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Some complexity classes, Polynomial Identity Testing & Tail bounds

Lecturer: Amnon Ta-Shma

Scribe: Eyal Golombek

1 Complexity Classes Hierarchy

1.1 Motivation

We define some ”standard” deterministic and randomized computational models. We also define a model
for parallel computation, and discuss its connections with the ”standard” complexity classes.

1.2 Notations and Basic Definitions

Definition 1 (Deciding a Language) We say a Turing machine M decides a language L if M halts for every
x and accepts iff x € L.

Definition 2 (Time-Bounded Turing Machine) A Turing machine M is said to be time-bounded by some
function t : N — N if the number of steps M makes on input x is bounded by ¢(|z|).

Definition 3 (Space-Bounded Turing Machine) A Turing machine M is said to be space-bounded by some
function t : N — N if the size of the work-tape that M uses while working on input z is at most t(|z]).
Space(s(n)) denotes the set of languages decidable by a Turing machine running in space s(n).

Note that the bound is only on the work-tape. This allows machines to be space bounded with sub-linear
functions. This means the machine can read the entire input, but can’t "remember” all of it at once.

Definition 4 (Randomized Computation) Probabilistic Turing machines have an Read-once tape, initialized
with uniformly chosen bits. We define three types of randomized classes:

e R Time/Space: One-sided error. For every input not in the language, the acceptance probability is
zero, for every input in the language, the acceptance probability (over the choice of the random tape)
is at most half.

e B Time/Space: Bi-sided error. Similar to R Time/Space, except we allow the machine to err with
bounded probability in both directions.

e Z Time/Space: Zero sided error. Similar to the above, except we don’t allow the machine to err.
Instead, the machine is allowed to output L which means I Don’t Know”, and for every input, the
probability of L is at most half.

1.3 Simple containments

DSPACE(Log(n)) C DTIME(Poly(n)) € DSPACE(Poly(n)) C DTIME(Exp(n))
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1.4 Boolean Circuits

Another way to model computation, instead of using Turing machines, is Boolean Circuits.

Definition 5 (Boolean Circuits) A Boolean Circuit is a directed a-cyclic graph (V, E), with a subset I C'V
of input nodes and O C V output nodes. Every input node has in-degree zero, and every output node has
out-degree zero. FEvery other node is assigned a Boolean function out of {And,Or,Not}. The size of a
Boolean Circuit is defined to be the number of edges +the number of vertices in the circuit. The depth of
the circuit is the length of the longest path from an input node to an output node in the circuit.

Every Boolean circuit has some hard-coded input size. Usually we want to discuss languages that have
inputs of varying size.

Definition 6 (Family of Circuits) A Family of circuits {Cy }nen is a set of circuits, such that Cy, has input
of size n. We say the circuit family has size bounded by some function S : N — N if S(n) bounds the size
of Cy, for every n. Same for family depth. We say a family of circuits {Cy }nen decides some language L if
for every x, Cip () =1 iff v € L

A computation is said to be Non-Uniform if for every input length we allow a different algorithm to
operate. (The different algorithms don’t necessarily have some connection to each other). Every language
L c {0,1}* has a non-uniform family of circuits {C), }nen with size bounded by O(n - 2™) that decides L,
no matter the complexity of L. Each circuit C),, will simply have a hard-coded table with 2™ entries, every
entry of the table corresponds to a n bit string, and the table would indicate if we need to accept or reject.

It is possible that every language in NP has a polynomial size, non-uniform family of circuits that solves it.
This does not imply that P = NP. However if we were to find such family that solves some NP — Complete
problem, for instance 3S AT, it would collapse the polynomial hierarchy into PH = ¥

Definition 7 (Uniform Circuit Families) We say a Circuit family {Cy}nen is log-uniform if there exists
some Turing machine M that on input 1™ outputs the description of Cy, in O(logn) space.

Intuitively speaking it means there is some pattern that generates all the circuits in the family, and this
pattern can be generated efficiently.

