡, Amit Somech‡ and Brit Youngmann‡
‡Tel Aviv University

Tel Aviv, Israel
{milo,amitsome,brit}@post.tau.ac.il

Abstract

With the ubiquity of information networks and their wide range of applica-
tions, measuring vertex similarity in networks draws extensive interest in various
research fields, e.g., social networks and recommender systems. While previous
work has mainly focused on two distinct classes of similarity measures, structural
and semantic, we argue that, in practice, a tight integration of the two notions al-
lows to derive a more accurate measure, significantly superior to a simple weighted
average of the two. In this paper, we present SemSim, a highly scalable similarity
measure interweaving two well studied measures, SimRank, a popular structural
measure, and Lin, a common semantic measure. SemSim has an efficient prob-
abilistic framework, anchored in a careful modification of the underlying random
surfer-pair model of SimRank. Our model considers all available data, i.e., seman-
tics and edge weights, while preserving the properties necessary for the (refined)
application of all state-of-the-art optimizations previously developed for SimRank.
Our theoretical and experimental results demonstrate the effectiveness of our mea-
sure, compared to previously proposed measures, as well as its efficient and scal-
able computation.

1 Introduction
Estimating vertex similarity in information networks is a cornerstone of many appli-
cations. Prominent examples include social networks that identify users who share
similar properties; recommender systems that compute their recommendations based
on the similarity between users/items; estimating peer similarity in peer to peer net-
works and etc. Similarity search is also a fundamental component in many network
analysis algorithms in such contexts, such as link prediction, clustering and so on.

Previous work has mainly focused on two separate classes of similarity measures
in information networks: structural similarity and semantic similarity. Structural mea-
sures (e.g. [17, 35, 40, 42]), consider solely the structure of the network. More con-
cretely, quantifying structural similarity of two vertices hinges on the evaluation of
the compound similarity of their neighbors. Contrarily, semantic and relatedness mea-
sures (e.g. [22, 23, 25, 29]), quantify similarity based on similar meaning or semantic
content, which play no role in structural-based computations (see Section 6).

The key observation underlying our work is that in numerous practical scenarios,
both structural and semantic information is required to properly determine similarity.
A naive approach would be to simply consider a weighted average of two measures.

1

However, we demonstrate that a carefully chosen tighter weaving of the two concepts,
leads to superior similarity analysis.

Consider the following illustrative example. In the rectangle in Figure 1 we see
a small portion of a bibliographic database (the rest of the figure is irrelevant at this
point). The labeled nodes describe authors and terms (fields of interests). There are two
types of directed edges - one connects research fields to the authors interested in them,
while the other indicates collaborations between authors. Weights on the edges reflect
the strength of the relations, e.g., the weight on the edge connecting Bob to Alice
indicates the fraction of their collaborations out of all Bob’s collaborations (for the sake
of conciseness, some edge labels and weights were omitted). The semantic information
(in particular, the concepts’ taxonomy) available about the terms, is depicted by the
edges and nodes outside the rectangle. We wish to determine which one of Alice and
Carol is more similar to Bob.

The data indicates Bob collaborated with both Alice and Carol equally and has in
common two fields of interest with each. However, as Databases and Information
management are more common fields of interest than Crowdsourcing (we explain
how this is quantified in the sequel), shared by Alice and Bob, it follows from stan-
dard argumentation of information theory that an estimation of similarity increases
more drastically when indicated by a less frequent event, thus we would expect their
similarity score to be greater. Note, however, that considering the structure of the
network alone (even if we add the taxonomy edges outside the rectangle), Alice and
Carol seem equivalent similarity-wise. Indeed, common structural similarity measures
[17, 35, 40] would yield the exact same score for both. Contrarily, traditional semantic
measures [23, 29], in particular, ontology-based measures, base the similarity assess-
ment relying on the exploitation of taxonomical features, thus, consider only the nodes
connected by the black taxonomy edges. Thereby, they provide no semantic informa-
tion for the author nodes. Indeed, all such similarity measures that we examined (see
Section 5.1) yield for both pairs identical scores. In contrast, our new measure, Sem-
Sim, that tightly weaves together structure and semantics, allows for a refined similarity
analysis that distinguishes between the two pairs. (For further details see Example 2.6)

Our work addresses two challenges. The first, as illustrated above, is to design a
similarity measure that accommodates both structural and semantic information. The
second is performance. Modern information networks are often very large and similar-
ity must be computed efficiently.

SemSim To capture both semantic and structural knowledge, we use a generic sim-
ple data model that aligns the information network (e.g. the graph in the rectangle in
Figure 1) and the semantic taxonomial knowledge (the graph outside the rectangle)
into a single heterogeneous information network (HIN) [22]. Our proposed similarity
measure, SemSim, interweaves two well studied measures, Simrank [17], a common
structural similarity measure, and Lin [23], a common semantic measure. SimRank is
a simple and powerful structural measure, based on a solid theoretical “random surfer"
model. It follows a simple and intuitive assumption: “two objects are similar if they
are related to similar objects". Lin is a generic information-content based semantic
similarity measure, that is defined over concept taxonomies and can be computed effi-
ciently. Intuitively, SemSim refines SimRank by weighting, at each step of the compu-
tation, the neighbors structural similarity with their semantic similarity scores. (Formal
Definition is given in Section 2).

2

Efficiency Interestingly, not only is SemSim shown to yield superior similarity anal-
ysis on multiple real-life examples, it has performance benefits as well. We show
through a careful analysis of the mathematical properties of our refined measure that
all optimizations previously developed for SimRank and Lin transfer, after appropriate
delicate adaptation, to SemSim. Moreover, we demonstrate that the interplay between
semantic and structural similarity allows to further speed up the computation. In par-
ticular, we show that the semantic similarity of two nodes provides an upper bound
on their overall similarity and hence provides natural means to prune “un-promising"
vertex-pairs from consideration. As a simple example, consider again Figure 1. Us-
ing the semantic similarity bound, it is clear that when searching for highly similar
concepts, vertices from semantically unrelated categories are bad candidates (e.g., it
is meaningless to compare between Alice and DM), yet, even concepts that belong to
semantically related categories (e.g., IM and CS) but are far semantically (i.e., their se-
mantic similarity score is relatively low), would yields low SemSim scores, therefore,
their intermediate computation may be avoided. We further discuss this in Section 3

We chose SimRank as the basic building block of our work due to its extensive
body of available optimizations. Many of these works are based on the connection be-
tween SimRank and the “random surfer-pairs" model [12, 18, 31, 37], that is, SimRank
can be computed using random walks. A main challenge addressed in our work, was
to carefully modify the underlying random walk model to take into account all avail-
able data, i.e., semantics and edge weights, while preserving the necessary properties
that enable such optimizations. We present an adjusted random surfer model, aware to
both semantics and weights, that serves as the foundation for SemSim optimized com-
putation. Building on this model, we provide an optimized, designated to our setting,
framework, to efficiently compute approximated SemSim scores and explain how Sim-
Rank random-walks style optimization can be employed in SemSim as well. We show
that although our model allows to account for more information, thereby yielding a
more profound similarity measure, this comes with no significant cost in terms of time
and space needed for computing SemSim, compared to the less refined competitors.
This is also demonstrated by our experiments.

Interestingly, while some previous work did attempt to consider both semantic and
structural knowledge [14, 15, 22, 13], the focus was constrained to specific contexts
without addressing the problem in the general case, i.e., quantifying the similarity be-
tween vertices in an HIN. Furthermore, the scalability issue was not addressed, that
is neither work provided a method for quickly determine the similarity in very large
networks. We further discuss this in Section 6.

Our technical contributions (and correspondingly, the paper organization) may be
summarized as follows:

1. We use an HIN data model to align structural and semantic information. Based
on this simple data model we define SemSim, a refined, generic measure that
interweaves structural and semantics (Section 2).

2. We analyze the properties of SemSim showing how the delicate interaction be-
tween semantic and structure may be used to speed up computation by pruning
irrelevant vertex-pairs (Section 3).

3. We further present an efficient and highly scalable probabilistic framework, ex-
tending the analog framework of SimRank, for approximated SemSim compu-
tation. The development requires a careful mathematical analysis of SemSim
properties and the interaction between its structural and semantic components
(Section 4).

3

Figure 1: Example HIN, aligning structural relationships (red edges) with semantics
taxonomy (black edges).

4. Finally, we conduct an extensive experimental study over real data, demonstrat-
ing the effectiveness of SemSim, compared to previously proposed measures, as
well as its efficient scalable computation (Section 5).

Related work and conclusions are presented in Sections 6 and 7, resp.

2 Preliminaries
We start with a short background on commonly used structural and semantic similarity
measures and their corresponding data models. Then, we explain the combined data
model used in our setting and its corresponding novel similarity measure, SemSim.

2.1 Structural Similarity
We start by formally defining the graph model, then provide a short background on
SimRank [17].

Following previous works [32] we refer to the objects graph as an Heterogeneous
Information Network.

Definition 2.1. Heterogeneous Information Network. A Heterogeneous Information
Network (HIN) is a directed (weighted) graph G = (V, E,Φ,Ψ,W), where: V is a set of
vertices; E is a set of edges; Φ : V → L is a vertex labeling function; Ψ : E → R is an
edge labeling function and W : E → R+ is an edge weight function.

In this paper we consider directed graphs, but all the results can be adapted to undi-
rected graph model with minor modifications. For a vertex v, we denote by I(v),O(v)
the set of in and out neighbors of v, respectively. An individual in-neighbor is denoted
as Ii(v), for 1 ≤ i ≤ |I(v)|, if I(v) , ∅ and Oi(v) the ith out-neighbor, respectively.

SimRank is defined using the following recursive definition, that measures how
similar two nodes are by considering the similarity of their in-neighbors.

4

Definition 2.2. (SimRank) Given two vertices a and b in V, their SimRank score is
defined as follows:

simrank(a, b) =
1, a = b

c
|I(a)|·|I(b)|

|I(a)|∑
i

|I(b)|∑
j

simrank(Ii(a), I j(b)), a , b (1)

where c is a decay factor in [0, 1]. If I(a) = ∅ or I(b) = ∅ and a , b then
simrank(a, b) = 0.

