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Small Bias

Lecturer: Amnon Ta-Shma

Scribe: Dean Doron

1 The Fourier transform

Given a finite set A, the set CA = {f : A→ C} is a vector space of dimension |A| over C. There
is a ”natural” basis for this vector space. In this lecture we present another, very useful, basis for
this vector space when A is a commutative group. We then focus on the case when A = Zn2 , i.e., on
representations of boolean functions.

1.1 Over general domains

Let G be a finite group with operation + and identity 0. Then, the group algebra C[G] is the set
of all functions f ∈ C[G]. Obviously, it is a vector space on G over the field C of dimension |G|
and a natural basis for C[G] is

1g(x) =

{
1, x = g
0, otherwise

for every g ∈ G. It is also an inner-product space under the inner product

〈f1, f2〉 = E
x∈G

f1(x)f2(x) =
1

|G|
∑
x∈G

f1(x)f2(x),

and it is easy to see that the basis {1g}g∈G is an orthogonal basis under this inner product. Often,
one writes g instead of 1g and in this notation an element f ∈ C[G] is represented as

∑
g∈G agg

(which is often the notation used in quantum computation).

We now introduce another basis, that contains only functions that are homomorphisms from G to
C×.

Definition 1. A character of the finite group G is a homomorphism χ : G→ C×, i.e., χ(x+ y) =
χ(x)χ(y) for every x, y ∈ G, where the addition is the group operation in G, and the multiplication
is the group operation in C×.

We have the following easy facts:

Claim 2. Let G be a finite group. Then:

1. χtrivial(x) = 1 for every x ∈ G is a character. It is called the trivial character.

2. If χ1 and χ2 are characters of G then so is χ1 · χ2 (where χ1 · χ2(x) = χ1(x)χ2(x)).

3. For every character χ of G and x ∈ G, |χ(x)| = 1 (the absolute norm is of course in C). In
particular, if we define χ1(x) = χ1(x), then χ1 is also a character and χ · χ = χtrivial.
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4. This implies that Ĝ = {χ ∈ C[G] | χ is a character} is an Abelian group, with identity as in
item (1), multiplication as in item (2) and inverse as in item (3).

5. Let χ be a non-trivial character. Then, E[χ] = 0. This means that every non-trivial character
is orthogonal to the trivial character.

We can then show:

Claim 3. Let G be a finite group. The set of all characters of G is orthonormal.

Proof. First, note that 〈χ, χ〉 = E[|χ|2] = 1. Next, take χ1 and χ2 be two distinct characters of G.
Then, 〈χ1, χ2〉 = E[χ1χ2]. However, χ1χ2 is itself a character, and χ1χ2 = χ−1

1 χ2 6≡ 1 since they
are distinct. Thus, E[χ1χ2] = 0.

As a consequence, G has at most dim(C[G]) = |G| characters.

We will soon see that when G is Abelian, Ĝ has a full set of characters. The resulting orthonormal
basis for G[C] is called the Fourier basis, and the linear transformation between the natural basis
and the Fourier basis is called the Fourier transform. Thus, every f ∈ G[C] can be (uniquely)
written as f =

∑
S f̂S · χS , where χS run over all characters in Ĝ. The coefficients f̂S are called

the Fourier coefficients of f .

Let us see some examples.

For G = Z2, it is easy to check that χ1 ≡ 1 and χ2(x) = (−1)x are characters (and we know that
there are no more than 2). Next consider G = Zm with addition modulo m. If χ is a character, and

x ∈ G, then χ(x)m = χ(mx) = χ(0) = 1, hence, χ(x) is an m-th root of unity. Denote ω = e
2πi
m .

For 0 ≤ j < m, define χj : Zm → C by χj(x) = ωjx. It is easy to see that these are distinct

characters of Zm and since we have m of them, they are all the characters and |Ĝ| = |G|.
Let f : Zm → C. By now, we know that its Fourier expansion is given by f(n) =

∑m−1
k=0 f̂kω

kn. If

we treat f and f̂ as vectors in Cm, we get

f =


ω0·0 ω0·1 · · · ω0·(m−1)

ω1·0 ω1·1 · · · ω1·(m−1)

...
...

