0368-4159: First Course in Derandomization 24/12/18 — Lecture 11

The Forbes-Kelley PRG for unordered BP

Lecturer: Amnon Ta-Shma
Scribe: 22

In this lecture we present a recent PRG against small space probabilistic machines (and small width
branching programs).

1 Branching programs

1.1 A non-uniform model of small space probabilistic machines

Definition 1. (BPSPACE(s(n)), BPTimeSPACE(t(n),s(n)))

Definition 2. (PRG against BPTimeSPACE(t(n), s(n)))

We say G : {0, l}e(”) — {0, l}t(") is an e(n) pseudorandom generator (PRG) against BPTimeSPACE(t(n), s(n))
if for every machine M € BPTimeSPACE(t(n), s(n)) and every input x € {0,1}":

| Pr M(z,y)=1— Pr M(z,G(2))=1]|<e(n).
ye{0,1}1™ z€{0,1}¢(™

We want to replace a random string from {0, l}t(") with a pseudo-random string. Thus, we may
view x as hardcoded into the machine, giving the function M(x,-). Thus, z may be seen as a
non-uniform advice to the machine acting on the input y. Thus, on input ¢(n) the advice length is
n. To simplify things, we will construct the stronger object that fools machine of small space no
matter how long the advice is. For that we define branching programs which are the non-uniform
analogue of small space uniform machines.

Definition 3. (Branching programs)

Branching programs which are the non-uniform analogue of small space uniform machines, the
same way circuits are the non-uniform analogue of time-bounded machines.

1.2 A matrix representation of a BP

Let B be a (w,n) BP. We can represent the action of B by the transition matrix, mapping state
a at the initial layer to vertex b at the final layer. This gives a w X w stochastic matrix. We
can similarly represent the transition matrix between any two layers i < j by a w X w stochastic
matrix. Furthermore, we can also define the transition matrix for a given input y = (y1, ... s Yt(n))-
We define:

Definition 4. Let 0 < ¢ < t(n), b € {0,1}. M, is the w x w transition matriz from layer i to
layer i + 1 when the input bit is b.



Notice that M; is a deterministic transition matrix. Also,
M[Z,]}(b“ ey b]) = Mj’b]. Cee et Mi’bi

is the deterministic transition matrix from level ¢ to j given the input b;,...,b;. The transition
matrix under the uniform distribution from the first layer to the last is £, {071}tM[0’t]<b), and
the transition matrix under the PRG from the first layer to the last is EZE{O,l}ZM[Ovt](G(Z))' In
particular,

Pr B(y)=1- Pr M(z,Gy)=1 = E My a(0)[1,1] - F M n(G(2)[1,1
P Bw=1- Pr MGl =1 oy Mo 1,1] = B g 130 Mio g (G())[1, 1]

IN

HEbe{O,l}tM[Oat] (b) — Eze{o,1}@M[07t](G(z)) HF ’

A paragraph about Frobenius norm, [|A|| = y/Tr(ATA).

1.3 The Fourier representation of a BP

Given a function F : {0, l}t — MyxwC. We may view it as w? boolean functions, and apply Fourier
transform on each. For the entry (i, 7),

E,j : {Oa 1}t - {07 1}

and -
Fi; = Z Fijgxs
SClt]

where

—_

Fio={xs,Fijy= E F(b)xs).
gs = (xs, Fij) ey J(0)xs(b)

Let us define ﬁg the w X w matrix where

~ —

Fsli, jl = Fijg-
Then, this gives us:
Fs = E F(b)xs(b), and,
be{0,1}*
F= Y Fyoxs
SClt]

~ 12
Claim 5. By 130 HF(b)H% =D sci HFSHF



Proof.

E [|F®)Z = E T(FOF®H = E Tr b Fl F
e |E(b)% ey (F(b)F(b)") e (S%:qﬂm( XS (0)F's, Fs5)
= Z E tXSl(b)st(b)Tf(ﬁglfs\a)
$1.9:ClH] be{0,1}
g~ ~ 112
- Y@ = A
SClt] SClt]

Lemma 6. If M : {0,1}" = Myx[0,1] is computed by a branching program, then:
~ 112
¢ Sscn B, = v

+ Sscgors |, <

~ 2
Proof. For the first item, we know gy HFSHF = Ky ||F(b)||%. However, for every b, F(b) is a

w X w deterministic stochastic matrix, hence ||F(b)||% = Zij F(b)[i, j]? = w.

