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Expanders

Lecturer: Amnon Ta-Shma

Scribe: Dean Doron

1 Undirected Graphs as Operators

Definition 1. Let G be a (possibly weighted) undirected graph over n vertices with an adjacency
matrix AG. The normalized adjacency matrix, or the transition matrix, is the matrix A = AGD

−1

where D is the diagonal degree matrix, i.e., D[i, i] =
∑

j AG[i, j] for every i ∈ [n], and so

A[i, j] =
1

d(j)
AG[i, j].

If G is d-regular then A is Hermitian, and is simply 1
dAG.

Theorem 2. Let G be an undirected graph over n vertices and let A be its normalized adjacency
matrix. Let λn, . . . , λ1 be the eigenvalues of A. Then:

1. λ1, . . . , λn are real.

2. λ1 = 1.

3. λn ≥ −1.

4. λ1 = . . . = λk = 1 and λk+1 < 1 if and only if G has exactly k connected components.

5. λn = −1 if and only if at least one of the connected components of G is bipartite.

Claim 3 (bipartite graphs). Let G be a d-regular undirected bipartite graph over n vertices and let
AG be its adjacency matrix. Then, the eigenvalues of AG are symmetric around 0. That is, every
positive eigenvalue λk has a negative eigenvalue −λk and vice versa.

As another exercise prove:

Claim 4. Let A be the normalized adjacency matrix of a regular undirected graph over n vertices
and let λn ≤ . . . ≤ λ1 be the eigenvalues of A. Then, λ2 = maxx⊥1

x†Ax
x†x

.

Throughout, we denote λ̄(G) = maxi 6=1 |λi|. We also let 1 be the all-ones vector, J be the all-ones
matrix and 1X is the vector which is 1 over some index set X and 0 elsewhere.

Claim 5. Let G be an undirected graph over n vertices and let A be its normalized adjacency
matrix. Then, λ̄(G) =

∥∥A− 1
nJ
∥∥.

To prove the claim note that J and G commute (prove!) and share a common orthonormal eigen-
value basis of eigenvectors. Then the claim is also immediate (prove!). A similar (almost identical)
claim appears (with a proof) in Claim 16, and if you do not want to prove the claim yourself you
can look there.
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2 Random walks over expanders mix fast

In a random walk over a graph G, we start with some initial vertex v0 and at each step we move from
vertex v to an adjacent vertex in Γ(v) with probability proportional to the degree of v. Namely,
if A is the normalized adjacency matrix of G, we move from vertex i to vertex j with probability
A[j, i].

Suppose we start a random walk at a vertex chosen by a probability distribution p. After taking
one step, the probability of being at vertex i is

∑
j pjA[i, j] so the probability distribution after one

step is described by Ap.

Iterating the above reasoning, we see that, after a t-step random walk whose initial vertex is chosen
according to p, the last vertex reached is distributed according to Atp. We say that π is a stationary
distribution if Aπ = π, i.e., no further steps change the distribution.

Does every random walk over a graph approach some stationary distribution? If so, how fast? In
the case of undirected regular expanders, the uniform distribution is the stationary distribution
and we converge to it in a rate that depends on λ̄(G). Indeed, λ̄(Gt) = λ̄(G)t so if λ̄(G) is bounded

away from 1, λ̄(Gt) approaches 0 and At → λ1v1v
†
1 = 1

nJ . Thus, Atp → 1
n1 for every distribution

p. Formally:

Lemma 6. Let G be a regular graph over n vertices with normalized adjacency matrix A. Then,
for every distribution p over the vertices and integer t, we have∥∥∥∥Atp− 1

n
1

∥∥∥∥ ≤ λ̄(G)t.

Proof. Note that for every distribution, 1
nJp = 1

n1 and recall that λ̄(G)t = λ̄(Gt) =
∥∥At − 1

nJ
∥∥.

Denote by λn ≤ . . . ≤ λ1 the eigenvalues of A and vn, . . . , v1 the corresponding eigenvectors. Recall
that v1 = 1√

n
1, λ1 = 1 and we can write A =

∑
i λiviv

†
i and At =

∑
i λ

t
iviv

†
i . Thus:∥∥∥∥Atp− 1

n
1

∥∥∥∥ ≤ ∥∥∥∥Atp− 1

n
Jp

∥∥∥∥ ≤ ∥∥∥∥At − 1

n
J

∥∥∥∥ ‖p‖ ≤ λ̄(G)t.

Proof. (An alternative proof) Let v1, . . . , vn be an orthonormal basis of eigenvectors of A with
eigenvalues 1 = λ1 ≥ . . . ≥ λn ≥ −1. v1 = 1√

n
1.