. . .
...

ω(m−1)·0 ω(m−1)·1 · · · ω(m−1)·(m−1)

 · f̂ ,
and the above matrix is called the Fourier matrix.

We now consider group products. Say (A, ·), (B, ·) are two groups. A and B are not necessarily
Abelian, and we denote their operation by · rather than + to (somewhat) distinguish them from
the Abelian case. Let G = A×B (i.e., the group operation in G is (a1, b1) ·(a2, b2) = (a1 ·a2, b2 ·b2)).
For f ∈ C[A] and g ∈ C[B], define f ⊗ g ∈ C[A×B] by (f ⊗ g)(a, b) = f(a)g(b). Then:

Claim 4. If f ∈ Â and g ∈ B̂ then f⊗g ∈ Â×B. Also, all pairs fi ⊗ gj for fi ∈ Â and gj ∈ B̂
are distinct.

Back to the Abelian case, we see that if A and B are finite Abelian groups than Claim 4 gives us
|A| · |B| = |A×B| characters, and so we have a full set of characters. As every Abelian group can
be decomposed as a product of cyclic groups, we have:
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Exercise 5. Let G be a finite Abelian group. Then G ' Ĝ.

So what are the characters of G = Zn2 = Z2 × . . . × Z2? By the above discussion, for every
α = (α1, . . . , αn) ∈ Zn2 we have the character

χα(x) = (χα1⊗ . . .⊗χαn)(x1, . . . , xn) =
∏
i

χαi(xi) =
∏
i

(−1)αixi = (−1)
∑
i xiαi .

Equivalently we could say that for every S ⊆ [n] there is the character χS(x) = (−1)
∑
i∈S xi . The

trivial character is the character of the empty set. Parity is the character of the full set (more
precisely, (−1)parity) and every function f : {0, 1}n → C can be written as

f(a) =
∑
S⊆[n]

f̂SχS(a) =
∑
S⊆[n]

f̂S · (−1)〈1S ,a〉.

We also see that the linear transformation converting the natural basis to the Fourier basis or vice
versa, is the Hadamard matrix.

1.2 Some useful properties of the Fourier transform

Theorem 6. For any f, g : G→ C,

• f̂S = 〈χS , f〉.

• (Parseval’s Theorem) 〈f, f〉 =
∑

S |f̂S |2.

• (Plancherel’s Theorem) 〈f, g〉 =
∑

S f̂S ĝS.

For example, let us take f : {0, 1}3 → {0, 1} to be the majority function. Verify that f̂(∅) = 1
2 ,

f̂({1}) = f̂({2}) = f̂({3}) = −1
4 , f̂({1, 2}) = f̂({1, 3}) = f̂({2, 3}) = 0 and f̂({1, 2, 3}) = 1

4 . Also,
you can check that Parseval’s theorem holds, as 〈f, f〉 = 1

2 .

Another useful property (used, e.g., in the fast FFT algorithm for multiplying two polynomials)
is that convulsion in the standard basis is transformed to coordinate-wise product in the Fourier
basis.

Definition 7. Let f, g : G→ C. Define F ∗ g : G→ C by

f ∗ g(a) = E
(x,y)∈G×G:
x+y=a

f(x)g(y) = E
x∈G

f(x)g(a− x).

Claim 8. f̂ ∗ gS = f̂S · ĝS.

Proof.

f̂ ∗ gS = E
x∈G

χS(x)f ∗ g(x) = E
x∈G

E
y∈G

χS(x)f(y)g(x− y)

= E
z∈G

E
y∈G

χS(z + y)f(y)g(z) = E
z∈G

E
y∈G

χS(z) · χS(y) · f(y) · g(z)

= E
z∈G

χS(z)g(z) E
y∈G

χS(y)f(y) = ĝS · f̂S .

where the second line is by the change of variable z = x− y.