~ (2
For the second item, by Cauchy-Schwarz, ZSQ[t]:|S|:k HFSHF <+/(}) \/ZSC[t},|S|=k HFSHF O

2 The generator

We define distributions over {0,1}". First we sample independently:

e 2k-wise independent distributions Dy, Dy, ..., D, over {0, 1}t,

e k-wise independent distributions 77, ..., T, over {0, l}t.

We define PRG Gy, ..., G, with increasing accuracy (and growing seed length). We let Gy = Dy.
We let
Git1 =Tiy1 AN Dip1 +Tip1 NGy,

where A is coordinate-wise and, + is coordinate-wise XOR, and S = [t] \ S.

Opening the recursion we get, e.g.,
Gy = To5NDg —i—Tg/\ (T1 A Dy —i—Tl/\Go) =T5 N Do —i—Tg/\Tl A Dy —i—Tg/\Tl/\Do
Gy = T3sAD3+ AT ADy+T3AT ATy ADy+T3 AT ATy A Dy

The main lemma analyses one step bin the recursion:

Lemma 7. Suppose F : {0,1} — Myxw[0,1] encodes a branching program, D is 2k-wise indepen-
dent over {0,1}", and T is k-wise independent over {0,1}", then

< tw2 k2,
F

E F(b) — E F(tANd+tAb)
be{0,1}? deD,teT,be{0,1}*




We will prove it in the next section. With that,

Theorem 8. Suppose r > 2logt. If F: {0,1} — Myxw[0,1] encodes a branching program, then

< ptw2 k2 490,
F

E F(b)- E F(G(2)
be{0,1} z€{0,1}*

Proof.
|EF(U) —EF(Gr1(U))llp
= HEF(U)— E F(T.AD,+T,NG.U))

TylT

F
< |EF(U)—-EF(T, ADy +T. AU) | p+ ||[EF(T, ADy + T, AG(U)) =EF(T. ADr + T, AU || 5

The first term is bounded by Lemma 7. For the second term:

E F(T,AD,+T.NG.(U)— E F(T,AD.+T, AU

D'r, T TyLTy F
< E |[EF(T,AD,+T. ANG.(U)) —EF(T, AD, + T, NU
T, Dy ||U F
Continuing like this we are left with the term
E EF(T.N... Ty —~F.(T,N... Ty AD :
1.0, 2, OB A TAD) = B AT A Do)

where F is the restricted function. However, except for probability 27") the number of bits kept
alive in F is at most k, in which case the difference contributes zero. O

In particular for error € it is enough to take r = O(log £) and k = O(log 22) and get a PRG of
length O(rklogt) = O(log® ™). For w = poly(t) and £ = t~©(1) we get seed length O(log3t).

&
We remark that the generator is symmetric (i.e., for any permutation # € S; we get the same
distribution, hence the PRG works even if the BP chooses the order of out bits fed to it.

3 Analysing the recursion

Lemma 9. Suppose F : {0,1}' — M,«C is a product function F(b) = Fy(b;) - ... Fi(b1). For
i€ [n] let
FSUby,....b) = Fi(b)-...Fi(by),
F>Z(bi+1, e ,bt) = Ft(bt) e E+1(bi+1).

Let k be an integer. Then

t

F = ﬁ@—i— Z ﬁSXS—i-Z Z F@A-XA-F>i.

