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January 13, 2019

General guidelines

The questions fall into several categories:

(Know). Make sure you know how to solve. Do not submit.
(Mandatory). Mandatory questions.
(Bonus). Bonus questions.

Put your answers in the dropbox folder. You have to

1. write the solutions yourself,

2. give credit to any source (or any person) you consulted with.

You have to submit solutions to, at least, the mandatory questions.
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HW 1

Out: 22.10.2018
Due: 05.11.2018

Unique Perfect Matching

1. (Mandatory). Finish the proof of the probabilistic algorithm we’ve seen in class: show how
to find a Unique Perfect Matching using the Isolation Lemma

k-wise independence

2. (Mandatory). Draw a ∈ {0, 1}logn uniformly and for every 0 6= i ∈ {0, 1}logn let Xi be the
random variable Xi = 〈a, i〉 mod 2.

Prove that X = (X1, . . . , Xn−1) is a distribution over Fn−1
2 with support size n and is pairwise

independent.

3. (Mandatory). You are about to play a game where n coins are laid covered on a table and you
uncover and take 2n

3 coins. You are promised that k < n
3 of the coins are pure gold and the

rest copper. The catch is that you first have to announce your strategy (be it deterministic
or probabilistic) and only then an adversary places the coins on the table. Show that:

(a) If you use a deterministic strategy, you can guarantee no gold coin.

(b) If you use n random coins you can almost certainly get Ω(k) gold coins. What is the
failure probability?

(c) If you use O(log n) random coins, you can guarantee Ω(k) gold coins with probability at
least 1−O( 1

k ).

4. (Know). Let A,B be two distributions taking values in Λ For f : Λ→ Λ′, f(A) (corr. f(B))
denotes the distribution over Λ′ obtained by picking a ∼ A and outputting f(a). Prove that
‖f(A)− f(B)‖1 ≤ ‖A−B‖1 for every function f .

PIT

5. (Mandatory). Prove the Schwartz-Zippel lemma.

If p : Fm → F is a non-zero polynomial of total degree d over a field F and Λ ⊆ F, then
Pra1,...,am∈Λ[p(a1, . . . , am) = 0] ≤ d

|Λ| .

6. (Mandatory). Give a coRP algorithm for Polynomial Identity Testing (PIT). In the proof
work over the finite field Zp for an appropriately random prime p, and prove its correctness

Boolean and Arithmetic Circuits

7. (Mandatory). Prove that almost all function f : {0, 1}n → {0, 1} require circuits of size > 2n

10n ,
i.e.

Pr
f

[
s(f) >

2n

10n

]
−−−→
n→∞

1
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8. (Mandatory). Give an algorithm for addition of two integers represented in binary in AC0

9. (Know). Prove that NC0 ⊆ AC0 ⊆ NC1 ⊆ · · · ⊆ NC = AC ⊆ P

10. (Bonus). Prove that NCk ⊆ Space(O(logk n)). Note the cost of pointers.
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HW 2

Out: 6.11.2018
Due: 19.11.2018

Tail Bounds

1. (Know). Let Xi be i.i.d random variables such that Xi ∼ Ber(p) for some p ∈ (0, 1) and define
X =

∑
iXi, then for 0 < q 6 p:

Pr [X < qn] 6 e−KL(q||p)n

Maximal Independent Set

2. (Mandatory). In class, we derandomized the RNC algorithm for MIS using simplifying (and
unjustified) assumptions. You are now asked to removed the unjustified assumptions.

Show an NC algorithm for MIS that works for the general case. I assume that as part of
the construction you will use a distribution X = X1, . . . , Xn with small support size. Write
precisely:

• What properties you need from X,

• How you construct X,

• Why X has the desired properties, and,

• Why these properties suffice for solving MIS in NC,

3. (Mandatory). Fix a finite field F = Fq. Show how to “naturally extend” the 2UFOHF family
we’ve seen in class for larger independence. I.e.,

• Define k-wise independence, and,

• Show an explicit distribution over (X1, . . . , Xq) that is k-wise independent, each Xi is
distributed over Fq, and has support size qk.

4. (Mandatory). Let V = {0, 1}m andH ⊆ {h : V → V } a two universal family of hash functions.
Fix two sets A,B ⊆ V . Call a hash function h ∈ H ε-good for A,B if∣∣∣∣ Pr

x∈V
[x ∈ A ∩ h(x) ∈ B]− ρ(A)ρ(B)

∣∣∣∣ ≤ ε,

where ρ(C) = |C|
|V | .

Prove that for any A,B ⊆ V , ε > 0,

Pr
h∈H

[h is not ε-good for A,B] ≤ ρ(A)ρ(B)(1− ρ(B))

ε2 · |V |
≤ 1

ε2|V |
.
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Error Correcting Codes

5. (Mandatory). Let C be a linear [n, k, d]q code.