1.5 Parallel Computation as Circuit Family

As we've seen before, the real-world RAM model of computation can be transformed into a theoretical
computational model using circuit families. We would like to do the same to the Parallel-RAM model.
Intuitively speaking, when thinking of a Boolean circuit, we can divide all nodes into layers, by their distance
from an input node. We can think of each node as a distinct processor, and each layer as one step of
computation. Every layer is performed sequentially after the previous one, and all computations in the
same layer are done in parallel. Thus every processor can read the outputs of processors from previous
layers. Following this intuition, efficiency will require a polynomial number of processors, which translates
to polynomial sized circuits, and will require poly logarithmic number of computation steps, which translates
to poly-log depth.

Definition 8 (NC) (Uniform / non-uniform) NC* is the class of all languages L that have a (uniform /
non-uniform)family of circuits {Cp}nen with fan-in of 2, that decides L and where |Cy,| < poly(n) and
depth(C,,) < O(log*n)

Unless we say otherwise, we work with the uniform classes.

We let NC = UyNC*. We define AC* to be as NCk, except that we allow an arbitrary fan-in for the Boolean
gates. Similarly, AC = UrACF. We have:
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e NC° c AC® c NC! c ACE...
e NC = AC.

e NC C P, since the generation of the circuit is Space(logn) which is polynomial time. After we have
generated the circuit we can simply emulate it in polynomial time.

e NCF C DSPACE(O(log*n))

e RSPACE(logn) C NSPACE(logn) C DSPACE(Log?(n))
e RSPACE(logn) C BPSPACE(log") c AC' € NC C P

e NCC RNCC RP C NP

e PCRPCBPP

e AC® £ NC!. The parity of n bits is known to be in NC' and known to not be in AC°.

1.5.1 Examples

e ADD: Addition of two n bit numbers. Intuitively every output bit depends on more than a constant
number of input bits, so ADD ¢ NC°, but we can prove ADD € AC°.

e Mul: Multiplication of two n bit numbers: Mul € NC.
e Matrix Multiplication € NC'. We have seen an algorithm in the previous lesson.

e Determinant Calculation € AC'.

1.6 Open Questions

e BPL=L?
e RNC=NC?
e« P=BPP?

2 Polynomial Identity Testing problem (PIT)

2.1 Intuition

We look for a canonical example of a language that we know to be in RP, but is not known to be in P. So
far we’ve seen the perfect-matching language (PM) that is in RNC C RP, but is not known (yet) to be in NC
(it is known to be in ”quasi”’-NC). However, PM is known to be in P using flow algorithms. In this section
we define PIT. We show it is in coRP. PIT is not known (yet?) to be in P.

Definition 9 An Arithmetic Circuit over some field F is defined similarly to Boolean circuits (A directed
graph with input/output nodes), except that the operations each node can perform are no longer Boolean

And/Or/Not, but rather are Addition/Multiplication of elements in the field F.

Remark 10 Any arithmetic circuit defines some syntactic polynomial p(x1, ..., ), where 1, ...,x, are the
input nodes. If the circuit uses only the constants 0 and 1, this polynomial does not depend on the specific
field. It’s simply the formula which defines what additions / multiplications this circuit performs.
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Definition 11 (The language PIT) The input is a description of an arithmetic circuit C. Let p(x1, ..., Zy)
be the polynomial describing the operation of C'. The input C is in the language PIT if p = 0. (Equality is
over C[X], where C is the complex field. This means that p is identical to the zero polynomial.)

Remark 12 ( Reduction from PM to PIT) Recall the algorithm we described in the previous class for
deciding the PM language. The final step of the algorithm is to decide whether the polynomial describing
the determinant is zero or not. This means that any algorithm for solving PIT can be used to solve PM.

