
0368-4159: First Course in Derandomization 29/10/2018 – Lecture 3

The Chernoff bound & Maximal Independent Set

Lecturer: Amnon Ta-Shma

Scribe: Roy Nadler

1 Chernoff Bound

Let X1, ..., Xn be boolean random variables with Pr(Xi = 1) = µi. Defining X =
∑

iXi, we get
E[X] =

∑
i µi := µ. Our goal is to bound the following probabilities:

1. Pr(|X − µ| > A)

2. Pr(X 6 (1− δ)µ)

3. Pr(X > (1 + δ)µ)

In previous lecture we have seen:

• If X is positive, we can use Markov inequality: Pr(X > A) 6 E[X]
A . (If A = (1 + δ)E[X] this

gives constant error).

• If {Xi} are k-wise independent, we can use Chebyshev. (If µ1 = . . . = µn is a constant, and
the relative deviation δ is a constant, the error is Θ(nk/2).

• (This lecture) If {Xi}n1 are n-wise independent, we can use Chernoff.

Theorem 1. Suppose X1, . . . , Xn are independent boolean random variables and Pr[Xi = 1] = µi,
µ =

∑
i µi. Then Pr(|X − µ| > εµ) 6 2−Ω(ε2µ)

Example 1.1. In the special case of xi ∝ Bin(1/2), we get

Pr(|X − n

2
| > n

2
· k√

n
) = 2−Ω( k

2

n
n
2

) = 2−Ω(k),

which restates the fact that asymptotically the error goes down exponentially with the number of
standard deviations. This also means that section of width

√
n around the mean gets constant

probability. This, in turn, implies that the peak X = n
2 gets at least Ω( 1√

n
) probability mass. You

can also derive this directly (and get a much better bound) by noticing that Pr(X = n
2 ) =

(
n
n/2

)
and then using Stirling (do that!).

Proof. (Of Chernoff’s bound) In Chebyshev we exploited pair-wise independence by utilizing the
second moment E(X2). For k-wise independence we utilized k moments, E(Xk). Now that we have
full independence we should utilize all moments. One way to do this is by using exponentiation, as

ex =
∑ xi

i! and E(eX) =
∑

i
E(Xi)
i! takes advantage of all moments E(Xi). Indeed:
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Pr(X ≥ (1 + δ)µ) = Pr(eX ≥ A) =∀s>0 Pr(e
sX > esA) ≤(Markov)

E[esX ]

esA
.

We can proceed from here. However, we can slightly simplify this: instead of writing esy (with
s > 0) we can write ty where t = es > 1. Redoing the previous line with this notation we get:

Pr(X ≥ A) =∀t>1 Pr(tX ≥ tA) ≤(Markov)
E[tX ]

tA
=

E[t
∑
iXi ]

tA
=

E[
∏
tXi ]

tA

=(indpen)

∏
E[tXi ]

tA
=

∏
(µi · t+ (1− µi) · 1)

tA
=

∏
(µi · (t− 1) + 1)

tA

=[(1+x)6ex]

∏
eµi·(t−1))

tA
=

e
∑
µi·(t−1)

tA
=
e(t−1)·µ

tA
.

Finally, taking t = A
µ (which you’ll find to be the best choice for t if you the calculation) and

δ = A
µ − 1 (which is the relative error) we get:

Pr(X ≥ (1 + δ)µ) ≤ (
eδ

(1 + δ)(1+δ)
)µ.

A similar calculation gives Pr(X ≤ (1 − δ) · µ) ≤ ( e−δ

(1−δ)(1−δ) )µ. The bound in the theorem follows

by bounding the expressions we got for the error probabilities.

2 Chernoff Hoeffding

The error estimates above ( eδ

(1+δ)(1+δ)
)µ and ( e−δ

(1−δ)(1−δ) )µ are not that meaningful functions. They

can be simplified (and further degraded) to give useful error estimates, but they are not natural
by themselves. Also, these bounds are not sharp, and, in particular don’t appear in inverse-
Chernoff bound (that state that with independent random variables deviations appear with some
probability). We now give an alternative (arguably simpler) and tight bound that is also more
meaningful. We do it for a special choice of parameters, but it hols in large generality (see [1]). We
also mention that you can adapt the proof we gave in the previous section to get the better bound
(see, e.g., [3] ), but we think the simpler analysis in this section is nice and intuitive. For that we
need a definition:

Definition 2. The KL-divergence between two numbers p and q is KL : (0, 1)2 → R defined by

KL(p||q) = p · ln(
p

q
) + (1− p) · ln(

1− p
1− q

).