• Show that d = min0 6=x∈C wt(x) Where wt(x) = |{i : xi 6= 0}|.
• Prove the Singleton bound: d 6 n− k + 1.

• Recall the parity code we’ve seen in class Par : {0, 1}k → {0, 1}k+1 where Par(x) =
x ◦
⊕

i xi. Show that Par is a linear code and describe its generator matrix G ∈ Fk+1×k
2 .

6. (Mandatory). In this exercise we will prove two simple (non-matching) upper and lower bounds
on the number of codewords in the best code with distance d. Let Σ be some alphabet and
denote q = |Σ|. Let d ≤ n be integers. We also let Bq(r) = {x ∈ [q]n | wt(x) ≤ r}, the ball
around zero of radius r − 1 in the Hamming weight distance.

• (The Gilbert-Varshamov bound, A lower bound on the number of codewords) Prove that
there exists a distance d code C ⊆ Σn with

|C| ≥ |Σ|n

|Bq(d− 1)|
.

• (The Hamming bound) An upper bound on the number of codewords) Prove that for
any distance d code C ⊆ Σn,

|C| ≤ |Σ|n

|Bq(d−1
2 )|

.

• Use the asymptotic estimates given in class for q = 2 to show that for any 0 < δ < 1/2
there exists a code C ⊆ {0, 1}n with relative distance δ and relative rate r > 1 −
H(δ) − o(1), and every code C ⊆ {0, 1}n with relative distance δ has relative rate r 6
1−H(δ/2) + o(1).

A reminder. If C ⊆ Σn has distance d, then C has relative distance δ = d
n and relative

rate r = log |C|
n log |Σ| . You may use |B2(λn)| ≤ 2H(λ)n and limn→∞

log(|B2(λn)|)
n = H(λ) for any

0 < λ < 1/2.
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HW 3

Out: 27.11.2018
Due: 17.12.2018

Error Correcting Codes

1. (Mandatory). Recall that the Justesen code we’ve constructed in class gave us an
[
n, r2 ,

1−r
21

]
{0,1}

linear code for any 0 < r < 1.

Show that we can pick an r such that in every non-zero codeword the number of zero and one
symbols is somewhat balanced in the sense that there exists some constant 0 < c < 1

2 such

that for any non-zero codeword x ∈ JUS, it holds that 1
2 − c 6

wt(x)
n 6 1

2 + c.

AKS Primality Testing

2. (Mandatory).

• Show that xb − 1 | xa − 1 iff b | a:

– In Z
– In Fp[x] for a prime p

• Using the notation in class, show that for every f ∈ A, f ∈ Pn
p
.

• Using the notation in class, show that n
p ∈ G.

3. For the following question, recall that Φr(x) =
∏
i:(i,r)=1(x − ωir) where ωr is an r-primitive

root of unity.

• (Mandatory). Show that if (m, r) = 1 then Φr | Φr(x
m)

• (Bonus). Say we replace the line in the algorithm

∀1 6 j 6 ` : (x+ j)n = xn + j mod xr − 1

with
∀1 6 j 6 r : (x+ j)n = xn + j mod Φr.

Will the algorithm still work? Prove your answer.

Expanders

4. (Mandatory). For the following, let G = (V,E) be a D-regular undirected graph over n
vertices, let A be the adjacency matrix of G and let λ1 > λ2 > · · · > λn be the spectrum of
A. Prove the following:

• λ1 = D.

• λ2 < D iff G is connected.

• λn ≥ −D. Furthermore, if G is connected, λn = −D iff G is bipartite.
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• If G has no self-loops then there exists a negative eigenvalue λi < 0

5. (Mandatory). The second item from the question above implies that the multiplicity of the
eigenvalue D is 1 iff G is connected. In this question we will show that if we do not require
G to be finite but only locally-finite then this does not necessarily hold.

To that end, show that there exists a regular, undirected, connected graph G = (V,E) of
finite, (even constant) degree D where |V | =∞ such that there exists a non-constant vector
f ∈ Z|V |, f /∈ span{1|V |}, such that Af = Df .

Hint: Consider the 2-regular graph G where V = Z where for any j ∈ Z we have the edges
(j, j − 1) and (j, j + 1)

Deterministic Amplification

6. (Mandatory). Let A be some probabilistic algorithm using n coins with success probability
1+α

2 . For a sequence of coin tosses x1, . . . , xt where xi ∈ {0, 1}n define

MAJ(A, x1, . . . , xt) =

{
1, if

∑
iA(xi) > t/2

0, otherwise
.

We consider two amplification protocols:

(a) One where x1, . . . , xt are chosen uniformly and independently from xi ∈ {0, 1}n.

(b) One where x1, . . . , xt are chosen from a pairwise independent distribution over {0, 1}n.

What is the required t to amplify the success probability 1+α
2 of A(x) to success probability

1− δ of MAJ(A, x1, . . . , xt) in each of these two cases?