There is a simple randomized algorithm for PIT: Sample random inputs to the circuit and test if the
calculation of the polynomial on those inputs is equal to zero. By utilizing the Schwartz-Zippel Lemma, we
hope to get some good bound on our error probability. We start with a Naive algorithm:

Given as input an arithmetic circuit C(x1, ..., z,) of size |S| < p(n) and degree d:

1. Choose A C R of size |A| = 2d (Can be the first integers, for instance)
2. Choose aq, ..., a, € A randomly uniformly and independently.

3. Calculate p(aq, ..., a,). If it’s zero accept, otherwise reject.

Clearly, if p is the zero polynomial, we always get 0 and accept, whereas if p is not the zero polynomial,

by the Schwartz-Zippel theorem we reject with probability at least 1 — ﬁ > % Also, w.l.o.g., we can take

d =25 (or d = 22 if we want lower error) as:

Claim 13 Let C(z1,...,x,) an arithmetic circuit of size S. Let p(x1, ..., x,) the polynomial representing C.
Then deg(p) < 2°.

Proof This is obvious since every gate can increase the degree by up to a factor of 2.
What remains is to check that the algorithm runs in polynomial time (alas, it does not).

e We need to sample n elements out of A. The size of A is 229 thus making every sample require 25
random bits. That’s fine! (No real issue here)

e We need to calculate p(aq,...,a,). Recall that we chose a; € A and the size of A is 225 If p is for

instance z2° then calculating p on inputs of size 2% (or even just 2) will explode. Specifically, this

S
results in values of size 257 a 22°. Those kind of values take at least O(2%) bits to represent, i.e.,
exponential space.

To overcome this we extend the Naive algorithm by choosing randomly some prime 22° < ¢ < 2*3. From
here on, all calculations will be done modulo g. Continue operating as the Naive algorithm.

e If p is indeed the zero polynomial, it is still zero after performing modulo, no matter the prime.

e Selecting a random prime can be done efficiently by randomly sampling a number and performing
primality testing in polynomial time. The density of primes gives us very high rates of success of
finding a prime in polynomial time (do it as an exercise!).

To prove correctness, do Schwartz-Zippel over the field with p elements. This is left as an exercise (in HW1).

PIT belongs to the family of languages that give you a code (an a-cyclic arithmetic circuit in our case) and
asks you to understand what the code does (does it compute the zero polynomial?). Offhand, it seems PIT
is a difficult problem for the deterministic model. Later on in the class, we will have an opportunity to
reconsider our opinion.
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3 Tail Bounds

A natural question that arises when working with random variables is: ”How probable is it for a random
variable to deviate from its expected value?”. We will now show 3 widely used tail bounds that help us answer
this question.

Our settings: Let X1, ..., X,, be Boolean random variables (X; € {0,1}) such that Pr[X; = 1] = E[X;] = ;.
We define X = >""" | X; making E[X]=>"" | E[X;] =>"" i = p

i=1
The questions we would like to answer are:

o PriX > (14| <?

o PriX < (1-9)u]<?

o Pr[|X — pu| >du] <?

3.1 Markov’s Inequality

Theorem 14 Let X be as defined above, and assume X > 0 then:

Pr[X > A] < %

Proof Intuitively speaking, if it were true that for more than % fraction of the samples X gets a value
larger than A, the expected value of X had to be higher. Formally:

E[X] = Z xPr[X =2a] = Z xPr[X =a] + Z x Pr[X = z]
reX <A > A
> ZzPr[X = 1] ZAZPr[X:x] = APr[X > A].
z>A z>A

Using the fact that X is always positive.

For arbitrary random variables the bound can be quite tight. For example, assume X1 = Xo = ... = X, are
random bits. Clearly: E[X;] = 1/2, E[X] = n/2. Because all random variables take the same value, there
are only two possible outcomes, either all bits are 1 or all bits are 0, and both outcomes have probability 1/2.