A solution to Equation (1) can be reached by iterating to a fixed point. For the kth

iteration, an iterative similarity function Rk(a, b), denotes the similarity score between
a and b on the kth iteration. Initially, R0(a, b) is defined as 0 if a , b and 1 if a = b.
Iteratively, Rk+1(a, b) is computed from Rk(·, ·) as follows:

Rk+1(a, b) =
c

|I(a)| · |I(b)|

|I(a)|∑
i

|I(b)|∑
j

Rk(Ii(a), I j(b))

A weighted variant of SimRank, named SimRank++, that takes into account the
weights of edges, was presented in [4]. While they focused on a different problem
(query rewriting in the context of click graphs), such weighted version is relevant to
our context as well. In our setting, W associates to each edge a real (positive) number
that represents the strength of the relation (as demonstrated in Figure 1).

2.2 Semantic Similarity
Standard notions of semantic similarity consider the concepts taxonomy (or more gen-
erally a partially ordered concept set, represented as nodes of a directed acyclic graph).

A taxonomy is a simple hierarchical arrangement of entities in a graph, which refer
to a parent-child kind of relationship as subclass or is-a relations. The taxonomy edges
form a Rooted DAG where all nodes are reachable from the root. For example, in
Figure 1, the black edges form a taxonomy and the node Thing is the root.

Common semantic similarity measures [29, 23] use the notion of Information con-
tent (IC). Intuitively, the key to the similarity of two concepts is the extent to which
they share information in common, indicated by a highly specific concept that sub-
sumes them both. Following the standard argumentation of information theory, the IC
of a concept c can be quantified as negative the log likelihood, −log(p(c)), where p(c)
is the probability of c to occur. Intuitively, as probability increases, informativeness de-
creases. Previous works [30, 29] suggested tools to build the IC from a given taxonomy
that do not require external resources and bounded in (0, 1].

Resnik [29] suggested to incorporate IC in the similarity measure as follows: two
concepts are more similar if they present a more shared information, and the infor-
mation shared by two is indicated by the IC of the concepts that subsume them in
the taxonomy. A refinement to Resnik’s measure, which we adopt in this work, was
presented by Lin [23], considering also the IC of each of the evaluated concepts. In-
tuitively, the similarity between concepts here measures the ratio between the amount
of information needed to state their commonality and the information needed to fully
describe them.

Definition 2.3. (Lin) Given two concepts, a and b ,in a taxonomy, Lin semantic sim-
ilarity score (denoted as Lin(a, b)) is defined as follows: Lin(a, b) =

2·Res(a,b)
IC(a)+IC(b) , where

5

Res(a, b) = −log(max{p(LCA(a, b))}) = max{IC(LCA(a, b))} and LCA(a, b) is the set
of the lowest common ancestors of a and b

Note that Lin scores are computed using only the taxonomy (that form a rooted
DAG) and a given IC function, thus can be computed efficiently (see Section 2.4 for
further details).

We conclude with an observation regarding semantic similarity in a taxonomy. We
will later use this property when proving the soundness of our new measure (Theorem
2.8).

Observation 2.4. For every two concepts a, b, 0 < Lin(a, b) ≤ 1, assuming the IC of
the top concept in the taxonomy , 0 and the IC function is bounded in (0, 1].

2.3 Combining Structure and Semantics
As described in the introduction, our data model merges the (weighted) HIN with se-
mantic taxonomies of the concepts mentioned in the graph.

In the merged graph, the set of edges is composed of two distinct sets: the tax-
onomy edges and all other edges. To form such a semantic-rich graph, one may use
tools enable entity alignment, such as [28], to align an HIN with public available tax-
onomies, (e.g., the taxonomical parts from [9, 26]), or by using existing partial order
over concepts available within the data itself (see Section 5).

Next, we formally define SemSim, a structural-semantic measure, that integrates
SimRank and Lin, w.r.t the merged graph. Intuitively, we augment SimRank by both
the semantic similarity of nodes as well as the weight on edges between them, to fully
account for all available information.

Definition 2.5. (SemSim) Given two vertices a and b in V, the SemSim similarity
score (denoted as s(a, b)) is defined as follows. If a = b then s(a, b) = 1, else: s(a, b) =

Lin(a, b) · c
NI

|I(a)|∑
i

|I(b)|∑
j

s(Ii(a), I j(b)) ·W(Ii(a), a) ·W(I j(b), b)

where NI =
|I(a)|∑

i

|I(b)|∑
j

W(Ii(a), a)·W(I j(b), b), and c is the decay factor ∈ [0, 1]. If I(a = ∅)

or I(b) = ∅ then s(a, b) = 0.

Following SimRank iterative solution, a solution to Equation (2) can be reached by
iterating to a fixed point.

R0(a, b) =

{
0, a , b
1, a = b (2)

Rk+1(a, b) = (3)

Lin(a, b) · c
NI

|I(a)|∑
i

|I(b)|∑
j

Rk(Ii(a), I j(b)) ·W(Ii(a), a) ·W(I j(b), b)

We can now complete the picture for the example in the introduction.

Example 2.6. Consider again Figure 1, and assume all missing edge weights were
set to 1. Recall that we wish to determine which one of Alice and Carol is more
similar to Bob. If we use only structural similarity, as determined by SimRank, we

6

get simrank(Alice,Bob) = simrank(Bob,Carol)≈ 0.21. (For space constraints we
omit here the computation details, which can be found in the Appendix. Similarly, if we
use only semantics similarity, as determined by Lin, using the relevant IC values (com-
puted in a standard manner as described in Section 5), we obtain Lin(Alice,Bob)
= Lin(Bob,Carol)= 0.9.

When run on the same data, the computation of Lin scores for the fields-of-interest
shared by the authors yields

Lin(Crowdsourcing,DB)= 0.9 and Lin(DB,IM)= 0.18.
Consequently, using SemSim with the same parameters, we obtain: s(Alice,Bob)=
0.133, while s(Bob,Carol)= 0.128 (the full computation is provided in the full paper)
, matching our intuition from the Introduction that Alice’s similarity to Bob is greater
than Carol’s.

The following observation states the relation between a weighted version of Sim-
Rank (as suggested in [4], denoted as SimRank++), SimRank, and our new measure.

Observation 2.7. If the hierarchical taxonomy is flat, i.e, the semantic similarity func-
tion is the constant function 1, then SemSim is equivalent to SimRank++. If the weight
function W is the constant function 1 as well, then SemSim is equivalent to SimRank.

To conclude, note that our definition of SemSim considers all neighbor-pairs. An
alternative could be to take edge labels into considerations and restrict attention to
neighbor-pairs that are pointed by edges having the same label. While such formula-
tion requires only minimal (technical) changes, our experiments showed it to be essen-
tially equivalent, in terms of both accuracy and running times, and we thus omit this
restriction.

2.4 Basic properties of SemSim

We next show that SemSim have some desired properties and use them to present a
basic algorithm for computing SemSim. This algorithm serves as baseline on which
we will improve in the following sections.

Theorem 2.8. The iterative SemSim equations (Equations (3) and (4)) have the fol-
lowing properties:
1.(Symmetry) ∀a, b ∈ VRk(a, b) = Rk(b, a)
2.(Maximum self similarity) ∀a ∈ V : Rk(a, a) = 1
3.(Monotonically) 0 ≤ Rk(a, b) ≤ Rk+1(a, b) ≤ 1
4.(Existence) The solution to the iterative equations always exists and converges to a
fixed point, which is the theoretical solution to the recursive equations.
5.(Uniqueness) the solution to the iterative equations is unique when c , 1.

The proof follows lines similar to that of SimRank in [17], and thus we defer it to
the Appendix. We can also show (again, following similar proof for SimRank [43])
that not only the scores are monotone (i.e, Rk(a, b) ≤ Rk+1(a, b)), their differences in
consecutive iterations is bounded.

Lemma 2.9. 0 ≤ Rk+1(a, b) − Rk(a, b) ≤ Lin(a, b) · ck+1

This suggests that the iterative solution for SemSim converges as fast as SimRank,
and possibly faster (due to the additional semantic factor). See experimental results.

Another useful property is that the semantic similarity of two vertices provides a
natural upper bound on their SemSim score. This property is highly useful, since it
can be used to prune un-promising node-pairs.

7

Observation 2.10. For every two vertices a, b ∈ G s.t a , b: s(a, b) < Lin(a, b).

Baseline algorithm Note that Theorem 2.8 provides a simple algorithm for comput-
ing SemSim, that computes its iterative form to a fixed point (or up to a given precision
guarantee). Since the semantic is used as a black-box, we start by recalling from the
literature how the semantic similarity is computed, then consider the full computation.

The semantic similarity of two nodes is computed using only the hierarchical tax-
onomy edges in G (that form a rooted DAG) and a given IC function. To compute the
semantic similarity of two concept, one should find their LCA in the taxonomy. Using
Tarjan’s off-line LCA algorithm for the general DAG case, which pre-processes a tax-
onomy in linear time, one obtains constant-time LCA queries [16]. Consequently, after
O(|V |) pre-processing time, computing Lin(·, ·) can be done in constant time.

Given this, we can now analyze the complexity of the iterative procedure for com-
puting SemSim. Let n = |V |, c the decay factor and k be the number of iterations
executed. The space complexity of the algorithm is O(n2). Let d be the average in-
degree over all nodes of G. Following similar analysis for SimRank, it is easy to show
that time complexity of the algorithm is O(k·d2 ·n2), and the worst case time complexity
for a given k is O(n4). In [24], the authors improved the time complexity of SimRank
from to O(n3), using a memorization technique. The same mechanism can be applied
on SemSim to obtain O(n3) time complexity as well. Finally, another straightforward
acceleration is possible: to avoid calculate the same Lin scores more than once, one
may maintain a cache mechanism, that stores previous calculations. We will show in
Section 5.3 that such caching may accelerate the computation time considerably.

3 Random Surfer-Pairs Model
The baseline algorithm provided in the previous section has two main disadvantages:
(i) it computes all pair-wise scores, even if one interested only in a single-pair, and
(ii) the complexity is prohibitive for large graphs. To address these issues we provide
an alternative interpretation to SemSim, then, explain how SemSim can be computed
efficiently.