We next give an intuitive explanation on the meaning of these numbers.
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1.3 Some examples

We now consider several f : {0, 1}n → {0, 1}.

• For the parity function, f(x1, . . . , xn) =
∑
ximod 2. We have f̂∅ = 1

2 and f̂[n] = −1
2 .

• For the and function, f(x1, . . . , xn) = ∧ni=1xi we have f(x) = Πn
i=1xi = Πn

i=1(1−χi
2 ) =∑

S⊆[n] 2−n(−1)|S|χS .

2 ε-biased sets

A set T ⊆ Λ ε-fools a function f : Λ → {0, 1} if |Prx∈Λ[f(x) = 1] − Prx∈T [f(x) = 1]| ≤ ε. A set
T ε-fools a class of functions C if it ε-fools every f ∈ C. A set T ⊆ {0, 1}k is called ε-biased if it
ε-fools all functions f : {0, 1}k → {0, 1} that are linear over F2. Formally:

Definition 9. Let T ⊆ {0, 1}k. For a nonzero w ∈ {0, 1}k we denote

Biasw(T) =

∣∣∣∣Pr
s∈T

[〈w, s〉 = 0]− Pr
s∈T

[〈w, s〉 = 1]

∣∣∣∣ = 2

∣∣∣∣12 − Pr
s∈T

[〈w, s〉 = 1]

∣∣∣∣ .
The bias of T is Bias(T) = maxw 6=0 biasw(T). We say that T is ε-biased if Bias(T) ≤ ε.

An ε-biased set tries to fool a class of functions using samples from a small set (in other words, we
try to achieve pseudo-randomness with respect to a (very) limited class of tests). It is then natural
to ask how small can ε-biased sets be. We shall soon answer this. But first, we interpret ε-bias
using Fourier representation.

2.1 ε bias and the Fourier transform

Let X be a distribution over {0, 1}n and w ∈ {0, 1}n. Then,

Biasw(X) =

∣∣∣∣ Pr
s∼X

[〈w, s〉 = 0]− Pr
s∼X

[〈w, s〉 = 1]

∣∣∣∣ =

∣∣∣∣∣∣
∑

s∈{0,1}n
(−1)〈s,w〉 · Pr[X = s]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

s∈{0,1}n
X(s)χw(s)

∣∣∣∣∣∣ = 2n · |〈X,χw〉| = 2n · |X̂w|.

Thus, we can redefine ε bias in the Fourier language.

Definition 10. (equivalent to Def 9) Let T ⊆ {0, 1}k and X the flat distribution over S. We say
that T is ε-biased if |X̂S | ≤ ε2−n for all S 6= ∅.

We prove:

Theorem 11 ([5, 4]). Let X be distribution over {0, 1}n. Then ‖X − Un‖2 ≤ Bias(X) and
‖X − Un‖1 ≤ 2n/2 · Bias(X).
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Proof. Express X =
∑

w X̂wχw. Now, X − Un =
∑

w 6=∅ X̂wχw (Why?). We bound the `2 norm of
X − Un. We have:

‖X − Un‖22 = 2n〈X − Un, X − Un〉 = 2n
∑
w 6=∅

|X̂w|2 ≤ 2n2n(ε2−n)2 = ε2.

The bound on the `1 norm follows from Cauchy-Schwartz.

In particular we see that if X has zero bias than X must be the uniform distribution.

3 ε bias and binary error correcting codes

Definition 12. An [n, k] error correcting code C is ε-balanced if the Hamming weight of every
non-zero codeword in C is between

(
1
2 − ε

)
n and

(
1
2 + ε

)
n.

Claim 13. Mn×k is a generator matrix of an [n, k]2 error correcting code that is ε-balanced, iff
{ri | ri is the i’th row of M} ⊆ {0, 1}k is ε-biased.

