
03684155: On the P vs. BPP problem. 12/1/2017 – Lecture 14a

Toda’s theorem – Part I

Amnon Ta-Shma and Dean Doron

The goal of the next couple of lectures will be to prove Toda’s theorm [3], PH ⊆ P#P, which we
used to prove the IK theorem.

Define ⊕P as the complexity class of decision problems solvable by an NP machine, where the
acceptance condition is that the number of accepting computation paths is odd. An example of
a ⊕P problem is “given a graph, does it have an odd number of perfect matchings?”. It can be
viewed as finding the least significant bit of the answer to the corresponding #P problem. In this
lecture we are going to prove the following lemma, which comprises the first part of Toda’s proof.

Lemma 1. PH ⊆ BPP⊕P.

We will follow Fortnow’s proof [1], but we will need some preliminaries first.

1 The isolation lemma and UniqueCLIQUE

The isolation lemma, due to Mulmuley, Vazirani and Vazirani, gives a randomized algorithm to
reduce the number of solutions to one, given such a solution exists.

Definition 2. Let X be a set of n elements, and let F be a family of subsets of X. Assign a
weight w(x) to each element, and define the weight of a set E ∈ F as w(E) =

∑
x∈E w(x). If

minE∈F w(E) is achieved by a unique E ∈ F , we say w is isolating for F .

Lemma 3 ([2]). Let X be a set of n elements, and let F be a family of subsets of X. Let w : X →
[N] be a random function, each w(x) is chosen independently and uniformly. Then,

Pr
w

[w is isolating for F] ≥ 1− n

N
.

Proof. Draw w uniformly at random. For an element x ∈ X, set

α(x) = min
E∈F ,x/∈E

w(E)− min
E∈F ,x∈E

w(E \ {x}).

Evaluation of α(x) does not require knowledge of w(x), so we have that

Pr
w

[w(x) = α(x)] =
1

N

and
Pr
w

[∃x ∈ X, w(x) = α(x)] ≤ n

N
.

But if w induces two minimal sets A,B ∈ F and x ∈ A \B then

min
E∈F ,x/∈E

w(E) = w(B)

min
E∈F ,x∈E

w(E \ {x}) = w(A)− w(x),

so α(x) = w(B)−w(A)+w(x) = w(x). Thus, if w is not isolating for F then w(x) = α(x) for some
x ∈ X, and we have already seen that the last event can happen with probability at most n

N .

1

The isolation lemma gives a probabilistic reduction from CLIQUE to UniqueCLIQUE which we
will now see. As the reduction from CLIQUE to SAT preserves the number of accepting witnesses,
a probabilistic reduction from SAT to UniqueSAT follows. A probabilistic reduction to UniqueSAT
was first given by Valiant and Vazirani [4] using another technique.

Theorem 4. There is a probabilistic polynomial-time procedure that, given a graph G and an
integer k, outputs G′ and k′ such that:

• If G has no clique of size k then G′ has no clique of size k′.

• If G has a clique of size k then, with a non-negligible probability, G′ has exactly one clique of
size k′.

Proof. Given an input 〈G = (V,E), k〉, let |V | = n. The algorithm choose w : V → [2n] uniformly
at random. By the isolation lemma, with probability at least 1

2 , the clique of maximal weight will
be unique (it is easy to see that the proof also works for the maximal weight).

Let G′ be the following graph: For every vertex v ∈ V , construct a clique of size 2nk + w(v). For
every edge (u, v) ∈ E, connect the u-clique to the v-clique in G′ (every vertex to every vertex).
Next, choose a random integer r ∈ [2nk] and return 〈G′, k′ = 2nk2 + r〉. Now:

• If 〈G, k〉 /∈ CLIQUE then the size of the smallest clique in G′ is at most (k− 1) · (2nk+ 2n) <
2nk2 so 〈G′, k′〉 /∈ UniqueCLIQUE.

• If 〈G, k〉 ∈ CLIQUE then with probability at least 1
2 there is a unique clique C ⊆ V of size k

with a maximal w(C). Assume this is indeed the case.

The size of the clique in G′ corresponding to C is 2nk2 + w(C) and note that 2nk2 + 1 ≤
2nk2 + w(C) ≤ 2nk2 + 2nk. For any other k-clique C ′ ⊆ C, the corresponding clique in G′

has weight 2nk2 + w(C ′) < 2nk2 + w(C).

We already saw that a clique of size smaller than k in G corresponds to a clique of size
smaller than 2nk2 in G′. A (k + 1)-clique in G corresponds to a clique of size larger than
2nk(k + 1) + k + 1 > k′.