Jeh and Widom [17] have established a connection to a "random surfer-pairs" model
that allows to comput SimRank using random walks. We next show that with appro-
priate adjustments, an analogous correspondence can be established for SemSim. The
key challenge is to incorporate semantic similarity into the random walks. We will
show that SemSim measures how soon two random surfers are expected to meet, if
they start in two nodes and randomly walk the graph backwards, while being aware to
both edge weights and semantics. We start by defining semantic-aware random walks,
then explain how SemSim can be computed using such walks.

3.1 Semantic-Aware Random Walk
To define semantic-aware random walk formally, following [17], we use the definition
of a node-pair graph G2, in which each node represents an ordered pair of nodes.
An edge ((a, b), (c, d)) ∈ G2 iff, (a, c), (b, d) ∈ G. We extend the definition with an
assignment of weights: the weight of an edge e = ((a, b), (c, d)) is: W(e) = W(a, c) ·
W(b, d).

Let us assume that all edges in G have been reversed, so following an edge is
equivalent to moving one step backwards in the original graph. For example, Figures

8

2a and 2b display a sample graph G and all out-edges from node the (A,B) (after
reversed). We call a node (u, v) ∈ V2 a singleton node if it represent the same node
from V , e.g., the node (Author,Author) in Figure 2b.

In SimRank, the random surfer chooses the next neighbor uniformly, out of all
out-neighbors of the current state. In our case, the surfer must account both weights
and semantics. Thus, the probability a surfer (traveling G2) in current node (a, b) would
move next to it out-neighbor (c, d) is defined as: P[(a, b)→ (c, d)] := W((a,b),(c,d))

|O((a,b))|∑
k=1

W((a,b),Ok(a,b))

To account the semantics as well, we multiply the probability with the semantic score
of the current node, i.e., Lin(a, b). A path in G2 represents a pair of paths in G. Let
t = 〈w1, ..wk〉 be a path in G2, where l(t) = |t|, in this case l(t) = k − 1, has the

probability P[t] of traveling within it, where P[t] :=
k−1∏
i=1

P[wi → wi+1], or 1 if l(t) = 0.

To derive the path’s weight, we multiply each step with its corresponding Lin score,

that is, W[t] :=
k−1∏
i=1

P[wi → wi+1] · Lin(wi)

We next explain the connection between semantic-aware walks over G2 and Sem-
Sim scores, based on the relation between random-walks and SimRank. Intuitively, we
would prove that the SemSim score of a node (a, b) ∈ V2, can be computed using all
paths from (a, b) leading to a singleton node in G2. Let t : (a, b) (x, x) be the set
of paths in G2 form (a, b) to all singleton nodes, namely, t iterates over all paths from
(a, b) to some node (x, x). By definition, (x, x) is the first and only singleton node in
t (after the first meeting, the two surfers halt). Let: s′(a, b) =

∑
t:(a,b) (x,x) W[t] · cl(t)

Theorem 3.1 provides an alternative way to compute the SemSim score for a given
pair of nodes, using semantic-aware walks over G2.

Theorem 3.1. s′(a, b) = s(a, b)

Proof. If a = b then s′(a, b) = s(a, b) = 1. Else, if there is no path in G2 from (a, b)
to any singleton node, then s′(a, b) = 0, and it is easy to see that s(a, b) = 0 as well.
Otherwise, consider a path t from (a, b) to some singleton node, in which the first step
is the out-neighbor Oi((a, b)). Denote t′ the path from Oi((a, b)) to the singleton node.
Let T be the bijection that takes each t′ to the corresponding t, by appending an edge
at the beginning, i.e., if l(t′) = k, then l(t) = l(T (t′)) = k + 1.

The weight of the path t is W[t] = P[(a, b) → Oi((a, b))] · Lin((a, b),Oi((a, b))) ·
W[t′]. We can now split the sum in s′(a, b) according to the first step of t to write:

s′(a, b) =

|O((a,b))|∑
j=1

∑
t′:Oi((a,b)) (x,x)

W[T (t′)] · cl(T (t′)) =

|O((a,b))|∑
j=1

∑
t′:Oi((a,b)) (x,x)

P[(a, b)→ O j((a, b))] · Lin((a, b),Oi((a, b))) ·W[t′] · cl(t′)+1 =

Lin(a, b) · c
|O(a,b)|∑

i=1
W((a, b),Oi(a, b))

|O((a,b))|∑
i=1

∑
t′:Oi((a,b)) (x,x)

W[t′] ·W((a, b),Oi(a, b)) · cl(t′) =

Lin(a, b) · c
|O(a)|∑

i

|O(b)|∑
j

W(a,Oi(a)) ·W(b,O j(b))

|O(a)|∑
i=1

|O(b)|∑
j=1

s′(Oi(a),O j(b))

9

(a) Sample graph G

(b) All paths from (A,B) in G2. (c) All paths from (A,B) in G2
θ .

Figure 2: Example of the reversed pair-node graphs G2 and G2
θ , according to G.

The last equation is identical to SemSim equation (Equation 2), where in-edges swapped
for out-edges. Since the solution to SemSim is unique (as proved in Theorem 2.8),
s′(a, b) = s(a, b) ∀a, b ∈ V . �

Using our refined model, one may easily compute the similarity scores on G2. How-
ever, for large graphs the size of G2 may be too large. We next explain how semantic
information may be employed to overcome this problem. First, we will show that it can
be effectively used to reduce the size of the considered graph. Second, we will show
that the semantic-aware walks may in fact be also performed directly on G. The latter
result follows an analogous observation for SimRank [19, 12], but a careful refinement
is required to incorporate weights and semantics.

3.2 Reducing the size of G2

In many practical applications one is interested only by node-pairs whose similarity
scores are above a certain minimal threshold. Semantic similarity provides an effi-
cient tool to prune G2 in such situations. Intuitively, Observation 2.10, provides a
semantic-based upper bound on the similarity scores, which can be used to avoid mate-
rializing un-promising vertex-pairs. We next define a reduced version of G2 on which
the computation of SemSim scores (for node-pairs with similarity higher than a given
threshold) yields the same result as that computed via the full graph G2.

Given a threshold θ, we next define G2
θ , a vertex-pair graph which includes only

pairs s.t their Lin score are > θ. Intuitively, each path from G2 that is not included in
G2
θ is replaced by a corresponding edge, whose weight reflects the weight of the omitted

path. If such an edge already appeared in G2, the weight is added to the original edge
weight. Moreover, the weight of omitted paths form G2 are weigh by the decay factor
power their length, to ensure the similarity scores would not be effected by paths that
got shorter in G2

θ . The graph G2
θ includes a new vertex d, that has only in-neighbors and

10

used as a “drain", i.e., it ensures that the probability of choosing a neighbor remains
the same.

Definition 3.2. (G2
θ .) Given a node-pairs graph G2 and a threshold 0 < θ < 1, G2

θ =

(Vθ ∪ {d}, Eθ,Wθ), where: Vθ ⊆ V2 is a set of vertices and d is a new vertex, Eθ is the
edges set and Wθ is a weight function, defined as follows.
• A node (a, b) ∈ Vθ iff Lin(a, b) > θ.
• An edge e = ((a, b), (c, d)) ∈ Eθ iff at least one of the following conditions holds.

(1)They are adjacent in G2 (2)There is a path 〈(a, b),w1, .,wk, (c, d)〉 ∈ G2 and
w1, .,wk < Vθ.
• The weight of an edge e = (u, v) defined as Wθ(e) = W1(e) + W2(e) where:

W1(e) = W(e) if e ∈ G2, u, v ∈ Vθ and 0 otherwise.
W2(e) =

∑
t:u v,t∈G2 P[t] · cl(t)−1 where t = 〈u,w1, ..wk, v〉 and w1, ..wk < Vθ

• For the new vertex d, edges and weights are defined as follows. ∀u ∈ Vθ,
(u, d) ∈ Eθ if

∑|O(u)|
j=1 W(u,O j(u)) ,

∑|O(u)|
j=1 Wθ(u,O j(u)) and Wθ(u, d) is the dif-

ference between the sums.

In the last inequality, we can prove that the left hand side is always grater or equal
than the right, therefore the weights are always positive.

Additional pruning of edges can be done by the removal of all out-edges from sin-
gleton nodes. Since only paths that reaches exactly once to a singleton node may effect
the similarity score, such edges can be omitted (e.g., the edge between (Author,Author))
and (Thing,Thing) has been omitted in Figure 2c). The following example illustrates
a part from the graph G2 and its corresponding graph G2

θ .

Example 3.3. Consider Figures 2b and 2c. Assume c = 0.8, Lin (Author,DBMS)
= Lin (Author, IS) = 0.2 < θ, and Lin scores of all other nodes > theta . Next, the
in-neighbor (A,B) of (Author,DBMS) is connected to it out-neighbor, (Thing,CS),
with the weight: 0.2·0.2

0.99 ·
0.25
0.25 · 0.8 ≈ 0.032. Similarly, (A,B), is connected again to

(Thing,CS) with additional weight of 0.048, therefore, the total sum to 0.08. Since
the sum of all out-edges weights from (A,B) has changed, additional edge is added to
the drain, with weight that reflects this difference (in this case 0.99 − 0.57 = 0.42).

The similarity score over G2
θ , denoted as sθ(·, ·), is defined as the result of the ran-

dom surfing computation on the reduced graph. Namely, if (a, b) < Vθ then sθ(a, b) = 0,
else sθ(a, b) =

∑
t:(a,b) (x,x) W[t] · cl(t), where t is a path in G2

θ . Theorem 3.4 provides an
alternative way to compute SemSim scores, using semantic-aware random walks over
G2
θ . For lack of space, we only provide proof sketch.