Proof. Let M be a generator matrix of an [n, k] ε-balanced code C. For every x ∈ {0, 1}k, Mx
contains at least

(
1
2 − ε

)
n nonzero entries and at most

(
1
2 + ε

)
n. Hence, if we choose a row Mr

of M uniformly at random, Prr∈[n][〈x,Mr〉 = 1] ∈ [1
2 ± ε]. It is then clear that the rows of M

constitutes an ε-biased set in {0, 1}k of size n. The other direction holds as well. We leave this to
the reader.

We are now ready to prove non-explicit existence.

Claim 14. For every k, there exists an ε-biased set T ⊆ {0, 1}k of size n = O( k
ε2

).

Proof. Choose the entries of A, a binary matrix of dimension n × k, uniformly at random. Fix a
nonzero x ∈ {0, 1}k and let Wx be the Hamming weight of Ax. That is, Wx =

∑n
i=1〈Ai, x〉 where

the inner-product is modulo 2.

For a fixed non-zero x, E[Wx] = n
2 (why?). By Chernoff, the probability that Ax is bad is at most

Pr

[∣∣∣∣ 1nWx −
1

2

∣∣∣∣ ≥ ε] ≤ 2e−2nε2 .

By the union bound, the probability that A is a generator matrix for an unbalanced code is at most
2k · 2e−2nε2 ≤ 2k+1−2nε2 < 1, for n ≥ k

ε2
.

Non-explicitly the lower bound is n = Ω
(

k
ε2 log( 1

ε
)

)
, and the same lower bound holds for [n, k, 1

2−ε]2
codes (that are not necessarily ε-balanced, i.e., they may have high weight codewords).
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3.1 Explicit ε-bias constructions

In the last lecture we saw an explicit construction with about size O( k
ε4

) (when seeing the error
correcting code amplifications). Next, we show a construction that achieves the incomparable

bound n = O(k
2

ε2
), due to Alon et al. [1]. As we said before the best non-explicit bound is O( k

ε2
).

The AGHP [1] construction is Reed-Solomon concatenated with Hadamard. Specifically, we have
the following ingredients:

• The outer code: An R = [q = k1
ε , k1, 1− ε]q Reed-Solomon code, for q that is a power of 2.

• The inner code: An H = [q, log(q), 1
2 ]2 Hadamard code.

Our code is the concatenation of the two codes, namely,

H(R(x)1), . . . ,H(R(x)q).

Then, the concatenated code R ◦H is a [n = q2, k = k1 log q, 1
2(1− ε)] linear error correcting code.

Now, q = k1
ε = k

ε log q and so n ≤ (kε )2. This shows that in the code there are no nonzero codewords

of weight smaller than 1
2(1− ε). In fact, the concatenated code also does not have any codewords

of length more than 1
2 (why?) and so we get an ε-balanced code as needed.

4 k-wise and almost k-wise independence

Definition 15. Let X be a distribution over {0, 1}n.

• We say X is (k, ε)-biased, if it is at most ε-biased with respect to all non-empty, linear tests
of size at most k.

• We say X is (k, ε)-wise independent if for all S ⊆ [n] of size k, |X|S − Uk|1 ≤ ε.

Equivalently, X is (k, ε)-biased, iff |X̂S | ≤ ε2−n for all S s.t. 1 ≤ |S| ≤ k. X is k-wise independent
iff |X̂S | = 0 for all S s.t. 1 ≤ |S| ≤ k.

Theorem 16 ([5]). There exists an distribution that is (k, ε)-biased over {0, 1}n and has support

size at most O
(
k logn
ε2

)
. There are explicit constructions with O

(
(k logn)2

ε2

)
or O

(
k logn
ε4

)
.

Proof. For the construction we combine two ingredients that we already have: k-wise independence
and ε-bias. Let

• A of size n× h be the generator matrix of a k-wise sample space. We saw how to construct
A with h = k log n (and in fact, over F2 we can even get h = 1

2k log n).

