
Intro to Derandomization Lecture Notes - 15.10.2018

0368-4159: First Course in Derandomization 15/10/2018 – Lecture 1

The Perfect Match (PM) Problem
Lecturer: Amnon Ta-Shma

Scribe: Dori Medini

Given a bipartite graph G = (V,W,E) s.t. |V | = |W | = n, the Perfect Match (PM) problem is a decision
problem L s.t. a bipartite graph G ∈ L ⇐⇒ G has a perfect matching; i.e. a subset E′ ⊆ E s.t. every
x ∈ V touches exactly one edge e ∈ E′.
We present the notions of parallel and concurrent computation, and construct a randomized algorithm
with poly-logarithmic runtime for both the decision problem (does G have a perfect matching?) and the
construction problem (construct a perfect matching or return null if no match exists).

1 The CREW Model

Definition 1 Given a language L (some decision problem) and some input x ∈ {0, 1}n, the PRAM model
assumes we have a polynomial p(n) number of CPUs and a polynomial q(n) sized shared memory. In every
’clock cycle’, each CPU may (in parallel):

1. Read a cell of the shared memory

2. Perform some (short, constant time) local computation

3. Write to a cell in the shared memory

Definition 2 The CREW model stands for Concurrent Reads Exclusive Writes, which simplifies the
PRAM model somewhat by exempting us from discussing race conditions.

Example 3 Matrix product.

For some A,B ∈ Rn×n we can take n2 CPU cores; core (i, j) will compute:

(AB)ij =
n∑
k=1

AikBkj

As these all run in parallel and each core computes n sums and products, with n2 cores we get a parallel
runtime of O(n). This is still polynomial runtime; a naive non-parallel approach also runs in polynomial
(O(n3)) time. Can we do better?

Fix some i, j. Core (i, j) must compute
∑
k AikBkj ; if we use n cores to compute the n products in parallel

and then perform the addition in a tree-like way, we can improve the runtime to O(log(n)). To illustrate,
assume n = 2r for some r ∈ N:

1

Intro to Derandomization Lecture Notes - 15.10.2018

(AB)ij

∑n
k= 1

2n+1AikBkj

...

...

AinBnj

...

∑ 1
2n

k=1AikBkj

......

Ai3B3j +Ai4B4j

Ai4B4jAi3B3j

Ai1B1j +Ai2B2j

Ai2B2jAi1B1j

rth cycle

(r − 1)th cycle

...

2nd cycle

1st cycle

The depth of the above computation is r = O(log(n)). By adding n cores per previous core, we now have a
parallel logarithmic-time algorithm utilizing O(n3) cores; much better than linear time.

1.1 Remarks:

• The above product/sum tree can be described as a circuit; the complete circuit that computes the
matrix product is of size O(n3) and depth O(log(n))

2 Decision problem

Tne next algorithm is from [2].

2.1 Algorithm

PM is the decision problem that given G = (V,E) accepts ⇐⇒ G has a perfect matching. We will discuss
only those cases where G is a bipartite graph; we shall henceforth denote G = (V,W,E) where |V | = |W | = n
are the two sides (node sets) of the graph.

Remark 4 The problem of counting how many such perfect matchings exist is #P -complete!

Our algorithm begins with the definition of the following matrix of variables:

Mij =

{
0 (i, j) 6∈ E
xij (i, j) ∈ E

where xij denote n2 distinct variables. The algorithm does as follows:

1. For every i, j fix some random aij ∈ {1, 2, 3, ..., 2n}

2. Substitute every xij in M as aij (zero entries remain zero) to create the matrix A:

Aij =

{
0 (i, j) 6∈ E
aij (i, j) ∈ E

3. Compute det(A)

2

Intro to Derandomization Lecture Notes - 15.10.2018

4. Accept ⇐⇒ det(A) 6= 0

Definition 5 Given a matrix A ∈ Rn×n, the determinant det(A) is defined:

det(A) =
∑
π∈Sn

sign(π)

n∏
i=1

Ai,π(i)

where Sn denotes the set of all permutations on the set {1, ..., n}.

Proposition 6 If there is no perfect matching, the above algorithm always rejects.