Express p as p =
∑
αivi. The fact that p is a probability distribution implies α1 = 〈p, v1〉 =

1√
n

∑
i pi = 1√

n
. Thus, α1v1 = 1

n1 and p − 1
n1 =

∑
i 6=1 αivi. It follows that

∥∥Atp− 1
n1
∥∥ ≤∥∥At(p− 1

n1)
∥∥ =

∥∥∥At(∑i 6=1 αivi)
∥∥∥ =

∥∥∥∑i 6=1 αiλ
t
ivi

∥∥∥ =
√∑

i 6=1 |αi|2|λ2t
i | ≤

√∑
i λ̄(G)2tαi|2 =

λ̄(G)t ‖p‖ ≤ λ̄(G)t..

We often measure the distance between distribution in the `1-norm, as it is, up to a factor of
2, equivalent to the total variation distance between probability distributions – the maximum
over all events of the difference between the probability of the event happening with respect to
one distribution and the probability of it happening with respect to the other distribution. As
‖x‖1 ≤

√
|Supp(x)| ‖x‖2, we get:
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Corollary 7. Let G be a regular graph over n vertices with normalized adjacency matrix A. Then,
for every distribution p over the vertices and integer t, we have∥∥∥∥Atp− 1

n
1

∥∥∥∥
1

≤
√
n · λ̄(G)t.

Specifically, for t = Ω
(

1
1−λ̄(G)

ln n
ε

)
we have

∥∥Atp− 1
n1
∥∥

1
≤ ε.

The diameter of a graph is the maximum minimal distance between two vertices in the graph. For
an undirected regular graph G, if λ̄(G) is constant bounded away from 1, the graph’s diameter is
logarithmic. More generally:

Lemma 8. Let G be a d-regular undirected connected graph over n vertices. Then, the diameter
of G is at most 1 + log 1

λ̄(G)
n.

The proof follows from
∥∥Atp− 1

n1
∥∥
∞ ≤

∥∥Atp− 1
n1
∥∥ ≤ λ̄(G)t.

3 The Expander Mixing Lemma

We first show that an expander behaves like a random graph in the following sense: The number
of edges between every two large subsets S, T ⊆ [n] is close to what we would have expected in a
random graph of average degree d, i.e., d

n |S||T |.

Lemma 9 (Expander Mixing Lemma). Let G = (V = [n], E) be a d-regular graph and let S, T ⊆ [n].
Then, ∣∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ λ̄(G) · d
√
|S|(1− |S|/n)|T |(1− |T |/n)

where |E(S, T )| is the number of edges between the two sets.

Proof. Let A be the normalized adjacency matrix of G, so we have

|E(S, T )| = d · 1†TA1S .

We decompose 1S and 1T to a component parallel to 1 (the 1-eigenvector of A) and a perpendicular

component. Write 1S = |S|
n 1 + 1

n1⊥S where

1⊥S [i] =

{
n− |S| i ∈ S
−|S| i /∈ S.

and notice that 1⊥S ⊥ 1. Similarly we write 1T = |T |
n 1 + 1

n1⊥T . Then, using the fact that A1 = 1:

E(S, T ) = d ·
(
|T |
n

1 +
1

n
1⊥T

)†
A

(
|S|
n

1 +
1

n
1⊥S

)
= d · |S||T |

n2
1†1 +

1

n2

(
1⊥T

)†
A1⊥S .
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As both 1S and 1S are perpendicular to the 1-eigenvector,∣∣∣∣(1⊥T

)†
A1⊥S

∣∣∣∣ ≤ λ̄(G) ·
∥∥∥1⊥T ∥∥∥ · ∥∥∥1⊥S ∥∥∥ .

A simple calculation shows that
∥∥1⊥S ∥∥ =

√
n|S|(n− |S|) and likewise for

∥∥1⊥T ∥∥, so overall∣∣∣∣|E(S, T )| − d|S||T |
n

∣∣∣∣ ≤ λ̄(G) · d
n2
·
√
n|S|(n− |S|)

√
n|T |(n− |T |)

= λ̄(G) · d ·
√
|S|(1− |S|/n)

√
|T |(1− |T |/n),

as desired.

Corollary 10. With respect to densities (dividing by dn), we can express the above result as∣∣∣∣ Pr
e=(i,j)∈E

[i ∈ S ∧ j ∈ T ]− ρ(S)ρ(T )

∣∣∣∣ ≤ λ̄(G) ·
√
ρ(S)(1− ρ(S))ρ(T )(1− ρ(T )),

where for A ⊆ B we denote ρ(A) = |A|/|B|.

3.1 Expanders have no small cuts

An often desirable feature of a graph is that no deletion of few edges can cause the graph to be
disconnected. It is indeed the case with expanders. Given an undirected d-regular graph G = (V,E)
we define the edge expansion of a cut (S, V \ S) as

h(S) =
|E(S, V \ S)|

d ·min {|S|, |V \ S|}
,

and we let h(G) = minS⊆V h(S).

exercise: Let G = (V,E) be a d-regular undirected graph over n vertices. Use the expander mixing

lemma to prove h(G) ≥ 1−λ̄(G)
2 .

