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No non-uniform lower bounds implies PIT is hard and no derandomization

Amnon Ta-Shma and Dean Doron

Kabanets and Impagliazzo showed that derandomizing polynomial identity-testing (henceforth PIT)
is essentially equivalent to proving non-uniform super-polynomial lower bounds on a uniform func-
tion. Specifically, we will prove that if PIT ∈ P then either NEXP 6⊆ P/poly or PERM /∈ nuANC2,
where nuANC2 is the arithmetic version of non-uniform NC and will be defined soon.

We begin by some preliminaries.

1 Preliminaries

1.1 Arithmetic circuits

We consider arithmetic circuits. In this model, inputs are variables or constants from a field and
the computation is performed using + and ×. Formally:

Definition 1. An arithmetic circuit C over the field F and the set of variables X = x1, . . . , xn is a
directed acyclic graph as follows. The vertices of C are called gates. Every gate in C of in-degree 0
is labeled by either a variable from X or a field element from F (those are the input gates). Every
other gate in C is labeled by either + or × and has in-degree 2. The gate of out-degree 0 is called
the output gate. The size of C is the number of edges in C.

An arithmetic circuit computes a polynomial in the natural way. Also, every polynomial in F[X]
can be computed by an arithmetic circuit.

We define VP, which is the algebraic analogue of NC.

Definition 2. A family of polynomials {fn} over F is p-bounded if there exists some polynomial
t such that for every n, the number of variables of fn is n, the total degree of fn is at most t(n)
and there is an arithmetic circuit of size at most t(n) computing fn. The class VPF consists of all
p-bounded families over F.

An important family of polynomials is the determinant DETn over n×n matrices. It is an exercise
to show that indeed {DETn} ∈ VP. In fact, the determinant is in some sense complete for the
class VP. More accurately, for any family {fn} ∈ VP there exists a function t : N → N satisfying
t(n) = nO(logn) such that fn is a projection of DETt(n). For the exact definitions, see [4, Chapter
1].

In the Boolean world we can think of IntDet as the problem of computing the determinant of
an integer matrix. It is known that IntDet ∈ NC2 (following Csansky’s algorithm [2]) and also
that many important problems in linear-algebra are NC1 Turing reducible to IntDet (the interested
reader is referred to [1]). The class DET comprise the languages that are NC1 Turing reducible to
IntDet.

We also denote AP/poly for the class of non-uniform arithmetic P, i.e., the class of all function over
F that can be solved by a non-uniform family of polynomial-size arithmetic circuits. Another name
that fits the class is nuAP.
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1.2 Polynomial identity testing

We will consider multivariate polynomials over some integral domain, e.g., the ring Z of integers.
We say that a polynomial is identically zero if all its coefficients are zero. There are two seemingly
similar problems we can consider:

• The problem of testing whether a given polynomial vanishes over a given domain, and,

• The problem of testing if a given polynomial is identically zero.

In spite of the external resemblance between the two problem they are in fact quite different. We
are concerned with the latter.

Definition 3. The problem PIT is defined as follows. Given as an input an arithmetic circuit C
computing a polynomial p(x1, . . . , xn) over a field F (or a ring R), decide if p ≡ 0.

1.3 The permanent

Recall that the permanent of an n× n matrix A of integers is defined as

Perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i),

where Sn is the set of all permutations of [n]. We define Perm as the problem of computing the
permanent of a matrix over the integers. Perm is #P-complete under polynomial-time reductions
(this is Valiant’s theorem [5]).

The (seemingly) hardness of the permanent is exemplified in the algebraic world as well: The
permanent polynomial is a complete problem for the VNP (w.r.t. uniform projections). Again, we
remark that the notation VNP is misleading as it suggests that VNP is the arithmetic analogue
of NP. Instead, it is the arithmetic version of #P as is witnessed by the fact that the permanent
function is complete for it. It is conjectured that VP 6= VNP. The corresponding conjecture in the
Boolean world would be that DET 6= P#P, which is almost as saying NC2 6= P#P.

2 Testing an arithmetic circuit for the permanent

We prove:

Theorem 4. If Perm ∈ AP/poly and PIT ∈ P then PPerm ⊆ NP.

The proof idea is as follows. First, since we assume Perm ∈ AP/poly there exists a small (polynomial
size) arithmetic circuit for the permanent. We can therefore guess such a circuit. If we could find a
way to verify that our guess is correct, we could have used the circuit to simulate the oracle calls to
the Perm function and we are done. For the verification step we use the downward self-reducibility
of the permanent function together with our assumption that PIT ∈ P.

Proof. Let L ∈ PPerm and let M be the TM with oracle calls to Perm that decides it in time p(n)
on inputs of length n, for some polynomial p. Also, let q be the polynomial for which there are
circuits of size q(n) that solve the permanent of an n× n matrix.
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We describe a nondeterministic TM M ′ that decides L. M ′ on input x of length n:

1. For i = 1 to p(n), guesses circuits {Ci} with size at most q(i) ≤ q(p(n)), where each Ci has
input size i.

2. Validate that every Ci solves the permanent of i× i matrices, in a way that we soon show.

3. If so, simulate M on x, evaluating each oracle call with the appropriate circuit. Note that as
the running time of M is at most p(n), it cannot make longer queries to the oracle.

4. Answer according to M .

We now show how to do (2) by induction, and this will conclude our proof. Verifying C1 is trivial.
For i ≥ 2, assume that Ci−1 is correct, and note that for a matrix A of size i× i,

Perm(A) =
i∑

k=1

A1,k · Perm([A]1,k)

where [A]1,k is the (1, k)-th minor of A. Thus, it is enough to verify the following polynomial
identity:

Ci(A)−
i∑

k=1

A1,k · Ci−1([A]1,k) ≡ 0.

Given the circuits Ci and Ci−1 of size at most q(i), there is a circuit of size poly(q(i)) that computes
the l.h.s. of the equivalence. Hence, we can use the polynomial-time algorithm for PIT to verify
the equation.

3 PIT ∈ P implies a non-uniform lower bound

The highlight of our lecture is the following theorem:

Theorem 5 ([3]). If PIT ∈ P then either NEXP 6⊂ P/poly or Perm /∈ AP/poly.

Proof. Assume towards contradiction that the following three conditions hold:

• PIT ∈ P.

• NEXP ⊆ P/poly.

• Perm ∈ AP/poly.

As NEXP ⊆ P/poly,
NEXP = MA ⊆ Σ2 ⊆ PH ⊆ P#P ⊆ PPerm,

where we have used Lecture 6 – that NEXP ⊆ P/poly implies NEXP = MA, Toda’s theorem that
PH ⊆ P#P and Valiant’s theorem that Perm is #P-complete.

As we assume Perm ∈ AP/poly and PIT ∈ P, by Theorem 4 we have that PPerm ⊆ NP. Thus,

NEXP ⊆ PPerm ⊆ NP.

However, this contradicts the non-deterministic time hierarchy.
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