Theorem 3.4. ∀a, b ∈ Vθ : sθ(a, b) = s(a, b)

Proof. (sketch.) First note that all singleton nodes are in G2
θ . Furthermore, every path

t : (a, b) (x, x) in G2, t is either a path in G2
θ as well, or t is not a path in G2

θ , that is, at
least one of its nodes not in Vθ. By definition of G2

θ , each weight of omitted edge from
t, is added to a new edge in G2

θ , or added to the weight of an existing one. That is, each
path from G2 that is not in G2

θ , is either merged with existing path (that its weight is the
sum of all merged paths) or got shorter in G2

θ (i.e, part of its edges where omitted), yet,
its weight remained the same. Formally, one could map all paths t : (a, b) (x, x) in
G2 to their corresponding (perhaps smaller) set of paths in G2

θ , where if two or more
paths are mapped to a single path in G2

θ , its weight reflects the sum of all merged paths.
The weight of a path from a node to any singleton node in G2

θ , is consist with the
one in G2, because of the new vertex d. Importantly, by the definition of G2

θ , each edge

11

represent a path from G2, reflects the entire path weight, multiply by the decay factor
power its length. Therefore, since each path that contribute to the similarity score of
(a, b) in G2 is represented in G2

θ as well, computing SemSim, using semantic-aware
walks over G2, is equivalent to the computation over G2

θ , for all nodes (a, b) ∈ Vθ. �

To avoid materializing G2 when obstructing G2
θ , it can be directly constructed from

G. For space constraints we only sketch the procedure. Intuitively, this is done by
replacing every path consisting entirely of unwanted pair-vertices, except from the first
and last vertices, by an edge. Then, adding edges from every vertex to the drain if
needed, while not adding out-edges from singleton nodes. To answer quickly if such
path exists, one can use as a pre-processing phase graph reachabilities methods such as
[8], or alternatively, iterative deepening depth-first search, in case not many pair-nodes
admitting the threshold.

3.3 Computing SemSim directly on G
The reduced graph G2

θ has two key advantages (i) its size is smaller than that of G2 and
may be tuned by choosing the threshold θ and (2) computing SemSim over G2

θ requires
exploring fewer and shorter paths, hence is more efficient. However, in some cases,
especially when considering very large graphs, even our compact representation might
still be excessively large. In such cases, an alternative approach that simulates two
random surfers directly over G may be used. This approach was originally proposed
for SimRank, but some careful adjustments are required in our settings.

Given a node w1 ∈ V , a reverse random walk from w1 is a sequence of nodes
t = 〈w1, ..,wk〉, s.t wi+1 is selected uniformly at random from the in-neighbors of wi.
Suppose that we have two reverse random walks t1 and t2 from two nodes u and v,
respectively, and they first meet at the τ-th step, i.e., the τ-th steps of t1 and t2 are
identical, but for any l < τ, the l-th steps are different (if the two walks do not meet,
τ → ∞). Jeh and Widom [17] established the following connection: simrank(u, v) =

E[cτ]. As we later explain, this is the key idea for many SimRank optimizations.

Adjustments required for SemSim In SemSim case, rather than uniformly choos-
ing the next step, the random surfer must be aware of both the semantics and weights.
Therefore, we cannot just use the first meeting point of two random walks - the weight
of each semantic-aware walk need to be consider as well. That is, given two re-
verse random walks t1 and t2 that start from two nodes u and v, respectively, and
they first meet at the τ-th step, we can compute the weight of this semantic-aware
walk as described in Section 3.1. Thus, given two random walks t1 = 〈u1, .., uk〉 and
t2 = 〈v1, .., vk〉 of length k − 1 we denote t, the coupled random walk of t1 and t2,
where t = 〈(u1, v1), .., (uk, vk)〉 (following [12]). Denote τ(t) the prefix of t until the first
meeting point (inclusive), or t itself in case there is no such point. In addition, denote:
s∗(u, v) =

∑
t:(u,v) (x,y) W[τ(t)] · cl(τ(t)), where t is a coupled random walk and l(τ(t)) is

the length of the prefix τ(t). Since only walks who indeed meet increases the sum, we
get: s∗(u, v) =

∑
t:(u,v) (x,y) W[τ(t)] · cl(τ(t)) =

∑
t:(u,v) (x,x) W[τ(t)] · cl(τ(t)).

The main difference when considering the coupled walks directly on G, as appose
to G2, is that the prefixes must be distinct, i.e., even if two coupled walks are different,
yet their prefixes until the first meeting point are identical, we want to consider this
prefix exactly once. Thereby, s∗(u, v) < [0, 1], because if we consider the same prefix
more than once, we may end with a score larger than 1, therefore, an adjustment is
required. Formally, denote: T = {τ(t) : (u, v) (x, y)} i.e., T is the set of all prefixes

12

of coupled walks that first meet in some singleton node. According to Theorem 3.1 we
get:
∑

t∈T,t:(u,v) (x,x) W[t] · cl(t) = s(u, v)

4 Approximated SemSim

In the previous section we discussed an alternative interpretation of SemSim, based
on semantic-aware walks. This technique provides in particular means to compute
single-pair SemSim queries, without computing all pair-wise scores. However, for
large graphs it may still be expensive, since one considers all paths to all singleton
nodes, even if such paths are long or numerous. In this section, we revisit a major
approach to efficiently approximate SimRank, using random walks, then explain the
critical adjustments required to make this work for SemSim.

The Monte-Carlo approximation framework utilizes the concept of reverse random
walks and the fact that SimRank score can simply be approximated by using the av-
erage length of the samples walks [12]. Many of SimRank previous works suggested
optimizations based on this technique [37, 18, 31]. This framework precomputes a set
Wi of reverse random walks from each node vi in G, such that (i) each set has the same
number, nw, of walks, and (ii) each walk in Wi is truncated at step t, i.e., the nodes after
the t-th step are omitted. Then, given two nodes vi and v j, the method estimates their
SimRank score as ˆsimrank(vi, v j) = 1

nw

∑nw
l=1 cτl where τl denotes the step at which the

two walks first meet, and∞ otherwise.

Applying the Monte-Carlo Method to SemSim For SemSim, a different approach
is required, since the expected value of cτ is not equal to SemSim, contrary to Sim-
Rank. The idea underlying our solution is that instead of taking the average obtained
score of all coupled random walks, we approximate SemSim by summing up all sam-
pled walks. As a result, the error of our approximation depends only on paths we did
not sample. Intuitively, as in SimRank, we first sample random walks from each node.
The main difference is the way we calculate similarity scores using the obtained ran-
dom walks. Given a query, we sum the weight of all distinct prefixes of coupled walks,
and this sum would serve as the query output.

Algorithm 1 provides a framework for Monte-Carlo simulation to compute single-
pair SemSim scores. At pre-processing phase, we generate nw random walks from
each node (lines 1 − 6). Then, when a single-pair query is given, we start by collecting
all distinct prefix coupled random walks that indeed meet (lines 3 − 10). Eventually,
for each such prefix, its weight is computed (as defined in Section 3.1) and multiplied
by the decay factor power it length (lines 11 − 14). We next analyze the complexity of
this algorithm and then establish an upper bound on the expected error.

Complexity The offline phase of the framework requires generating nw random walks
from each node, and pre-processing the taxonomy for LCA queries (as explained in
Section 2.4), therefore, requires O(n · nw · t) time and space. Answering a single-pair
query requires O((nw)3 · t) time, since one must compute the set of all distinct prefixes
(lines 3 − 9), which requires O((nw)3 · t) time (for each prefix we must check if it
is already considered, using amortized analysis for lines 8 − 9), finally, summing all
prefixes weights (lines 10 − 11).

One may reduce the space complexity by adopting techniques previously suggested
for SimRank (for efficient storage of walks). For example, in [31] the authors suggested
to use one-way graphs, a compact data structure, as index.

13

Error The error depends on the following parameters: (1) the decay factor; (2) the
number of sampled walks per node; (3) the length of each walk; (4) the maximum out-
degree and (5) the maximal ratio between two edges weights, outgoing from the same
source. For simplicity, we next provide a theoretical analysis of the expected error in
the worse case. In practice, as we demonstrate in Section 5.3, the error is significantly
smaller.

Denote d the maximum out-degree in G. The maximum number of paths of length
t, from a single node, is bounded by dt. Therefore, the probability of a single random
walk to be selected is 1

dt , assuming the paths are selected uniformly. Thus, the probabil-
ity of a single coupled random walk, coming from a node in G2, to be considered is 1

d2t

Note that the error increases for every miscounted coupled walk, if indeed, it reached
a singleton node in G2, i.e., the two random walks met. Furthermore, the two random-
walks could meet at any index i ∈ [1, t]. We next analyze the error of approximation
according to the meeting index.

First, note that every coupled walk that first met after the tth step would not be
considered, therefore, the total error of all such path is bounded by ct+1, because the
total weight of all such paths is bounded by 1. Next, we analyze the error caused by
a coupled walk of length t, in which its first meeting point is at index i for 1 ≤ i ≤ t.
Denote k the maximum ratio between two edges weight coming from the same source.
For simplicity, assume that the out degree of every node is exactly d, and from every
node there is at least one out-edge with weight k and at least one edge with weight 1.
Those assumptions assume the worse case, therefore would provide an upper bound on
the approximation error. Hence, given a path with a first meeting index i, its maximal
weight is bounded by (k

k+d−1)i, therefore miscounting this path would lead to a maximal
error of: (c·k

k+d−1)i. The probability that such path was not considered is (1− 1
d2i)nw , since

we generate nw random walks from each node and consider all pair-wise coupled walks.
Therefore, the expected error of paths that first meet at index i is: (1 − 1

d2i)nw · (c·k
k+d−1)i.

Consequently, the expected error is bounded by:
t∑

i=1

((1 −
1

d2i)nw · (
c · k

k + d − 1
)i) + ct+1 (4)

Using the Cauchy-Schwarz Inequality1, we get that Expression (4) is bounded by:
t∑

i=1

((1 −
1

d2i)nw ·

t∑
i=1

(
c · k

k + d − 1
)i) + ct+1 (5)

Let δ = c·k
k+d−1 . Note that the left hand sum get its maximum when i = t and the

second is a geometric progression, hence, Expression (5) is bounded by:

t · ((1 −
1

d2i)nw ·
δ · (δt − 1)
δ − 1

+ ct+1 ≤ t · e
−nw
d2t ·

δ · (δt − 1)
δ − 1

+ ct+1

Note, however, that this bound is not tight for the following reasons: (1) the semantic
similarity is not considered. Each path weight consider also the semantic similarity of
its nodes (for simplicity, we bounded the semantics by 1) and (2) in practice, not every
path leads to a singleton node, therefore miscounting it does not increases the error
(recall that we assumed every miscounted path would increase the error). In Section
5.3, we report the approximate theoretical error and the maximal error in practice, on
real datasets.

1We used a simpler and less tight version of the inequality, omitting the square root and power by 2 (all
numbers are necessarily positive), for simplicity.

14

Input : nw=number of walks, t=path length, c=decay factor, G the input graph.