• Sample b ∈ B, where B ⊆ {0, 1}h is an ε-biased sample space. We saw how to construct B

with support size
(
h
ε

)2
or even O

(
h
ε4

)
(non explicitly, O

(
h
ε2

)
).
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The construction: Sample b ∈ B output Ab ∈ {0, 1}n.

Let S ⊆ [n] be a set of size at most k. We want to bound BiasS(Ab). Let Ai be the i-th row of A.
It holds that:

⊕i∈S (Ab)i = ⊕i∈S 〈Ai, b〉 =

〈∑
i∈S

Ai, b

〉
.

The vectors {Ai}i∈S are linearly independent and so
∑

i∈S Ai is a nonzero test. As B is an ε-biased

distribution, Prb∈B[⊕i∈SAbi = 1] ∈ [1
2 ± ε]. The support size when |B| = hc1

εc2 = O( (k logn)c1

εc2 ).

It therefore follows:

Corollary 17. There exists an explicit distribution that is (k, ε)-wise independent over {0, 1}n and

has support size at most 2k
(
k logn
ε

)2
.

Proof. By Theorem 11, an (k, ε′)-biased distribution is (k, ε′ · 2k/2)-wise independent. Setting
ε′ = 2−k/2ε, we are finished.

5 The Fourier transform as a multilinear representation

We now choose to work with the group Z2,· = ({1,−1} , ·) instead of Z2,+ = ({0, 1} ,+ mod 2)
as we did so far. The two groups are isomorphic with the isomorphism ψ : b 7→ (−1)b. The two
characters of Z2,· are 1(x) = 1 and x(x) = x. Consequently, the characters of Zn2,· are

∏
i∈S xi.

If we take g : Zn2,· → C, then its Fourier representation tells us how to open g as a multi-linear
function over C.

We identify a boolean function f : {0, 1}n → {0, 1} with a function g : {−1, 1}n → {1,−1} defined
by

g(ψ(b1), . . . , ψ(bn)) = ψ(f(b1, . . . , bn)).

It turns out that the Fourier representation of f in Zn2,+ is closely related to the Fourier represen-
tation of g in Zn2,·:

Exercise 18. Suppose f(x) =
∑

S f̂SχS(x) and g(y) =
∑

S ĝS
∏
i∈S yi. Then ĝ∅ = 1 − 2f̂∅ and

ĝS = −2f̂S for all S 6= ∅.
Hint: ψ(b) = 1− 2b.

Thus, the Fourier expansion of f tells how g is represented as a multilinear function. The translation
between f and g is linear (f = 1

2(1− g)), as is the translation between the variables (yi = 1− 2xi).
In particular, maxS:f̂(S)6=0 |S| is the degree of the multilinear polynomial computing g over C. For

example, the Parity function f(x1, . . . , xn) =
∑

i xi is linear over F2 but has degree n over C.

From this discussion it is clear that the Fourier representation can help determine how close a
function on {0, 1}n is to being linear, or to a low-degree multilinear function over C.

6 Linearity testing

Let L be the set of linear functions f : Fn2 → F2. The BLR linearity test [3] does the following:
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Input : A function g : Fn2 → F2 given by a black-box access, i.e., on query y ∈ F2 we get as answer
g(y) ∈ F2.

Algorithm : Pick x, y ∈ Fn2 uniformly at random. Query g(x), g(y), g(x+ y).

Output : Output ”yes” if g(x+ y) = g(x) + g(y) and ”no” otherwise.

Clearly, uf g ∈ L the algorithm always answers ”yes”. The surprising thing is the following ”ro-
bustness” of the test:

Lemma 19. Pr[”no”] ≥ dist(g, L).

