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1 Designs and Weak Designs

Definition 1 (A design [1]). A family of sets Z1, Z2, . . . , Zm ⊆ [t] is a (`, a) design if

1. For all i ∈ [t], |Zi| = `, and

2. For all i 6= j, |Zi ∩ Zj | ≤ a.

Claim 2. For every `,m there exists a (`, a = logm) design Z1, . . . , Zm ⊆ [t] where t = O(`2).

Proof. Assume w.l.o.g. that ` is a prime power. Consider the numbers in [t] as pairs of elements
in F`. I.e., identify [t] with {(x, y) | x, y ∈ F`}.
For every polynomial p ∈ F`[X] of degree at most a, define the set of all evaluations Sp =
{(x, p(x)) | x ∈ F`}. There are at least `a+1 ≥ m such polynomials, so all that is left is to ob-
serve that:

1. For every p, |Sp| = `.

2. For every p1 6= p2, |Sp1 ∩ Sp2 | ≤ a.

Therefore, every m sets from {Sp}p is a (`, a) design.

In fact, a slightly more refined notion that already suffices is of a weak design:

Definition 3 (Weak design [2]). A family of sets Z1, . . . , Zm ⊆ [t] is a weak (`, ρ) design if

1. For all i ∈ [t], |Zi| = `, and

2. For all i 6= j,
∑

j<i 2|Zi∩Zj | ≤ ρ · (m− 1).

We cite without a proof:

Lemma 4 ([2]). For every `,m and ρ > 1, there exists a weak (`, ρ) design Z1, . . . Zm ⊆ [t] with

t =
⌈

`
ln ρ

⌉
· `. Such a family can be found in time poly(m, t).

2 The Nisan-Wigderson generator

We would like to construct a pseudo-random generator (PRG) fooling a class of circuits (such as
AC0, P/poly = SIZE(poly(n)) or even SIZE(2

√
n)). A PRG against a class of functions F is a

function G : {0, 1}` → {0, 1}n such that no function f ∈ F ε-distinguishes G(U`) from the uniform
distribution.
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Throughout the lectures, given f : {0, 1}n → {0, 1}, we say that Size(f) > s if no family of circuits
of size s = s(n) computes f correctly, and that Sizeε(f) > s if no family of circuits of size s = s(n)
copmutes f correctly on more than ε-fraction of the inputs.

The existence of a PRG implies the existence of a hard function:

Theorem 5. If there exists a PRG G : {0, 1}` → {0, 1}s(`
c) against circuits of size s(`c) for some

constant c and ` ≤ s(`) ≤ 2` running in time expnential in ` then there exists a function f in EXP
that is average-case hard for circuits of size s(`c).

The proof of this lemma is left as an exercise.

The converse is much more difficult to achieve and is our goal today. Nisan and Wigderson described
such a black-box reduction. We are given some f : {0, 1}` → {0, 1} (and we think of f as a “hard”
function for some computation class). Let S1, . . . , Sm ⊆ [t] be a (`, 2) weak design that is guaranteed

by Lemma 4. The generator Gf`,m : {0, 1}t → {0, 1}m is given by:

Gf`,m(y) = f(y|S1), . . . , f(y|Sm).

We prove that:

Theorem 6 ([1]). Suppose f : {0, 1}` → {0, 1} is a function such that no circuit of size s can

compute f correctly on more than a 1
2 + ε

m fraction of the inputs. Then, Gf`,m is a PRG against

circuits of size s−m2 with error ε.

The NW construction and also the later improvements are black-box constructions in the following
sense: They start with an explicit function f : {0, 1}` → {0, 1} and construct from it a new function
Gf : {0, 1}t → {0, 1}m (where the notation is meant to indicate that G makes black-box oracle calls
to f).

Moreover, the proof of Theorem 6 will be by “black-box reconstruction”, namely, the proof describes
an efficient “reconstruction” oracle Turing Machine R such that for every boolean function f :
{0, 1}` → {0, 1}, if there is a small circuit C that ε-distinguishes Gf (Ut) from uniform, then there
exists a short advice string z = A(f) such that RC(z, i) computes f(i). Formally,

Definition 7 (Reconstructive PRG). We say the NW generator Gf`,m has (p, q) reconstruction
with:

• Advice function A = A(D, f), and,

• Reconstruction oracle circuit R,

if for every f : {0, 1}` → {0, 1} and every distinguisher D : {0, 1}m → {0, 1} for Gf`,m with
advantage p, we have that

Pr
y∈{0,1}`

[RD(A(D, f), y) = f(y)] ≥ q.

One thing to notice is that the advice function does not depend on the input x. Thus, given f and
D we can hardwire the value A(D, f) and it is not counted in the circuit complexity.
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Theorem 8. For every p > 0, Gf`,m has (p, q = 1
2 + p

m) reconstruction with a reconstruction circuit

R ∈ SIZE(O(m))D.

Proof. (Sketch). Suppose D : {0, 1}m → {0, 1} distinguishes Gf`,m with advantage p. By a hybrid
argument there is an 1 ≤ i ≤ m where we get p

m advantage. There is a way to fix the bits of y|Si

so the advantage is preserved. Similarly, there is a way to fix the output bits j > i so that the
advantage is preserved. The advice functions A(f) contains:

• The index 1 ≤ i ≤ m,

• The fixing of y|Si
, i.e., the fixing of the seed y outside Si,

• A string w ∈ {0, 1}m−i−1 that fixes all the bits after i so that the distinguishing gap is
preserved,

• For every j < i, and every string w ∈ {0, 1}|Sj∩Si|, the values f(σ), where σ is the restriction
of y to Si, when y outside Si is fixed as before, and y restricted to Si is σ.

Notice that the advice function contains logm + t + m +
∑

j<i 2|Si∩Sj | = O(m) bits. We remark
that some parts of the advice can be chosen at random (instead of being given as advice), e.g., the
second and third items above.

We now describe the circuitR. On input x ∈ {0, 1}m, the first bits are fed with f(x|S1), . . . , f(x|Si−1)
computed by circuits implementing their truth tables, where the bits outside Si are fixed according
to the advice. The m− i− 1 bits following the i-th bits are fixed according to the advice as well.
D is then applied, where the i-th bit is the input to the circuit. By the discussion above we have
that Prx|Si

∈{0,1}` [R(x|Si) = f(x|Si)] >
1
2 + p

m . Also, the size of R is O(m) + |D|.

With that we can prove Theorem 6:

Proof. Assume towards contradiction that Gf`,m is not a PRG against circuits of size s −m2 with

error ε. Hence, there exists a size s −m2 circuit C such that |C(Um) − C(G`,m(Ut))| > ε. This
implies that C is a distinguisher for G`,m with advantage ε, and by Theorem 8 we have a circuit R
that computes f correctly on more than 1

2 + ε
m of the inputs. As |R| = |C| + O(m) ≤ s, this is a

contradiction to the fact that Size 1
2
+ ε

m
(f) > s.
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