RW = {}
foreach ui ∈ G do

Wi = {}
for j = 1,..nw do

w = reversed random walk of length t starting from ui, Wi = Wi ∪ {w}
RW = RW ∪Wi

Query sim(u, v)
sim = 0, Pu,v = {}
for i,j = 1,..nw do

Let wi, j the coupled walk of the i-th walk from u and the j-th walk from v
Let k be the samllest offset s.t the i-th walk from u and the j-th wlak
from v meet

if such k exists then
Let τ(wi, j) the prefix of wi, j up to offset k
if τ(wi, j) not in Pu,v then

Pu,v = Pu,v ∪ {τ(wi, j)}
foreach p in Pu,v do

Denote p = 〈(u1, v1), ..(uk, vk)〉, s = 1.
for i = 1, ..k − 1 do

s = s · Lin(ui,vi)·W(ui+1,ui)·W(vi+1,vi)
|I(ui)|∑

j=1

|I(vi)|∑
z=1

W(I j(ui),ui)·W(Iz(vi),vi)

sim = sim + s ∗ cl(p)

return sim
Algorithm 1: Monte-Carlo based framework for SemSim.

Remarks We conclude with two remarks. Up to this point, we assumed that the ran-
dom walks were constructed uniformly, i.e., the next step was chosen uniformly out of
all in-neighbors of the current state. In some cases, generating random walks corre-
sponding to the weight function may be preferable, since in this case the probability of
not sampling a “heavy" path is lower. In Section 5.3, we test and report the error using
the two strategies.

Finally, a large portion of SimRank’s approximation-based optimizations can be
refined for SemSim as well, using the adjusted random model and our new evaluation
of approximated similarity scores. For example, in [37], the authors provided new in-
terpretation of SimRank, based on

√
c-random-walks, which ensures that the expected

length of walks is small. This interpretation can be applied to our setting as well (using
semantic-aware

√
c-random walks).

5 Experimental Results
We conducted all of experiments on a Linux server with a 2.1GHz CPU and 94GB
memory. All methods tested are implemented in Java 7 using JGraphT (http://
jgrapht.org/), a Java package for analysis of large networks. This package includes
an implementation of Tarjan’s LCA algorithm which we used in our implementation.
As described in Section 2.4, we implemented a simple cache mechanism, consisting of
the last |V | LCAs results.

Evaluation Aspects To quantitatively evaluate the proposed formulations, we exam-
ine two main aspects. (1) We demonstrate the advantage of our measure, compared

15

http://jgrapht.org/
http://jgrapht.org/

Table 1: Datasets.
Dataset Small version Large version

Wikipedia n = 4.7K m =101K −

AMiner n = 7.8K m =47K n = 0.35M m =3M
Amazon n = 14.5K m =62K n = 0.6M m =6M
WorNet n = 82K m =128K −

to previous structure-only or semantic-only measures, for capturing objects similarity
in practical settings. (2) We examine our sampling-based optimized algorithm perfor-
mance in terms of execution time and accuracy of approximation, and demonstrate the
effectiveness of our pruning method.

Data-sets In our experiments we used several graph datasets, commonly used in the
literature, which are suitable for our settings, i.e., have natural related similarity ques-
tions, and include objects that posses both structural information and semantic mean-
ing. Table 1 shows the size of each graph. In all datasets, the IC was computed using
the Seco formula [30]. In datasets where edge weights were not available, we set the
weights following uniform distribution among all outgoing edges of the same type,
from each node. We next briefly describe each dataset. AMiner. This graph is ex-
tracted from [3], which contains data about 1.5M academic papers. From the original
citation data, we extracted a weighted co-author graph focused on 30 databases confer-
ences (e.g, ICDE). From each paper, we extracted its authors and relevant terms. The
domain taxonomy was built by aligning the terms to concepts from DBpedia [9], and
constructing the corresponding taxonomy (as in Figure refex1). The graph includes
edges of three types: (1) collaboration edges (with weights reflecting the fraction of
one’s publications with a given co-author among all of her publications); (2) edges be-
tween terms and authors (where an edge’s weight correspond to the prevalence of the
term in a given author’s papers) and (3) taxonomy edges. Amazon. This dataset was
obtained from [20] and contains 0.5M items of different categories and information
about their co-purchases in a given month, for several months. The domain taxonomy
was built by Amazon categories data as available in the dataset. The graph contains
two types of edges: (1) edges between co-purchase items (with a weights reflecting the
fraction of times two item were bought together among all of the times the item was
bought) and (2) taxonomy edges. Wikipedia. This dataset, also from [20], contains
4.7K Wikipedia articles, represented by nodes in the graph. The domain taxonomy was
built by Wikipedia categories as available in the dataset. The graph contains two types
of edges: (1) links between articles and (2) taxonomy edges. WorNet. The dataset is
the noun sub-part of the lexical base WordNet [26]. The edges types are:(1) part-of
relations, the non-hierarchical relations available in WordNet (e.g, meronym-part, etc.)
and (2) taxonomy edges.

For both the AMiner and Amazon datasets, we built small and large versions (see
Table 1). In AMiner, the small version includes the top 7K authors with the largest
number of publications, and in Amazon, it includes the top 5K most bought items.
The smaller versions were used for computing exact similarity scores, while the larger
versions were used in our scalability experiments where the approximated computation
was tested.

16

5.1 Experimental Setup
We shortly describe the competing measures that we examined and the parameters
setup.

Competing similarity measures To highlight the advantages of combining semantic
and structural information in similarity estimation, we compared SemSim with several
commonly used structural and semantic similarity measures, in terms of results accu-
racy.
(1) SimRank [17] as describe in Section 2.1. (2) SimRank++ [4] In their work, the
authors considered bipartite graphs that model sponsored search, and takes into ac-
count the evidence supporting query similarity in addition to the edges weights. Since
no queries are available in our setting, and we do not assume a bipartite graph, we con-
sider only the weights, which in this case amount to a restricted version of SemSim
ignoring semantics. (3) Lin [23] as described in Section 2.2. In particular, this measure
ignores the structural relation edges. (4) Average an average of the obtained Lin and
SimRank scores (we omitted results for average scores of other semantic and struc-
tural measures, as our conclusions for these measures also favor SemSim based on
qualitatively identical arguments). (5) PathSim [35], an alternative structural similar-
ity measure, based on random-walks. It is designated for HIN, and considers the edge
labels as well. (6) Panther [40], another structural, random-walks based measure, that
takes into account the role of each object in the network, as well as the edge weights.
(7) Relatedness [25], an alternative semantic relatedness measure which considers the
properties relating concepts. Unlike Lin, this measure considers all edges in the graph,
therefore its computational costs are much higher.

Note that SimRank, SimRank++, and Panther do not assume an HIN model, i.e.,
all edges and nodes are of a single type. For these measures, we did not consider the
taxonomy edges as part of the graph 2.

Parameters Setting To determine the decay factor and number of iterations for ex-
ecution, we tested different values of c and k on the measure-quality experiments de-
scribe below.

For the decay factor, choosing smaller c values would naturally lead to smaller sim-
ilarity scores, hereby faster convergence, yet our experimental results on real datasets
demonstrate that setting c = 0.8 provided best accuracy results (it is also a typical
choice for SimRank as well [21]).

We next show that a relatively small number of iterations suffices for SemSim to
converge to it fix-point. From Lemma 2.9, we expect SemSim to converge as fast, or
even faster, than SimRank. Indeed, as depicted in Figure 3, the differences between
SemSim scores in consecutive iterations are relatively smaller than for SimRank, thus
fewer iterations are required in practice. Our experiments indicate that 5 iterations are
sufficient for SemSim to converge.

In all experiments (unless mentioned otherwise), the parameters for each baseline
were set as follows. c and k were set to 0.8 and 5 respectively, for SemSim, SimRank
and SimRank++. For the remaining algorithms we set the parameters as suggested in
their corresponding papers. The meta paths considered for PathSim were all meta-paths
up to length 10; we set R = 7000 and t = 7 for Panther and the taxonomy edges weight
were set to 1.0, while all other weights were set to 0.4, for the Relatedness measure.

2We tested both possibilities and the results without the taxonomy edges were superior.

17

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10

M
SE

iteration

Semsim
Simrank

AMiner dataset

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3 4 5 6 7 8 9 10

M
SE

iteration

Semsim
Simrank

Amazon dataset

Figure 3: Difference between SemSimand SimRank scores in consecutive iterations.

Table 2: Pearson’s r and p-value in the WordsSim-test on Wikipedia (Wiki) and Word-
Net (WN).

Method r (Wiki) p (Wiki) r (WN) p (WN)
Panther 0.323 0.0376 0.206 10−3

PathSim 0.293 0.0662 0.332 10−3

Simrank 0.295 0.0641 0.397 10−4

Simrank++ 0.296 0.0644 0.395 10−4

Average 0.36 0.0514 0.401 10−4

Lin 0.485 0.0015 0.449 10−4

Relatedness 0.510 0.0007 0.488 10−4

SemSim 0.585 0.0001 0.501 10−4

5.2 Measure quality
To quantitatively evaluate the adequacy of SemSim and to compare with other meth-
ods, we conducted for each dataset a dedicated experiment, by creating a typical sce-
nario in which similarity measurements are needed, then correspondingly defining the
ground truth. Interestingly, we will show that even in cases where only little seman-
tics is available, SemSim serves as a robust similarity measure and exploits what is
available, to get an edge over the competitors.

Term Relatedness Relatedness between terms is a well studied problem that requires
a measure aware to both semantic and structural knowledge. To examine the adequacy
of SemSim for capturing term relatedness, we used two datasets that contain rela-
tions between terms: Wikipedia and WordNet. The ground truth was defined by the
WordsSim-353 test [11], a public and commonly used benchmark containing pairs of

0

20

40

60

80

100

top 10 top 50 top 100

p
e

rc
e

n
ta

ge
 o

f
h

it
s

top k

Sem-sim SimRank++

SimRank PathSim

Panther Average

Figure 4: Prediction in top-k (Amazon dataset).

18

words alongside their relatedness scores (e.g. “computer” and “keyboard” have a re-
latedness score of 0.76). We then compared the scores obtained by each competitor,
using the Pearson correlation measure, and reported the score and it p-value. We have
removed from the benchmark pairs of words that were missing in the graph, retaining
40 pairs for Wikipedia dataset, and 342 for WordNet. Both graphs and pairs of words
are available on [1].