It can be proved that it always gives a non-negative real number. Furthermore, KL(p||q) = 0
iff p = q. Thus, it is a measure of closeness (or distance) between p and q. It can be naturally
extended to distributions P,Q but we do need that and will not define it. We remark, however,
that if we view the number p ∈ (0, 1) as a boolean distribution P that gets 1 with probability p and
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0 otherwise, and we similarly view q as a boolean distribution Q with expectation q, then we can
give KL(p||q) the following interpretation. Let SurpiseD(b) be the amount of surprise in a value
b ∈ {0, 1} according to distribution D, namely, SurpriseD(b) = log 1

Pr[D=b] (and it better be that b

is possible in the distribution D). Then:

KL(p||q) = p · ln(
1

q
) + (1− p) · ln(

1

1− q
)− [p · ln(

1

p
) + (1− p) · ln(

1

1− p
)]

=trivially E
b∈P

[ln(
1

Pr(Q = b)
)]− E

b∈P
[ln(

1

Pr(P = b)
)]

= E
P

(SurpriseQ)− E
P

(SurpriseP ).

In words, we get samples from a distribution P . While P is the true distribution, we might not
know it and think we actually get samples from a distribution Q. KL(P ||Q) measures the difference
in expected surprise between doing the calculation with the right surprise function (SurpriseP )
and our conjectured surprise function SurpriseQ).

It is now also easy to see that KL is not symmetric. For example if the support of P is strictly
contained in the support of Q, when we sample according to P , all surprises are finite, but when
we sample according to Q, if we happen to sample an element not in the support of P , the the
surprise according to P is infinite.

Theorem 3. Suppose Xi are i.i.d., E(X1) = . . . = E(Xn) = p. Let q ∈ (0, 1) be arbitrary (larger or
smaller than p). Then: if q ≥ p, Pr(X > qn) 6 e−KL(q||p)n and if q ≤ p, Pr(X ≤ qn) 6 e−KL(q||p)n.

Proof. We will prove the case q > p. The case q < p is left as an exercise. Let S = {a =
(a1, . . . , an) ∈ {0, 1}n|w(a) := sumi(ai) ≥ qn}. Then, for every a ∈ S with w = w(a) ≥ qn we
have:

Pr(Q = a)

Pr(P = a)
=

qw · (1− q)(n−w)

pw · (1− p)(n−w)
= (

q · (1− p)
p · (1− q)

)w · ( (1− q)
(1− p)

)n

≥∗ (
q · (1− p)
p · (1− q)

)qn · ( (1− q)
(1− p)

)n

= (
qq(1− q)1−q

pq(1− p)(1−q) )n = eKL(q||p)n.

Summing over a ∈ S:

Pr(X ≥ qn) =
∑
a∈S

Pr(P = a) 6
∑
a∈S

Pr(Q = a) · e−KL(q||p)n = Q(S) · e−KL(q||p)n ≤ e−KL(q||p)n.

[*] - We have w(a) > qn, therefore this inequality is true if we show that base > 1:

q(1−p)
p(1−q) > 1 ⇐⇒ q(1− p) > p(1− q) ⇐⇒ q > p which is true for this case.
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3 Maximal IS and Luby’s Algorithm [2]

Definition 4. Maximal IS

Input: G = (V,E) an undirected graph.

Output: A ⊂ V

such that:

1. A is an independent set. I.e., for all a, b ∈ A, (a, b) 6∈ E.

2. Any extension of A is dependent: For all s ∈ (V/A) there exists a ∈ A such that (s, a) ∈ E.

There is a simple sequential algorithm for the problem (running in polynomial time):

Algorithm 1 Naive Polynomial solution

1: A = ∅
2: while S 6= ∅ do
3: take s ∈ S
4: A← s
5: S.remove({s} ∪ Γ(s))

6: return A

where Γ(S) is the set of neighbours of S in the graph. The process is very sequential. A natural
question is whether it can be parallelized. Luby’s algorithm does that (first with a randomized
algorithm) in a very elegant way.