Proof: Assume there is no perfect matching and let π ∈ Sn. If, for every i, we have (i, π(i)) ∈ E, then
the set {(i, π(i)) : 1 6 i 6 n} is a perfect matching; hence there must exist some i s.t. (i, π(i)) 6∈ E and

therefore Mi,π(i) = 0 by definition. As such, for any ~a = (a11, ..., ann) ∈ {1, 2, ..., 2n}n2

chosen at step 1 of
the algorithm:

n∏
j=1

Aj,π(j) = 0 ·
∏
j 6=i

Aj,π(j) = 0

This is true for any π ∈ Sn, so for any ~a chosen:

det(A) =
∑
π∈Sn

sign(π)

n∏
i=1

Ai,π(i) =
∑
π∈Sn

sign(π) · 0 = 0

and the algorithm will reject. �

Proposition 7 If a perfect matching exists, the algorithm accepts with probability 1
2 or better.

To prove this proposition we recall the following lemma:

Lemma 8 (Schwartz-Zippel lemma) Given a field F , a subset A ⊆ F and a polynomial 0 6≡ p ∈ F [x1, ..., xm]:

Pr(a1,...,am)∈Am(p(a1, ..., am) = 0) 6
deg(p)

|A|

Note that it is important that p 6≡ 0!

Proof (Prop. 7): If a perfect matching {(ik, jk) : 1 6 k 6 n} exists, it can be defined by some per-
mutation π(ik) = jk. Fix such a permutation π.

Observe det(M). As M is a matrix of variables, det(M) is a polynomial in n2 variables:

det(M) = p(x11, ..., xnn)

By the definition of the determinant as stated above, one of the summed elements is:

sign(π)

n∏
i=1

xi,π(i)

This term is not zero (as π defines a perfect matching) and cannot be canceled out by any other term of p
(because different permutations define different variables appearing in the term), so we know p 6≡ 0. We also
know that each non-zero term is a product of n variables, so deg(p) = n. By applying SZ-lemma:

Pr(a11,...,ann)∈{1,2,...,2n}n2 (p(a11, ..., ann) = 0) 6
deg(p)

|{1, 2, ..., 2n}|
=

n

2n
=

1

2

3

Intro to Derandomization Lecture Notes - 15.10.2018

This is precisely the probability of rejecting! Step 1 of the algorithm randomly chooses a vector ~a ∈
{1, ..., 2n}n2

and rejects ⇐⇒ det(A) = p(~a) = 0. �

It remains to be shown that we may compute det(A) efficiently. Note that up to this point we did not
introduce parallelism (maybe only to generate the O(n2) random values of A in logarithmic time); paral-
lelism will be employed heavily to compute the determinant.

Although we will not prove this method formally, a general outline and ideas employed will be presented.

2.2 Computing det(A) in parallel

We give highlights of Csanky’s algorith [1]. Denote λ1, ..., λn as the eigenvalues of A. We know det(A) =∏
i λi, so det(A) is symmetric in λ1, ..., λn.

The space of symmetric functions on λi can be expressed using the following basis of symmetric functions:

n∑
i=1

λi∑
i<j

λiλj∑
i<j<k

λiλjλk

...
n∏
i=1

λi

However, there exists another basis for all symmetric functions:

n∑
i=1

λi = Tr(A)

n∑
i=1

λ2
i = Tr(A2)

n∑
i=1

λ3
i = Tr(A3)

...
n∑
i=1

λni = Tr(An)

This can be parallelized easily by computing the matrices Ai and their trace values (poly-logarithmic time,
using the example above with matrix products); using this basis to compute

∏
λi = det(A) can also be

parallelized and det(A) can be computed in parallel, logarithmic time.

Remarks:

• It is yet unknown if there exists a deterministic, parallel polylog-time algorithm for the PM problem

• Why do we not simply compute p(~x) = det(M) and test if p ≡ 0?

p has n! terms; testing if p ≡ 0 implies we know all n! terms are zero. Merely describing such a
polynomial in memory would require Ω(n!) memory!

4

Intro to Derandomization Lecture Notes - 15.10.2018

Also, if we could describe p fully, we could count the number of non-zero terms and the result would
be the number of perfect matchings on the graph - computation of which is a #P -complete problem
as remarked in the previous section.