Table 2 depicts the results for each of the tested measures. Note that other corpus-
based designated methods were suggested for this task (e.g., [39]), but they require
external sources beside the input graph, thus we do not include them in our bench-
mark. First, note that all measures which ignore semantic knowledge, demonstrate
inferior results (i.e., this task highly relies on semantic knowledge). Furthermore, as
determining relatedness of words is a compound task, it requires more than a simple
comparison of their position in the taxonomy. Therefore Lin, an hierarchical-only mea-
sure, was found inferior to the alternatives that consider all edges (i.e., Relatedness and
SemSim), yet outperforms the Average competitor, which emphasizes the inferiority
of such an approach. Interestingly, SemSim outperforms the Relatedness measure, a
designated measure for capturing the relatedness between terms. These results point
out the advantage of SemSim as a comprehensive and robust similarity measure.

Link Prediction We next demonstrate how our similarity measure may be used to
predict co-purchases in the Amazon dataset. We omitted 7.5K edges between co-
purchased items from the original dataset, and examine how well different measures
predict the missing links. Given an endpoint of a removed link, we perform a top-k
search to find similar vertices by the different measures. If, for a given measure, the
returned k vertices include the pair endpoint, we count a "hit", and otherwise a "miss"
(a similar idea was employed to evaluate similarity search in [40]).

The results are depicted in Figure 4. For compactness, we omitted measures with
particularly low uncompetitive scores. Since this task relies mostly on the structural
knowledge, not surprisingly, all structural-based measures outperformed the semantic-
based ones. Yet, SemSim managed to obtain a slight advantage, thanks to the semantic
knowledge it uses. Note that in an analogous experiment on AMiner dataset (results
omitted), we used the measures to identify multiple distinct entries representing the
same author (e.g, Susan B. Davidson; Susan Davidson), PathSim succeed better
compared to SimRank++, due to the additional semantic knowledge that was available
in which SimRank++ ignores and PathSim considers. Yet, again, SemSim outper-
formed both. In the latter, the reason is that the semantic knowledge only provides
information about the field-of-interests and not on the authors (recall Example 2.6).
The Average approach demonstrated inferior results in both experiments, in compari-
son to other competitors.

In a real life scenario, both link prediction and entity resolution engines may use
additional information to what is available in our datasets (e.g. user profiles, reviews,
rating, etc.) along with a variety of data mining techniques. Yet our experimental
results demonstrate that SemSim makes a substantially exhaustive exploitation of the
available structural and semantic information.

A closer look To better understand the behavior of SemSim compared to the alter-
natives, we took a closer look at the AMiner experiment mentioned above, this time
examining the top-5 most similar researchers selected for various authors. As an illus-
trative example, Table 3 shows the result obtained for the author Tova Milo.

19

SemSim Simrank++ Simrank PathSim Panther
Daniel Deutch Daniel Deutch Ohad Greenshpan Rajeev Rastogi Daniel Deutch

Neoklis Polyzotis Ohad Greenshpan Daniel Deutch Michael Benedikt Neoklis Polyzotis
Serge Abiteboul Elad Verbin Elad Verbin Werner Nutt George Candea
Susan Davidson Magdalini Eirinaki George Candea Dan Olteanu Radek Vingralek

Victor Vianu Neoklis Polyzotis Radek Vingralek Susan Davidson Ohad Greenshpan

Table 3: Top 5 similar authors to Tova Milo.

Dataset G2 G2
θ , θ = 0.95 G2

θ , θ = 0.9

AMiner
n = 60M
m =2.2B

n = 14K
m =39M

n = 9K
m = 7.8M

Wikipedia
n = 22M

m =10.2B
n = 10K

m = 23.5M
n = 6K

m = 4.7M

Table 4: The size of G2 and G2
θ for θ = 0.9 (top ≈ 5K) or θ = 0.95 (top ≈ 1K), in

different datasets.

One can see that all measures except PathSim favors past collaborators of Milo.
PathSim returns a set of authors concentrated on a small number of venues and fields
of interest shared with Milo, considering common collaborators and only fields of
interest that are exact match (no synonyms or related topics); SimRank tends to re-
turn past collaborators, but ignored the amount of collaborations (i.e., weights); Sim-
Rank++ and Panther prefer authors that share similar collaborators, this time consid-
ering weights, whereas SemSim favors collaborators with semantically related fields
of interest, which make sense in this context and captures the desired similarity in this
network.

5.3 Performance evaluation
We next examine the optimization techniques suggested in Sections 3.2 and 4 and ana-
lyze their performances. We start by reporting the size of the pair-node graph G2, with
and without semantic-based pruning. Then, we analyze the running times and accuracy
of our approximation algorithm.

G2 pruning In Section 3.2, we suggested constructing a pruned version of G2, G2
θ .

Table 4 presents the size of G2
θ compared to G2, for different choices of θ. While G2

θ

is indeed significantly smaller, note that this technique is still relevant only for not too
large graph, hence, this is the set of graphs we considered here. Larger graphs are
handled below through approximated computation.

Considering Table 4, one can see that almost 99.9% of the edges and nodes were
omitted in all cases. The choice of high θ values ensures that only the most "interesting"
pairs would be considered (top 1K or 5K pairs), i.e., only comparing subset of authors
(in AMiner) or semantically related terms (in Wikipedia). This compact representation
is useful in cases only objects whose similarity score is above a given threshold are of
interest.

Approximated SemSim When even our reduced graph might still be too large, one
can employ the approximation algorithm, directly on G. We next report the accuracy
and running times of our approximated framework. We analyze the sensitivity of its
parameters, number of walks and walk’s length, from two aspects: (i) accuracy and (ii)
running times, on AMiner and Amazon datasets.

20

Dataset Exp. Max
Error

Measured
Max Error Mean Error

Amazon 0.028 U: 0.020 W: 0.018 U: 10−4 W: 10−4

AMiner 0.050 U: 0.044 W: 0.041 U: 10−3 W: 10−3

Table 5: Accuracy of approximation, using 2 sampling strategies: Uniform (U) and
Weighted (W).

Accuracy As a ground truth, to which we compare the approximated scores, we use
the similarity scores computed by the baseline algorithm (see Section 2.4), setting the
number of iterations to 10. We run this experiment only on the smaller versions of the
graphs due to the non-scalability of the baseline naive algorithm.

The parameters k and d (maximal ratio between edge weights and maximal in-
degree) are determined by the dataset. Their values for Amazon and AMiner datasets
are k = 1.7, d = 2.7K and k = 2, d = 72, respectively. We next analyze the effect of
varying nw and t, where the decay factor c is set to 0.8, as explained in Section 5.1. Of
course, there is a trade-off between running times and accuracy, i.e., increasing nw and t
would decrease the error, yet increase the running times. According to our experiments,
a reasonable choice of the parameters, which obtained sufficient error bound and short
running times is to set: nw = 50, t = 15 3.

Table 5 depicts the maximal and mean error incurred by each sampling strategy,
uniform and weighted, in 1K randomly picked node-pairs similarity computations over
10 different runs, where each run rebuilds the index from scratch. Observe that the
mean error is considerably smaller than the stipulated theoretical error bound, which is
consistent with our analysis for the expected error in the worst-case.

Running time We examine the performance of our suggested method as a function
of its parameters: the number of walks nw and the truncation point t (k and d are fixed
in each graph), on the two large versions of Amazon and AMiner datasets. We start by
analyzing the query running times then consider the preprocessing phase.

Figure 5 depicts the average running times of 1K randomly picked node-pairs for
single-pair queries using varying values of nw and t, while maintaining a cache storing
up to |V | last LCA calculations. In all experiments the average running time was less
than 0.02 seconds (and 0.06 at most). Not surprisingly, since we consider all coupled
random-walks (i.e., n2

w walks) the effect, on running times, of increasing nw is greater
than that of increasing t.

The differences between the two datasets is directly related to the taxonomy size,
more concretely, the LCA calculations. In Amazon dataset, where the taxonomy con-
tains 2.5M edges, finding the LCA takes longer than in AMiner, where the taxonomy
contains only 350K edges. Importantly, most of the time (around 80%) was spent on
the online semantic similarity computations, i.e, the LCAs computation. Yet, we note
that the cashing was very effective here as without it the computation would take up to
5 times longer. In comparison, using Monte-Carlo method to compute SimRank with
the same parameters was approximately 7 times faster, but, as shown in the previous
experiments yields inferior similarity accuracy.

The offline phase consists of two parts: sampling the random walks and pre-processing
the taxonomy. Note that the first part allows a straightforward parallelization of index-
ing: the computation of independent index databases can be performed on up to nw

3We do not report the results for different choices of parameters for lack of space, but the same effect was
measured: in practice, the error is much smaller than the error bound.

21

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

25 50 75 100

Ti
m

e
 in

 s
e

co
n

d
s

nw

Amazon

AMiner

(a) t is set to 15

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

10 15 20 25

Ti
m

e
 in

 s
e

co
n

d
s

t

Amazon

AMiner

(b) nw is set to 50

Figure 5: Single-pair queries average running time.

different machines. In this experiment we did not parallelize the indexing, and con-
sider the computation on a single machine. According to our experiments (for different
values of nw and t), both parameters have a linear effect on the pre-processing time,
and in average, this phase took approximately 2.5 minutes. As for pre-processing the
taxonomy, for Amazon dataset, where the taxonomy is much larger, this phase took
approximately 7 minutes and for AMiner dataset approximately 1.5 minutes.

Finally, the affect that taxonomy size has on running times (in both offline and on-
line phases), opens up an opportunity for further optimizations, such as approximated
Lin scores, which we leave for future work.

6 Related Work
Estimating vertex similarity has been studied in various contexts and with different
goals in mind. For example, recommender systems leverage similarities between users/items
in order to recommend items [27]; in the context of sponsored search, where paid ad-
vertisements, relevant to a userâĂŹs query, are shown, similarity measures are essential
[4]; and in social networks, friend recommendations are computed using techniques of
link prediction, which rely on the analysis of the network structure [7, 34]. The in-
tegration of semantic and structural similarities allows the system to make inferences
based on the underlying reasons for which a user/item may be relevant in a particular
scenario. Moreover, in cases where little or no structural information is available (such
as in the case of newly added items/user), the system can still use the semantics to
provide reasonable recommendations.