It follows that for the correct r = w(C) we will have a unique clique of size k′. Hence, the
probability that 〈G, k〉 ∈ UniqueCLIQUE is at least 1

4nk .

2 Preliminary results

We first show:

Theorem 5. ⊕P⊕P = ⊕P.

Proof. Let L ∈ ⊕P⊕P, equipped with an accepting NP machine M making oracle calls to some
⊕P-complete language A having an accepting NP machine MA. We will show an NP machine N
accepting L with no oracle calls. That is, x ∈ L iff the number of accepting path of N(x) is odd.
N on an input x behaves as follows:

2

1. N guesses a computation path w of M on input x, which includes possible oracle answers to
the query strings appearing in w.

2. If w is a rejecting path of M on x then N enters a rejecting step. Otherwise, it goes to the
next step.

3. Let y1, . . . , ym be all the query strings which appear in w and whose corresponding oracle
answers in w are Yes and likewise let z1, . . . , z` be all the query strings which appear in w
and whose corresponding oracle answers in w are No. Then, N simulates MA successively for
each yi and zi in the following manner:

(a) For each yi, it simply simulates MA. If MA enters a rejecting state then so does N .
Otherwise, it proceeds to the next simulation.

(b) For each zi, it nondeterministically selects one of the following processes:

• N goes to the next simulation.

• N simulates MA on zi. If MA enters a rejecting state, then so does N . Otherwise,
it goes to the next simulation.

4. N enters an accepting state.

For the correctness, we classify all possible accepting paths of M on x into two groups, one of
which consists of accepting paths with the correct oracle answers to A and the remaining ones
(that contain at least one inconsistent oracle call).

From the definition of N we can see that:

• Every accepting path in the first group is followed by an odd number of accepting paths in
steps 3 and 4 since on the y-s we always have an odd number of accepting paths, and on the
z-s we always have an odd number of accepting paths.

• Every accepting path in the second group is followed by an even number of accepting paths
in steps 3 and 4. To see this, observe that if we do not err on any of the y-s (odd number
of accepting paths) we must err on at least one z, leading to an even number of accepting
paths in the z-s, for a total of even number of accepting paths. If we do err on one of the y-s,
we have an even number of accepting paths and a total of even number of accepting paths,
regardless of how we act on the z-s.

Having established that, we have that if x ∈ L then the number of accepting paths in the first group
is odd, so the number of accepting paths of N is odd as well (odd·odd + ?·even = odd), and similarly
if x /∈ L then the number of accepting paths in the first group is even (even ·odd + ? ·even = even),
so the number of accepting paths of N is even – as desired.

Theorem 6. If NP ⊆ BPP then PH ⊆ BPP.

Proof. As an exercise.

As a corollary, we have:

Lemma 7. NP ⊆ BPP⊕P.

3

Proof. It is sufficient to show that CLIQUE ∈ BPP⊕P. Given an input 〈G, k〉, use the probabilistic
algorithm from Theorem 4 to produce G′ and k′ and accept iff the NP machine for CLIQUE on
input 〈G′, k′〉 has an odd number of accepting paths (using the ⊕P oracle).

If 〈G, k〉 /∈ CLIQUE then there will always be zero accepting paths and we will always reject. If
〈G, k〉 ∈ CLIQUE then with non-negligible probability there will be exactly one accepting path and
we will accept.

3 A proof of Toda’s first lemma

When we relativize a class like BPP⊕P to an oracle A, both the BPP and the ⊕P machines should
have access to the oracle A. The BPP machine can make its queries to A via the ⊕PA oracle so we
have (BPP⊕P)A = BPP(⊕PA), which we will write simply as BPP⊕P

A
.

We are now ready to prove that PH ⊆ BPP⊕P.

Proof. Lemma 7 relativizes, so we have

NP⊕P ⊆ BPP⊕P
⊕P
.

By Theorem 5,
NP⊕P ⊆ BPP⊕P.

Theorem 6 relativizes as well, so NP⊕P ⊆ BPP⊕P implies

PH⊕P ⊆ BPP⊕P.

However, PH ⊆ PH⊕P so we finally have PH ⊆ BPP⊕P and we are done.

References

[1] Lance Fortnow. A simple proof of toda’s theorem. Theory OF Computing, 5(1):135–140, 2009.

[2] Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is as easy as matrix
inversion. In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 345–354. ACM, 1987.

[3] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20(5):865–877, 1991.

[4] Leslie G Valiant and Vijay V Vazirani. NP is as easy as detecting unique solutions. Theoretical
Computer Science, 47:85–93, 1986.

4