Proof. Let g : Fn2 → {−1, 1} be defined by g(x) = (−1)f(x). Then,

Pr[”yes”]− Pr[”no”] = Pr
x,y∈Fn2

[f(x+ y) = f(x) + f(y)]− Pr
x,y∈Fn2

[f(x+ y) 6= f(x) + f(y)]

= E
x,y∈Fn2

g(x)g(y)g(x+ y).

Now,

E
x,y∈Fn2

g(x)g(y)g(x+ y) = E
x
g(x)E

y
g(y)g(x+ y) = E

x
g(x) · g ∗ g(x) = 〈g, g ∗ g〉

=
∑
S⊆[n]

ĝS · ĝ ∗ gS =
∑
S⊆[n]

ĝ3
S =

∑
S⊆[n]

ĝS · ĝ2
S

For example, if f is linear, the g is a character, say, g = χT and then the expectation is indeed
13 = 1. For a general g:

E
x,y∈Fn2

g(x)g(y)g(x+ y) =
∑
S⊆[n]

ĝ3
S ≤ max

T
ĝT
∑
S⊆[n]

ĝ2
S

= max
T

ĝT · 〈g, g〉 = max
T

ĝT .

However,

ĝT = 〈χT , g〉 = E
x∈Fn2

(−1)〈T,x〉g(x) = E
x∈Fn2

(−1)〈T,x〉(−1)f(x)

= Pr
x∈Fn2

[f(x) = 〈T, x〉]− Pr
x∈Fn2

[f(x) 6= 〈T, x〉] = 1− 2dist(f, 〈T, ·〉).

Hence, maxT ĝT = 1− 2dist(f, L). Hence,

1− 2 Pr[”no”] = E
x,y∈Fn2

g(x)g(y)g(x+ y) ≤ 1− 2dist(f, L),

and Pr[”no”] ≥ dist(f, L).

For more reading see Section 1.6 of Ryan O’Donnell’s book [6] (also [2]).
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7 ε-bias and Cayley graphs over Abeliean groups

Lemma 20. Let G be a group of order n. Suppose M is an n × n matrix such that M [x, y] =
f(xy−1). Then every character χ ∈ Ĝ is an eigenvector of M with eigenvalue |G| · f̂χ = |G|〈χ, f〉.

Proof.

(Mχ)x =
∑
y∈G

M [x, y]χ(y) = |G| E
y∈G

f(xy−1)χ(y)

= |G| E
z∈G

f(z)χ(z−1x) = |G| E
z∈G

f(z)χ(z)χ(x)

= |G|χ(x) E
z∈G

f(z)χ(z) = |G|χ(x)〈χ, f〉 = |G|f̂χχ(x).

where in the second line we did the variable change z = xy−1.

If G is an Abeliean group the characters form an orthonormal eigenvector basis of M . This shows,
in particular, that all matrices of this form (regardless what f is) commute (because they share an
eigenvector basis).

Let G be a group and S ⊆ G. We define a graph H(V,E) where V = G and (x, y) ∈ E iff x−1y ∈ S.
If S is closed under inverse, we get an undirected graph of degree |S|. Many familiar graphs are
obtained this way, e.g., the cycle (over Zn), the cube (over Fn2 ) the mesh (with closed rows and
columns, over F2

n) and more.

Now suppose G is Abeliean and S is closed under inverse. The adjacency matrix M of Cay(G,S)
is captured by 1S , i.e., M [x, y] = 1 iff x−1y ∈ S iff y−1x ∈ S i.e., M [x, y] = 1S(xy−1). By the above
lemma, the characters form an orthonormal basis for Cay(G,S). The first eigenvalue is the degree
|S| and is obtained by the identity character χ∅ that is identically 1. We see that the second largest
eigenvalue in absolute value of G, λ̄(G), is maxS 6=∅|f̂S |. We therefore can conclude:

Lemma 21. Suppose G is Abeliean and S ⊆ G closed under inverse. Then,

λ̄(Cay(G,S)) = Bias(S).

References

[1] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple constructions of almost
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