Generally, there are two basic principles to quantify the structural similarity be-
tween two vertices: (i) in direct relation to the number of common neighbors in the
network, based on the transitivity of similarity [17, 36, 42] and (ii) in direct relation
to the similarity of their structural roles [35, 40]. We adopted SimRank because of
its generality, simplicity and wide range of optimizations. Due to its computational
complexity, efficient calculation and approximation of SimRank has been studied in-
tensively. Following [41], those algorithms can be classified into 3 classes: (1) iter-
ative methods, [24], (2) non-iterative methods, which solve a linear system [21], and
(3) random-walks based methods [37, 18]. As previously discussed, a large number of
these works can be applied to our setting.

Collaborative filtering is a method of making automatic predictions about the in-
terests of users. The underlying assumption of this approach is that two similar users
are more likely to share similar preferences. Typically, similarity is quantified by com-

22

paring a feature vector of ratings, possibly exploiting semantic knowledge [2, 27]. Yet,
unlike SemSim, this approach does not consider the network structure. Such feature-
based measures may be incorporated into our formula as weights, in a similar manner
to our incorporation of semantics.

Much efforts were devoted to quantify the semantic similarity or relatedness in
ontologies, a special case of HIN, especially with the increasing interest in the Semantic
Web and the popularization of ontologies. Generally, there are two main classes of
semantic similarity measures: (1) IC based measures [29, 25, 23] and (2) feature-based
measures [22, 39]. The latter usually involves external sources beside the input graph
in the computation. We chose to adopt the Lin measure due to its simplicity, common
usage and most importantly, its efficiency. Although, replacing Lin with a different
semantic measure is possible, it would most likely lead to a much higher computational
cost.

Another important aspect of similarity measures in networks is the underlying data
model. Commonly, two models were considered: (i) the homogeneous model [17, 40],
where nodes and edges belong to a single type and (ii) the heterogeneous model [4, 35,
25, 42], where nodes and edges belong to a set of types. With the advent of large-scale
HINs [32, 38], such as bibliographic and social media networks, we adopted the HIN
model due to its straightforward representation of all available data.

Despite much research on the topic, the problem of combining both sources of
knowledge and quantifying a unified similarity measure, remains largely unsolved.
Previous works have suggested combining structural and semantic knowledge to form
a single similarity score [15, 14, 27, 13], yet, while they all make a notable contribu-
tion, each of the proposed solutions focuses on a specific task and does not consider
the network structure, i.e., the relations between objects, considering instead only the
structure of the object itself (e.g., [15] considered the structure of XML pages). Fur-
thermore, scalability issues were not addressed.

A related research area is Ontology matching. The matching operation determines
an alignment for a pair of ontologies [33, 10]. This task incorporates both semantic
and structural knowledge. While some of these methods resemble ours in measuring
the similarity of nodes based on common neighbors and using taxonomical data, their
goal is different: they aim to identify equivalent representations of the same entity.
Thus, in contrast to our work, quantifying the similarity of distinct entities is not tar-
geted. Moreover, our data model, which involves edge weights, is not accounted by the
proposed measures.

Lastly, another related line of work attempts to determine the relatedness or impor-
tantness between/of terms [25, 5, 4, 6]. While this line of work, which also considers
both structural and semantic properties, makes considerable advances, their aim is,
once again, different: the relatedness measures are designated measures that only al-
low taking into account functional relations between terms, while the importantness
measures aim to find all relevant terms to a given query. Hence, these measures are not
applicable in the general case, were the similarity between arbitrarily objects is desired.

7 Conclusion and Future work
In this paper we introduce SemSim, a novel similarity measure, which extends Sim-
Rank, by integrating semantic knowledge into the evaluation. As pointed out in Section
5, in many cases, existing techniques seem ill-suited to capturing the desired similarity,
that relies on both structure and semantics, and a deeper integration between the two

23

concepts is needed. In this work we make initial steps in this direction, presenting a
robust measure for networks, that takes into account all this relevant data. We pre-
sented a dedicated pruning techniques for SemSim, as well as an efficient probabilistic
framework, anchored in a careful modification of the underlying model of SimRank,
that preserves the necessary properties for the application of numerous optimizations
previously suggested for SimRank. We further demonstrated the usefulness of our
measure by showing how it captures desired notions of similarity in real datasets. Our
experimental study indicates the efficiency of our algorithm and its scalable manner.

An interesting direction for future work is to extend SemSim with parameters that
allow for tailoring to specific scenarios. A natural staring point would be drawing
inspiration from a plethora of SimRank variations. For example, [44] considered a
probabilistic graph setting. Furthermore, in this work we focused on a single-pair
queries. We are currently pursuing an extension of our work to top-k and similarity-
join queries, inspired by [19, 43].

References
[1] Term relatedness. https://github.com/TAU-DB/SemSim/blob/master/
Relatedness_Test.txt.

[2] C. C. Aggarwal and S. Y. Philip. Semantic based collaborative filtering, Nov. 26
2002. US Patent 6,487,539.

[3] AMiner. https://aminer.org/data.

[4] I. Antonellis, H. G. Molina, and C. C. Chang. Simrank++: query rewriting
through link analysis of the click graph. PVLDB, 2008.

[5] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank: Authority-based
keyword search in databases. In VLDB, 2004.

[6] R. Bonaque, B. Cautis, F. Goasdoué, and I. Manolescu. Toward social, structured
and semantic search. In SDSW, 2014.

[7] H. Chen, X. Li, and Z. Huang. Link prediction approach to collaborative filtering.
In JCDL, 2005.

[8] J. Cheng, S. Huang, H. Wu, and A. W.-C. Fu. Tf-label: a topological-folding
labeling scheme for reachability querying in a large graph. In SIGMOD, 2013.

[9] DBpedia. http://dbpedia.org/About.

[10] J. Euzenat, P. Shvaiko, et al. Ontology matching. Springer, 2007.

[11] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and
E. Ruppin. Placing search in context: The concept revisited. In WWW, 2001.

[12] D. Fogaras and B. Rácz. Scaling link-based similarity search. In WWW, 2005.

[13] P. Ganesan, H. Garcia-Molina, and J. Widom. Exploiting hierarchical domain
structure to compute similarity. TOIS, 2003.

[14] A. Günay and P. Yolum. Structural and semantic similarity metrics for web ser-
vice matchmaking. In E-Commerce and Web Technologies. 2007.

24

https://github.com/TAU-DB/SemSim/blob/master/Relatedness_Test.txt
https://github.com/TAU-DB/SemSim/blob/master/Relatedness_Test.txt
https://aminer.org/data
http://dbpedia.org/About

[15] R. Guzman, I. Dongo, and R. T. Herrera. Structural and semantic similarity for
xml comparison. In MEDES, 2013.

[16] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.
siam Journal on Computing, 1984.

[17] G. Jeh and J. Widom. Simrank: a measure of structural-context similarity. In
SIGKDD, 2002.

[18] M. Kusumoto, T. Maehara, and K.-i. Kawarabayashi. Scalable similarity search
for simrank. In SIGMOD, 2014.

[19] P. Lee, L. V. Lakshmanan, and J. X. Yu. On top-k structural similarity search. In
ICDE, 2012.

[20] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset col-
lection. http://snap.stanford.edu/data, 2014.

[21] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu. Fast computation of
simrank for static and dynamic information networks. In EDBT, 2010.

[22] J. Liang, D. Ajwani, P. K. Nicholson, A. Sala, and S. Parthasarathy. What links
alice and bob?: Matching and ranking semantic patterns in heterogeneous net-
works. In WWW, 2016.

[23] D. Lin. An information-theoretic definition of similarity. In ICML, 1998.

[24] D. Lizorkin, P. Velikhov, M. Grinev, and D. Turdakov. Accuracy estimate and
optimization techniques for simrank computation. VLDB, 2008.

[25] L. Mazuel and N. Sabouret. Semantic relatedness measure using object properties
in an ontology. In ISWC, 2008.

[26] G. A. Miller. WordNet: a lexical database for English. ACM, 1995.

[27] B. Mobasher, X. Jin, and Y. Zhou. Semantically enhanced collaborative filtering
on the web. In EWMF. 2004.

[28] N. F. Noy, M. A. Musen, et al. Algorithm and tool for automated ontology merg-
ing and alignment. In AAAI, 2000.

[29] P. Resnik. Using information content to evaluate semantic similarity in a taxon-
omy. arXiv preprint cmp-lg/9511007, 1995.

[30] N. Seco, T. Veale, and J. Hayes. An intrinsic information content metric for
semantic similarity in wordnet. In ECAI, 2004.

[31] Y. Shao, B. Cui, L. Chen, M. Liu, and X. Xie. An efficient similarity search
framework for simrank over large dynamic graphs. VLDB, 2015.

[32] C. Shi, Y. Li, J. Zhang, Y. Sun, and S. Y. Philip. A survey of heterogeneous
information network analysis. TKDE, 2017.

[33] P. Shvaiko and J. Euzenat. Ontology matching: state of the art and future chal-
lenges. TKDE, 2013.

25

http://snap.stanford.edu/data

[34] Y. Sun, R. Barber, M. Gupta, C. C. Aggarwal, and J. Han. Co-author relationship
prediction in heterogeneous bibliographic networks. In ASONAM, 2011.

[35] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. Pathsim: Meta path-based top-k
similarity search in heterogeneous information networks. PVLDB, 2011.

[36] W. Tao, M. Yu, and G. Li. Efficient top-k simrank-based similarity join. PVLDB,
2014.

[37] B. Tian and X. Xiao. Sling: A near-optimal index structure for simrank. In
SIGMOD, 2016.

[38] C. Wang, Y. Sun, Y. Song, J. Han, Y. Song, L. Wang, and M. Zhang. Relsim:
Relation similarity search in schema-rich heterogeneous information networks.
In SDM, 2016.

[39] W.-t. Yih and V. Qazvinian. Measuring word relatedness using heterogeneous
vector space models. In NAACL HLT, 2012.

[40] J. Zhang, J. Tang, C. Ma, H. Tong, Y. Jing, and J. Li. Panther: Fast top-k similarity
search on large networks. In SIGKDD, 2015.