In particular does pairwise independent work well when:

• when α = 1
n and we want δ to be a small constant,

• when α is a constant and we want δ to be exponentially small.
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HW 4

Out: 24.12.2018
Due: 7.1.2019

Bias Amplification

1. (Mandatory). Let G be a graph over W = [n] vertices with a normalized adjacency matrix
A and let f : W → F2 be an ε-biased function. As in class, we let Π be the n × n diagonal
matrix Πw,w = (−1)f(w) and let A0 = {w ∈ [n] : f(w) = 0} (define A1 likewise).

Prove that the probability a random walk of length t over G visits A1 an even number of
times minus the probability it visits A1 an odd number of times is:∣∣∣∣1†Π · (A ·Π)t · 1

n
1

∣∣∣∣ ,
where 1 is the all one vector.

Fourier analysis

2. (Mandatory). Let G be a finite Abelian group.

(a) Prove that there are exactly |G| characters of G.

(b) Let Ĝ be the set of characters. Prove that Ĝ is a group.

(c) Prove that G ∼= Ĝ.

3. (Mandatory). Let H be a group and S a set of generators. The Caylely graph C(H,S) is
defined as follows: The vertices are labeled with elements of H, and (a, b) is an edge iff
a = bs−1 for some s ∈ S.

(a) What is C(Zn, {1,−1})? What is C(Zn2 , {e1, , en}) (where ei has 1 in the i-th coordinate
and 0 otherwise)?

(b) Prove that if H is Abelian then the characters of H form an orthonormal basis for
C(H,S). (Please do not cite the result from class, but do the calculation from scratch).

(c) Calculate the eigenvalues and the spectral gap of C(Zn2 , {e1, , en}).
(d) Let S be an ε-biased set. Define the graph G = C(Zn2 , S) and let A be its normalized

adjacency matrix. What are the eigenvectors of A? Prove that G has a spectral gap of
at least 1− ε.

4. (Mandatory). The variational distance between two distributions P,Q over Λ is 1
2

∑
x∈Λ |P (x)−

Q(x)|. A distribution D on {0, 1}n is (k, ε)-wise independent, if for every S ⊆ [n] of cardi-
nality at most k, the marginal distribution of D on S is ε close to uniform in the variational
distance.

Prove that if a distribution D is (k, ε)-wise independent then there exists a distribution X
that is k-wise independent and |X −D| ≤ 2nkε.

Hint: Consider the bias of linear tests of size at most k. Construct X explicitly. If you wish
you can see the easy proof at [1].

8



5. (Mandatory). (due to Swastik Kopparty) Let f, g : {0, 1}n → C. We define their convolution
h = f ? g to be

h(x) = E
y
f(x⊕ y)g(y).

Note that if D1 and D2 are distributions, the distribution D1 ? D2 corresponds to the distri-
bution of d1 ⊕ d2 where d1 ∼ D1 and d2 ∼ D2 are picked independently.

Also, if D is a distribution over Λ we let Col(D) = Prx,x′∈D[x = x′] =
∑

x∈Λ(D(x))2.

(a) Prove that for every S ⊆ [n], ĥ(S) = f̂(S) · ĝ(S).

(b) Let D be an ε-biased distribution, and let D(t) = D ? . . . ? D (t times). Prove that D(t)

is εt-biased and that |Supp(D(t))| ≤
(|Supp(D)|+t

t

)
.

(c) Prove that for any ε-biased distribution D over {0, 1}n, Col(D) ≤ ε2 + 2−n.

(d) Let D be an ε-biased distribution over {0, 1}n. Use the previous items to prove that

|Supp(D)| ≥ Ω
(

n
ε2 log 1

ε

)
.

Hint: Use (c) to derive a lower bound on |Supp(D)| and then choose t accordingly.

6. (Mandatory). A distribution D over Λ has k min-entropy if the largest probability mass given
to any element in Λ is 2−k (i.e., for all a ∈ Λ, Pr(D = a) ≤ 2−k, and for some a it is 2−k).
We denote H∞(D) = k.

For two distributions X1, X2 over {0, 1}n let X1 + X2 denote the distribution over {0, 1}n
obtained by sampling xi ∈ Xi and outputting x1 + x2, where the sum is addition mod 2
coordinate wise.

• Say X1, X2 are two independent distributions over {0, 1}n. Prove that H∞(X1 +X2) ≥
H∞(X1).

• Let X1, . . . , Xt be independent distributions over {0, 1}n such that each Xi is ε-close
(in the variational distance) to a distribution having min-entropy k. Prove that X =∑t

i=1Xi is εt-close to having min-entropy k − log 1
1−ε .

• (Dori Medini) Find a distribution X that is ε = 1/2 close to uniform and X1 + . . .+X1,
where X1, . . . , Xt are i.i.d with marginal distribution X, is also ε close to uniform.
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