The basic idea is to have few (poly-logarithmically many) rounds, and each round to choose in
parallel many independent vertices.

Algorithm 2 Parallel Probabilistic Algorithem (Michael Luby)

1: A = ∅
2: for O(log(|G|)) cycles do
3: T = ∅
4: In parallel ∀s ∈ S : T ← s with Prob = 1

2·d(s)

5: for (a, b) ∈ E do In parallel
6: if a ∈ T ∧ b ∈ T then
7: T.remove(argmins∈{a,b}d(s))

8: In parallel ∀t ∈ T : S.remove({t} ∪ Γ(t))

9: if S = ∅ then
10: return A
11: else
12: return False

In words: at each round each vertex v chooses itself as a candidate with 1
2d(v) and isolated vertices

choose themselves as candidates with probability 1. Thus, low degree vertices are more likely to
belong to the candidate list (which makes sense, because, e.g., isolated vertices have to be chosen
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into the list of candidates otherwise they will never be eliminated, and low-degree vertices that do
not take care of themselves are likely to remain alive for very long).

Once the candidate list is chosen we check for collisions (two candidates that are connected by
an edge), and, in parallel, for each collision remove the low-degree vertex from the candidate list.
Thus, for the candidate list we give priority for low-degree vertices, but when resolving conflicts we
give priority for high-degree vertices (that, if chosen, will eliminate more edges).

A word about conflicts between two vertices of the same degree: we resolve this arbitrarily. More
precisely, we fix any total order on the vertices that respects the condition that v < w when
d(v) < d(w) (e.g., first look at degree, then sort lexicographically on vertex name). We then
determine conflicts by this total order.

Another comment is in place: in line 4 we use d(s). That degree is the degree of s at the graph
that remained after all previous deletions. E.g., if at the beginning G is connected, but eventually
s gets isolated, then the degree of s at that stage is 0, and s will be chosen as a candidate and will
survive conflict resolution. The same applies for the total order: it is computed from scratch every
round based on the graph that survived so far.

Finally, notice that if at some stage we start with a graph G and choose a set T then T is inde-
pendent. We then add T to the independent set, and delete T and Γ(T ) from the graph (because
we are not allowed to use Γ(T ) any more) and this also deletes all edges that touch T ∪ Γ(T ), so
we expect (and hope to have) quite a massive destruction, hopefully shrinking the graph fast. We
clearly have the following:

Theorem 5. 1. The set A is independent throughout the run.

2. When we terminate (i.e. S = ∅) A is a maximal independent set.

3. The running time of the algorithm is O(log(|G|)2).

Statements Proofs:

1. At every stage we only add to A nodes that are neither neighbors of each other (step 5-7) nor
neighbours of A (step 8). Therefor if A is independent, it remains so at the next iteration.
At the 0’th iteration A is independent, therefore by induction it is always independent.

2. If A was returned, s = ∅. Therefore any node that could be appended to A had to be removed
in the building process. Since we only remove from S nodes that are neighbouring A, any of
these would cause dependence. Therefore A is a maximal independent set.

3. The decision to keep/remove any candidates in T requires ∧ on n bits (or ∨ ) which would
take depth log(n) (Check it!). Thus each of the log(|G|)iteration takes up to log(|G|) steps
for a total of log2(|G|) time.

What remains to show is the heart of the analysis:

Lemma 6. The algorithm returns a set with probability O( 1
n).

For the proof we first define a special set. Let:
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GOOD =

{
v ∈ V | |

{
v′ ∈ Γ(v) | d(v′) < d(v)

}
| >

1

3
|Γ(V )|

}
, and,

BAD = V \Good.

I.e., a vertex is good, if at least one third of its neighbours are smaller than it, and bad otherwise
(most of its neighbours are larger).

Lemma 7. Pr(v,w)∈E(v ∈ Good ∨ w ∈ Good) > 1/2

Proof. We will define a one-to-one mapping

Φ : BAD 7→
(
E

2

)
,

i.e., each ”bad” edge e = (v, w), (v ∈ Bad ∧ w ∈ Bad), is mapped to 2 unique edges in E. This is

impossible if there are more than |E|2 bad edges, there would be more than |E| unique edges, thus
the lemma follows.