3 Construction problem

Given a bipartite graph G = (V,W,E), we would like to construct a perfect matching (if such a matching
exists). The following sequential approach could be applied:

1. Set X ← φ

2. Check if G has a perfect matching. If not, return ”no PM”

3. Choose some e ∈ E and define G′ = (V,W,E \ {e}).

4. Check if G′ has a perfect matching:

• If so, set G← G′ and return to step 3.

• Otherwise:

(a) Set X ← X ∪ {e}
(b) Remove e and both the vertices it touches from G

(c) Return to step 3

This works, but requires polynomial runtime and is sequential in execution (no obvious way to parallelize).

However, if we know that there is precisely one perfect matching X, we can improve on this algorithm
by testing all edges e ∈ E in parallel: if there is no perfect match without e then it must be e ∈ X, and if
there is a perfect match without e then by uniqueness of X it follows that e 6∈ X.

Applying the efficient parallel algorithm for the decision problem in |E| separate instances, we can effi-
ciently construct a perfect matching.

We must now reduce the problem to the case where there is at most one perfect matching.

3.1 The Isolation Lemma

Tne Isolation Lemma is from [2].

Lemma 9 (The Isolation Lemma) Let X be some set of n elements and fix some Ω ⊆ 2X (where 2X =
{S : S ⊆ X}). Let m ∈ N. For a given weight function w : X → [m] (where [m] = {1, 2, ...,m}) define
the natural extension w : 2X → {1, ...,m} as w(S) =

∑
x∈S w(x). We say the minimal set in Ω is uniquely

defined if there exists a unique set S ∈ Ω s.t. w(S) = min{w(S′) : ∅ 6= S′ ∈ Ω}.
When w is sampled uniformly over all possible weight functions:

Prw:X→[m](the minimal set in Ω is uniquely defined) > (1− 1

m
)n

Example 10 Ω = 2X .

In this case there are 2n − 1 sets to consider (disregarding the empty set, the definition of uniquely defined
minimum does not consider the empty set) but values of any w range in 0 < w(S) 6 n · m; many more
sets than possible weight values. However, as w(x) > 1 for any x ∈ X, if S1 (S2 then w(S1) < w(S2).
When Ω = 2X this means we should only consider singletons (sets of cardinality 1) and the isolation lemma
becomes intuitive (and easy to prove).

5

Intro to Derandomization Lecture Notes - 15.10.2018

Example 11 Ω = {S ⊆ X : |S| = 1
2n} (n even).

We get |Ω| =
(
n
1
2n

)
≈ 2n√

n
, which is still a very large number of sets;. Intiuitively, we might expect that each

possible value is obtained many times. To see why we should be more cautious, consider what happens if
we toss 2n independent coins, each taking a random value in {1, . . . ,m}. Then, we expect the result to be
heavily centered around the mean 1

2m. The questions whether we get a unique minimal (or maximal) values
is then delicate. However, in our case the 2n values are dependent (only the wights to the base elements are
independent). The isolation lemma tells us we get a unique minimum/maximum with a good probability.

Example 12 Given a bipartite graph G = (V,W,E) where |V | = |W | = n, denote X = E and set:

Ω = {Ẽ ⊆ E : Ẽ is a perfect matching}

By definition, every S ∈ Ω satisfies |S| = n. By applying the isolation lemma, if we randomly set values
w(e) ∈ [2n] for every e ∈ E, with constant probability there exists a perfect matching in Ω that is minimal
and unique.

Proof (The Isolation Lemma): Denote W = {w : X → [m]} (the set of all weight functions) and
define a ’good’ subset of W :

Good = {w ∈W : the minimal set is uniquely obtained}

We call a weight function w non-borderline if w(x) > 2 for every x ∈ X and denote by C the set of all
non-borderline weight functions.

It’s easy to see that |C| = (m− 1)n, and the density of C in W (which we denote ρW (C)) is:

ρW (C) =
|C|
|W |

=
(m− 1)n

mn
= (1− 1

m
)n

We shall now prove |Good| > |C| by defining a 1-1 mapping φ : C → Good. Given some w ∈ C set some
S ∈ argminS′∈Ω(w(S′)) (S is not necessarily unique), define:

w̃(x) =

{
w(x)− 1 x ∈ S
w(x) x 6∈ S

Note that w̃ : X → [m] is well defined because w ∈ C and therefore w(x) > 2. It’s easy to see that S is
unique and minimal in Ω relative to w̃: S is the only set that has had |S| subtracted from it’s previous
value respective to w, other than strict supersets of S which must have strictly larger weights. By choosing
a minimal set S for every w ∈ C, the mapping φ(w) = w̃ is a well defined mapping φ : C → Good.