Thus, Pr[X > 2n] = Pr[X = n] = 1/2, whereas Markov gives %/23 =3

3.2 Chebyshev’s inequality
Theorem 15 Given X as defined above, (but no need for positivity of X ):

VarlX
Prlx — > 4] < VN,

Proof Using Markov’s inequality on |X — p|, and using the definition of variance:

E[(X — p)? _ Var[X]
A? A2

Pr[X —pu| > A] = Prl(X —p)* > A% <
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3.3 k-wise Independence, and tail bounds for k-wise independent distributions

Definition 16 We say random variables X1, ..., X,, are K-wise independent if every subset of them of size
K are independent. Le., for every A C [n] of size K, and every aq,...,a:

PI’[/\ Xz = ai] = HiEA PI’[X,L = ai].
€A

We reiterate the special case of k = 2:

Definition 17 X,,..., X, are pair-wise independent if for every pair X;, X; where i # j, X; and X; are
independent.

Example 18 Let X1, X5, X3 be uniformly distributed over all (a, b, c) € {0, 1}3 such that a+b+c = 0 mod 2.
Verify that X1, X2, X3 are pair-wise independent. Clearly, X1, Xo, X3 are not independent.

The reason we want k-wise independence is that independence gives us more power in creating tail bounds
(As we will see in the following section). The reason we use K-wise independence instead of complete
independence is that it requires much less random bits to generate (we will see that later on).

Theorem 19 Suppose X1, ..., X, are identically distributed boolean random variables, pair-wise indepen-
dent and Pr[X; = 1] = p. As before X =51 | X;. Then:

np(l —p)

Pr{lX —pl > Al < — 75

Proof Theorem is using Chebyshev’s inequality, and noticing that:
n
Var(X) = E[(X — n)*] = E[()_ Xi — )°]-
i=1

Denote Z; = X; — u;, clearly E[Z;] =0 and

n n

Var(X) =E[)_Z) ) =KD _ Z:Z]) =Y ElZiZ;)=> E[Z}]+> E[ZZ).
i=1 ij ij i=1 i#]
Using the pair-wise independence we get:
Var(X) =Y E[Z}|+ > E[Z]E[Z;] = > E[Z}] =) Var[X;] = np(1 - p).
i=1 i<j i=1 i=1

The final equality is due to the fact that Var[X;] = p(1 —p). Using Chebyshev’s inequality, we get the result.
Choosing A = apn we get:

np(1 —p) 1
Pr[| X — u| > < =0(=).
r[|X — pul = apn] o2 ()
More generally, for any 2k - wise independent set of variables in this settings, by bounding the 2k moment,
as seen above, will produce an asymptotic bound of O(#) We demonstrate it below for k = 4 (and a special
setting for the random variables).
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Suppose X1, ..., X,, are identically distributed random variables over {—1,1} with Pr[X; = 1] = Pr[X; =
—1) =1/2. Further assume X1, ..., X, are 4-wise independent. Then:

Ly

PIX — i > apn] < O(-

Proof 1t’s clear that E[X;] = p; = 0, thus making Z; = X; — p; = X;. Recall that X; € {—1,1} thus making
X2 = X; and X} = X? = 1. Using Chebyshev’s inequality on the Jth moment:

E[(X — p)*]

Pr|X = p| > A] = Pr(X — p)* > AT < —— .

Bounding the Jth moment we get:

E(X -] =E[)_ X" =E[ )Y XiX;X:X)] = > E[X;X; X, X/]
i=1 ikl i3kl

Recall that E[X;] = 0 for everyi. Using the J-wise independence we know that the expectancy of multiplication
of different random variables is equal to the multiplication of their expectancies. Thus the only elements in
this sum that don’t zero out are those where all 4 of the variables are the same one, or if they appear in two
paITs.

E[(X — '] =) E[X{]+ Y E[X7]E[X7].
i i,
Recall that X} = X2 = 1. Thus,
4 n\ (4 2
E[(X — p)'] = n + —0(n?),
2/\2
Finally using the bound on the 4th moment, we get:

E
Pr|X — p| = apn] <