[41] Z. Zhang, Y. Shao, B. Cui, and C. Zhang. An experimental evaluation of simrank-
based similarity search algorithms. PVLDB, 2017.

[42] P. Zhao, J. Han, and Y. Sun. P-rank: a comprehensive structural similarity mea-
sure over information networks. In CIKM, 2009.

[43] W. Zheng, L. Zou, Y. Feng, L. Chen, and D. Zhao. Efficient simrank-based simi-
larity join over large graphs. VLDB, 2013.

[44] R. Zhu, Z. Zou, and J. Li. Simrank computation on uncertain graphs. In ICDE,
2016.

26

Entity IC value
Thing 0.01
Author 0.9

Computer Science (CS) 0.1
Alice, Bob, Carol 1.0

Data Management (DM) 0.5
Information Systems (IS) 0.2

Crowdsourcing 0.9
Databases (DB) 0.2

Information Management (IM) 0.5

Table 6: IC values for Figure 1 entities.

A Full computation for Example 2.6
We next provide full computation to the example introduce in Section 2. The decay
factor used for both SimRank and SemSim was 0.8 (as suggested in Section 5.1). Ad-
ditionally, The missing edge weights were set to 1, and the IC values (depicted in Table
6) were computed using Seco formula [30], on the domain ontology for AMiner dataset
(which include a taxonomy of computer science related fields of research). First, com-
puting pair-wise SimRank scores, (in this small graph 3 iterations were sufficient) one
would obtain simrank(Alice,Bob) = simrank(Bob,Carol)≈ 0.21. As for Lin, since
all authors nodes are leafs in the taxonomy, their corresponding IC values are all 1, thus
Lin(Alice,Bob) = Lin(Bob,Carol)= 0.9. Using the IC values above, one would
obtain Lin(Crowdsourcing,DB)= 0.9 and Lin(DB,IM)= 0.18.

Next, we briefly overview SemSim computation (with the same parameters). At
the first step, since Bob , Alice , Carol, R0(Alice,Bob) = R0(Bob,Carol)=
0. Iteratively, at the next step, since all three share two common neighbors, Author
and Database, we get R1(Alice,Bob) = R1(Bob,Carol)= 0.09. At the next step,
the semantic similarity of common neighbors propagates into the computation, thus,
s(Alice,Bob)= 0.124, while s(Bob,Carol)= 0.120. Finally, in the last iteration we
get the final scores of 0.133 and 0.128 for Alice and Carol, respectively.

B Properties of Sem-Sim
We next prove the following properties holds for SemSim.

Theorem B.1. The iterative SemSim equations (shown in Equation (3) and Equation
(4)) have the following properties:
1.(Symmetry) ∀a, b ∈ VRk(a, b) = Rk(b, a)
2.(Maximum self similarity) ∀a ∈ V : Rk(a, a) = 1
3.(Monotonically) 0 ≤ Rk(a, b) ≤ Rk+1(a, b) ≤ 1
4.(Existence) The solution to the iterative equations always exists and converges to a
fixed point, s(·, ·), which is the theoretical solution to the recursive equations.
5.(Uniqueness) the solution to the iterative equations is unique when c , 1.

Proof. According to Equations (3) and (4), it is obvious that the Symmetry and Maxi-
mum self similarity requirements from SemSimholds, i.e, ∀a, b ∈ VRk(a, b) = Rk(b, a)
and Rk(a, a) = 1 for all k.
3.(Monotonicity) If a = b,R0(a, b) = R1(a, b) = ... = 1, so it is obvious that the
monotonicity property holds. LetâĂŹs consider a , b. According to Equation (3),

27

R0(a, b) = 0. Base on Equation (4),0 ≤ R1(a, b) ≤ 1. So, 0 ≤ R0(a, b) ≤ R1(a, b) ≤ 1.
LetâĂŹs assume that for all k, 0 ≤ Rk−1(a, b) ≤ Rk(a, b) ≤ 1, then

Rk+1(a, b) − Rk(a, b) =

c · Lin(a, b)
NI

|I(a)|∑
i

|I(b)|∑
j

W(Ii(a), a) ·W(I j(b), b) · [Rk(a, b) − Rk−1(a, b)]

Based on the assumption we have Rk(a, b) − Rk−1(a, b) ≥ 0,∀a, b ∈ V , so the left hand
side Rk+1(a, b) − Rk(a, b) ≥ 0 holds. By induction, we draw the conclusion that for any
k,Rk ≤ Rk+1. And based on the assumption, 0 ≤ Rk(a, b) ≤ 1, so

Rk(a, b) =

c · Lin(a, b)
NI

|I(a)|∑
i

|I(b)|∑
j

W(Ii(a), a) ·W(I j(b), b) · (Rk(a, b) ≤

c · Lin(a, b)
|I(a)|∑

i

|I(b)|∑
j

1 · 1

|I(a)|∑
i

|I(b)|∑
j

1 · 1 · 1 = c · Lin(a, b)

so, Rk+1(a, b) ≤ c·Lin(a, b) ≤ 1. By induction, we know that for any k, 0 ≤ Rk(a, b) ≤ 1.
4.(Existence) According to the previous proof, ∀a, b ∈ V,Rk(a, b) is bounded and non-
decreasing as k increases. By the Completeness Axiom of calculus, each sequence
Rk(a, b) converges to a limit R(a, b) ∈ [0, 1]. Note limk→∞ Rk(a, b) = limk→∞ Rk+1(a, b) =

R(a, b), so we have:

R(a, b) = lim
k→∞

Rk+1(a, b) =

c · Lin(a, b)
NI

lim
k→∞

|I(a)|∑
i

|I(b)|∑
j

W(Ii(a), a) ·W(I j(b), b) · Rk(a, b) =

c · Lin(a, b)
NI

|I(a)|∑
i

|I(b)|∑
j

W(Ii(a), a) ·W(I j(b), b) · lim
k→∞

Rk(a, b) =

c · Lin(a, b)
NI

|I(a)|∑
i

|I(b)|∑
j

W(Ii(a), a) ·W(I j(b), b) · R(a, b)

Note that the limit of Rk(·, ·), with respect to k, right satisfies the recursive similarity
equation, shown in the Definition 2.5.
5.(Uniqueness) Suppose s1(∗, ∗) and s2(∗, ∗) are two solutions to the n2 iterative sim-
ilarity equations. For any nodes x, y ∈ V , let δ(x, y) = s1(x, y) − s2(x, y) be their
difference. Let M = max(x,y)|δ(a, b)| be the maximum absolute value of any difference.
We need to show that M = 0. Let |δ(x, y)| = M for some a, b ∈ G. It is obvious that
M = 0 if a = b. Otherwise,

δ(a, b) = s1(a, b) − s2(a, b) =

c · Lin(a, b)
NI

|I(a)|∑
i

|I(b)|∑
j

W(Ii(a), a)·

W(I j(b), b)[s1(Ii(a), I j(b)) − s2(Ii(a), I j(b))]

28

Thus,

M = |δ(a, b)| =

|
c · Lin(a, b)

NI

|I(a)|∑
i

|I(b)|∑
j

W(Ii(a), a) ·W(I j(b), b) · δ(Ii(a), I j(b))| ≤

c · Lin(a, b)
NI

|I(a)|∑
i

|I(b)|∑
j

W(Ii(a), a) ·W(I j(b), b) · |δ(Ii(a), I j(b))| ≤

c · Lin(a, b)
NI

|I(a)|∑
i

|I(b)|∑
j

W(Ii(a), a) ·W(I j(b), b) · M = c · Lin(a, b) · M

So, M = 0 when c , 1 and ∀a, b ∈ VLin(a, b) , 0 (Observation 2.4). �

We next provide a prove for Lemma 2.9.

Proof. If a = b or I(a) = ∅ or I(b) = ∅, according to equations (3) and (4),

Rk+1(a, b) − Rk(a, b) = 0 < Lin(a, b) · ck+1

For the general case of a , b, I(a) , ∅ and I(b) , ∅, the proof is organized by
mathematical induction.
(Induction Basis.)(k = 0)

R1(a, b) − R0(a, b) = R1(a, b) =

c · Lin(a, b)
NI

|I(a)|∑
i

|I(b)|∑
j

W(Ii(a), a) ·W(I j(b), b) · R0(a, b)

Since 0 ≤ R0(Ii(a), I j(b)) ≤ 1,

0 ≤ R1(a, b) − R0(a, b) ≤

c · Lin(a, b)
NI

|I(a)|∑
i

|I(b)|∑
j

W(Ii(a), a) ·W(I j(b), b) · 1 = c · Lin(a, b)

(Inductive step.) Provided that the lemma holds for a given integer k, (k > 0) for all
vertex pairs, i.e.,

0 ≤ Rk(a, b) − Rk−1(a, b) ≤ Lin(a, b) · ck

let us prove the lemma holds for k + 1 as well.

Rk+1(a, b) − Rk(a, b) =

c · Lin(a, b)
NI

|I(a)|∑
i

|I(b)|∑
j

W(Ii(a), a) ·W(I j(b), b) · Rk(a, b)−

c · Lin(a, b)
NI

|I(a)|∑
i

|I(b)|∑
j

W(Ii(a), a) ·W(I j(b), b) · Rk−1(a, b) =

c · Lin(a, b)
NI

|I(a)|∑
i

|I(b)|∑
j

W(Ii(a), a) ·W(I j(b), b) · [Rk(a, b) − Rk−1(a, b)]

29

Based on the assumption we get:

Rk+1(a, b) − Rk(a, b) ≤

c · Lin(a, b)
NI

|I(a)|∑
i

|I(b)|∑
j

W(Ii(a), a) ·W(I j(b), b) · ck =

c · Lin(a, b) · ck = Lin(a, b) · ck+1.

Therefore, according to the induction method, we can conclude that the Lemma holds.
�

30

	Introduction
	Preliminaries
	Structural Similarity
	Semantic Similarity
	Combining Structure and Semantics
	Basic properties of SemSim

	Random Surfer-Pairs Model
	Semantic-Aware Random Walk
	Reducing the size of G2
	Computing SemSim directly on G

	Approximated SemSim
	Experimental Results
	Experimental Setup
	Measure quality
	Performance evaluation

	Related Work
	Conclusion and Future work
	Full computation for Example 2.6
	Properties of Sem-Sim