Given some w̃ ∈ Good, the minimal set S ∈ Ω is unique respective to w̃; by defining:

w(x) =

{
w̃(x) + 1 x ∈ S
w̃(x) x 6∈ S

we get a uniquely defined source w s.t. φ(w) = w̃, proving φ is 1-1 and therefore |Good| > |C|. Finally:

Prw∈W (Minimal S ∈ Ω is unique) = ρW (Good) =
|Good|
|W |

>
|C|
|W |

= (1− 1

m
)n

�

6

Intro to Derandomization Lecture Notes - 15.10.2018

3.2 Algorithm

How do we find a perfect matching?

Given the matrix of variables M from section 2.1, replace each xij by 2wij after randomly sampling n2

values wij ∈ [2n]. We’ll get:

det(M) =
∑
π∈Sn

sign(π)

n∏
i=1

Mi,π(i)

Recall that if π 6∈ PM (the permutation π doesn’t define a perfect matching (i, π(i))) then
∏
Mi,π(i) = 0;

otherwise we get
∏
Mi,π(i) =

∏
xi,π(i):

=
∑
π∈PM

sign(π)

n∏
i=1

xi,π(i)

=
∑
π∈PM

sign(π)

n∏
i=1

2wi,π(i)

=
∑
π∈PM

sign(π)2w(π)

where w(π) is the weight of the perfect matching defined by π. The isolation lemma tells us that with a
good probability the minimal weight matching is unique.

Also note that if we observe the binary representation of det(M), assuming there is a minimal unique perfect
matching π then 2w(π) is the smallest value in the sum and it appears exactly once, so w(π) is the index of
the least significant set bit in the binary representation of det(M).

We arrive at the following algorithm:

1. Set S ← φ

2. Choose (in parallel) random values wij ∈ [2n]

3. Replace xij ← 2wij in M and calculate det(M)

4. Check the least significant set bit i in the binary representation of det(M)

5. In parallel, for each e ∈ E remove e from the graph, construct the new M ′ and repeat steps 3 and 4
(do not change w) to get i′:

• If i′ 6= i, add e to S

6. Output S

As mentioned before the algorithm, at step 4 we know i is equal to the weight of the unique minimal perfect
matching (assuming it’s unique).

If we remove some e ∈ π (where π is the minimal perfect matching) from G, the new minimal value must be
greater than i because π was unique in reaching i; so if i′ 6= i then this implies e ∈ π. This proves S ⊆ π.

If we remove some e 6∈ π from G, then i′ = i because no new matchings were created so π ⊆ S, and
the returned set S is a perfect matching!

If the minimal set is not unique, the resulting S may not be a perfect matching (this can be tested during
runtime in parallel O(1) time). However, as the probability of sampling a weight function that induces a
unique minimal set is constant, by running the entire algorithm in a polynomial number of separate instances
and simply choosing any PM one of them outputs, we can greatly reduce the probability of outputting ”no

7

Intro to Derandomization Lecture Notes - 15.10.2018

PM” when a PM exists (reduce probability of false negatives to almost zero).

Steps 1-4 can be done in parallel, logarithmic time, as shown previously. Step 5 is one more parallel it-
eration of steps 3-4, yielding a logarithmic runtime for construction of a perfect matching!

Remarks:

• Step 5 of this algorithm improves upon the sequential approach presented in section 1.3 by parallelizing
all checks for each e ∈ E. This became possible once identified a unique solution to search for - the
original problem has no ’minimality’ requirement.

References

[1] Laszlo Csanky. Fast parallel matrix inversion algorithms. In Foundations of Computer Science, 1975.,
16th Annual Symposium on, pages 11–12. IEEE, 1975.

[2] Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is as easy as matrix inversion. In
Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages 345–354. ACM,
1987.

8

	The CREW Model
	Remarks:

	Decision problem
	Algorithm
	Computing det(A) in parallel

	Construction problem
	The Isolation Lemma
	Algorithm