For visualization, choose an orientation on the edge E by the total order, and imbue edges with
direction from low to high order. Each edge gets a unique orientation. Now, for each bad edge
e = (v, w), both v and w are bad. W.l.o.g. assume v < w in the total order, so the edge is
oriented from v to w. As w is bad, up to one third of the neighbours of w have lower order, and
atleast 2/3 of the neighbours of w have higher order. Therefore for each bad edge (vi, w) entering
w in the orientation, we have atleast twice ”outgoing” edges (w, vj) in our orientation (and these
edges might be good or bad). We match the bad edges entering w to two edges leaving w (in our
orientation) in an arbitrary way, as long as the pairs are disjoint.

Now, it is a moment thought to convince yourself that this gives the desired mapping. Indeed, if
e1 and e2 are two bad edges. Assume e1 in our orientation appears as (v1, w1) and e2 as (v2, w2).
Then, either w1 = w2, and then by the construction Φ(e1) ∩ Φ(e2) = ∅, or w1 6= w2, in which case
Φ(e1) has two edges leaving w1 in our orientation, while Φ(e1) has two edges leaving w2 in our
orientation, hence Φ(e1) ∩ Φ(e2) = ∅(because if they share an edge, it will appear in both cases
with the same orientation).

In the next lecture we will prove that at every stage, every good node has atleast some constant
probability to be removed. Namely,

Lemma 8. There exists a constant α > 0 such that Prv∈Good(v ∈ T ∪ Γ(T )) > α.

We now show that Lemma 8 together with Lemma 7 imply Lemma 6 (i.e., quick termination).

Proof. (Proof of Lemma 6)

The algorithm returns a set if S = ∅, so we want to show that with probability O( 1
n) we remove all

of the edges from E. We show this by proving that at each iteration there is a constant probability
of removing a constant fraction of the remaining edges. Details follow.

First, we compute the expectation of the number of deleted edges:
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E[#removed edges] =
∑

(v,w)∈E

Pr(v ∨ w is in T ∪ Γ(T ))

≥
∑

(v,w)∈E :
(v∈Good∨w∈Good)

Pr(v ∨ w is in T ∪ Γ(T ))

≥ | {e = (v, w) ∈ E | v ∨ w is in T ∪ Γ(T )} | · α ≥ |E|
2
α.

Now, denote by Yi the boolean random variable that is 1 iff atleast β
2 of the remaining edges were

removed at step i, where β = α
2 . Let pi = Pr[Yi = 1], i.e., that at step i we removed a β fraction

of the edges. We claim:

Claim 9. pi = Pr[Yi = 1] ≥ γ = 1−β
1−β

2

and therefore is a constant γ > 0.

Proof. We know that E[#removed edges] ≥ β|E|. On the other hand, it is at most β
2 with

probability pi, and |E| with probability 1 − pi. This gives an equation that you can solve. (As
remarked in the class, this argument is in fact a Markov bound on the positive random variables
|E| −#removed− edges).

The random coins at each phase are independent. We would like to say that the random variables
{Yi} are independent, but this is not exactly so, because Yi also depends on the graph it operates
on, which depends on the value of the previous Yj . However, we can say that whatever the previous
history is, Yi is a boolean random variable with expectation at least γ. In this case we can apply
the same bound as in the Chernoff bound.1 Then, if we take the number of rounds to be R such
that γR = 2 log

(1−β
2

)
|E|), then R = O(log |E|) and:

Pr(s 6= ∅) ≤ Pr(

R∑
i=1

Yi ≤ log
(1−β

2
)
|E|)

≤ Pr(
R∑
i=1

Yi ≤
E[
∑
Yi]

2
) ≤ 2−Ω(γR) = O(

1

n
).
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Ỹi ≤

∑
Yi.

7



[2] Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
journal on computing, 15(4):1036–1053, 1986.

[3] Rob Schapire. https://www.cs.princeton.edu/courses/archive/spring13/cos511/scribe notes/0228.pdf.

8