SC[t]:|S|<k i=1  AC[i]:
|Al=k,ic A



Proof. Before we start notice that because F' is product, i.e., F'(b) = Fy(b¢) - ... F1(b1), we have

~

Fs = EF(b)xs®)= E_Fib)-... Filb)xs, (b1). . xs(b)

15--+50¢

= Exs,(0)Fu(b) .. Exs, (b)) Fu(br) = E, ... Fi,.
t 1

F=5%g ﬁgxg. 13@ + ZSQ[HZI s|<k take care of the low cardinality set terms and we are only left

with Fgyg where |S| > k. For each such set there is a first i € [f] where |S N [i]] = k and we
associate S to this i. We get:

F = K+ >, Fsxs+ Y Fs-xs
SClt)1<|5|<k Sl

|S|=k
= F@-f— Z FSXS+ZFt5t""F151'XS
SCt]:1<|S|<k SCt]:
|S|=k
o~ o~ t o~ —— A~ —
= F(Z)+ Z FSXS+Z Z Ftbt""Fi+1bi+1XB Z Eai""Flal’XA‘
SClH:1<|S|<k i=1 BC[i+1,1] AT

|A|=Fk,icA

t
= Fp+ Y. Fsxs+Y. Y. FSa-xa- > Figxp
=1 AC[i]:

SClt:1<|S[<k < BC[i+1,1]
|Al=k,i€ A
t —_—
= Fy+ Z FSXS+Z Z F<iy-xa-F~".
SC[t]:1<|S|<k i=1  AC[i]:
|Al=k,i€ A

O]

The idea now is the following. ﬁ@ is the correct term. The low order terms are fooled by the k-wise
independent distribution. We are left with the high order terms. For each i € [n| we have a term
that looks like the high order terms of F'<! product F>*. This expression is hit hard by the uniform
part (because the first element in the product has only high order terms) Formally,

Lemma 10. Let H : {0, 1} — MyxC be supported on cardinality k sets, i.e., H = ZAg[t]:|A\:k Hy-

XA- Let D be 2k-wise independent distribution over {0, 1}t, T be k-wise independent distribution
over {0,1}" and U the uniform distribution over {0,1}". Then,

2
Epr IEH(T/\D—l—T/\U) < (Epr IEH(T/\D+T/\U) )1/2
F F
_ 2 12
Epr|[EH(TAD+TAD)| < 277 Y HHAH
U F F
AC[t]:|Al=k

Proof. The first inequality is because > p;lci| < /> pi > pilcil?.



The second part is where we use the k-wise independence. We have:
EH(TAD+TAU) = E > Haxa(TAD+TAU)
AC[t]:|Al=k
— > .FAIA-IgXA(T/\D—FT/\U)
AC[t]:|A|=k
= Z Hy - xanr(D) 'IEXAQT(U)
AC[t]:|Al=k

= Y Ha xanr(D).
ACT:|A|=k

Therefore,

o Te(EH(TAD+TAU)) - (EH(TAD+T AD))

= > Xaap(D) - Tr(HaHY)
A,BCT,|A|=|B|=k

F

’%H@AD+TAW

Now |A @ B| < 2k and D is 2k-wise independent. Hence all terms vanish except for A @ B = ),
i.e., A= B. Hence,

_ 2 2
HIEH(T/\D—#T/\U) - Y HHAH .
F ACT |Al=k F

Taking expectations over T we get:

2

. ) 2|
=B >l
ACT,| A=k

- ¥ HﬁA

A:|A|=k

zz—kz

A:|Al=k

]EH]EH(T/\D+T/\U)
TI|U

|,

We now complete the proof:



Proof. (Of Lemma 7)

E F(T/\D—i—T/\U)—IEF(U)‘
DT.U s
< E F T
< |ILE, Z sxs(TAD+TAU)
SC[t]:
1<|S|<k F
+ 2LE, FSiy - xa(TAD+TAU) HDI;UF>Z'(TAD+TAU)
=1 |A\:gk[,i]€A P
t — 2
< vyt [y |7
|Al=k,i€ F
¢ ——2
< Val 2H? ZHFSZA‘ < wi2 2,
i=1 ACi] P

where in the first inequality we have used E F(U) = EA@ and Epyxs(TAD+T A U) = 0. In the
second inequality we have used H]ED,TJ] F>(TAD+TA U)HF <Epr “F>i(T AND+TA U)HF <
vw and Lemma 10. Finally we use Lemma 6. O