We want to prove the stronger theorem:

Theorem 11. Let G = (V,E) be a d-regular undirected graph over n vertices and let λ2 be the
second eigenvalue of its normalized adjacency matrix A. Then, h(G) ≥ 1−λ2

2 .

That is, for every S ⊆ [V ] of cardinality at most n
2 , |E(S, V \ S)| ≥ d(1−λ2)

2 |S|.

This theorem is one side of “Cheeger’s Inequality”. The other, harder, side is h(G) ≤
√

2(1− λ2)
and we will not prove it. Morally, Cheeger’s Inequality tells us that algebraic expansion and edge
expansion are equivalent up to some loss in parameters.

Before we prove the theorem, we prove the following useful claim:

Claim 12. Let M be a symmetric n × n operator, v a real length n vector. Let D be the n × n
diagonal matrix with D[i, i] =

∑
jM [i, j]. Then∑

i,j

M [i, j](vi − vj)2 = 2v†(D −M)v.

4



Proof. A straightforward computation shows that:∑
i,j

M [i, j](vi − vj)2 =
∑
i,j

M [i, j](v2
i + v2

j )− 2
∑
i,j

M [i, j]vivj = 2
∑
i,j

M [i, j]v2
i − 2

∑
i

vi
∑
j

M [i, j]vj

= 2
∑
i

v2
i

∑
j

M [i, j]− 2
∑
i

vi(Mv)i = 2v†Dv − 2
∑
i

vi(Mv)i

= 2v†Dv − 2v†Mv = 2v†(D −M)v.

Proof. We need to prove that λ2 ≥ 1− 2h(S) for every S with |S| ≤ n
2 . Equivalently, we can find

a v ⊥ 1 for which v†Av
v†v
≥ 1− 2h(S). Define a vector v such that:

vi =

{
−n+ |S| i ∈ S
|S| i /∈ S.

First, notice that v ⊥ 1, as
∑

i vi = |S|(−n+ |S|) + |S|(n− |S|) = 0. Also, we have

v†v = |S|(−n+ |S|)2 + (n− |S|)|S|2 = n|S|(n− |S|).

In our case,∑
i,j

A[i, j](vi − vj)2 =
1

d

∑
(i,j)∈E(S,S)

(|S| − (|S| − n))2 =
n2

d
2|E(S, V \ S)|,

so v†Av = v†v − n2

d |E(S, V \ S)|, and

v†Av

v†v
= 1− n2|E(S, V \ S)|

d · v†v
= 1− n|E(S, V \ S)|

d · |S|(n− |S|)
≥ 1− 2|E(S, V \ S)|

d · |S|
= 1− 2h(S).

4 Deterministic amplification

Most of the material in this section (and a lot that is not in this section) is covered in a survey of
Goldreich [1] and the monograph of Luby and Wigderson [2].

BPP is the class of decision problems solvable by a probabilistic Turing machine in polynomial time
with a two-sided bounded error. RP and coRP are its one-sided variants. Formally:

Definition 13. For a < b, a language L ∈ BPP[a, b] if there exists a polynomial-time probabilistic
TM M(x, y), where:

• If x ∈ L then Pry[M(x, y) = 1] ≥ b.

• If x /∈ L then Pry[M(x, y) = 1] ≤ a.

We denote BPP = BPP[1
3 ,

2
3 ], RP = BPP[0, 1

2 ] and coRP = BPP[1
2 , 1].
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Suppose we have L ∈ BPP[a − ε, a + ε], for some constant a and ε = ε(n), accepted by a TM
M that on input of length n uses t(n) random bits. If we run M k times, each time with fresh,
independent, random bits and eventually output according to whether the average of k answers
exceeded a, the error probability should decrease exponentially.

If we denote Xi as the answer in the i-th run, when x ∈ L we err if 1
k

∑k
i=1Xi < a. By Chernoff,

the probability for this to happen is bounded by e−Ω(ε2k). Likewise for x /∈ L. Thus, to bring the

error to δ, we can take k = O(
log 1

δ
ε2

). Thus, we can amplify any polynomially large gap ε = n−α

to an exponentially small error δ = 2−n
c

in polynomial time, and therefore also using polynomially
many random bits. The question we ask is whether we can re-use random bits and reduce the error
without using too many additional random bits.

Throughout, we are given x and a black-box access to M(x, y). We are allowed to pick y1, . . . , yT
in some way, and answer according to M(x, y1), . . . ,M(x, yT ). Denote m = |y|. So far we have seen
that with independent trials, with T queries and mT random coins we can amplify (1

2 − ε,
1
2 + ε)

to (δ, 1− δ) error with T = O( 1
ε2

log 1
δ ).

4.1 Via pair-wise independence

Let us start with k = 2. Pick y1, . . . , yT from a pairwise independent distribution where each yi is
uniform over Σ = {0, 1}m. For every i ∈ [T ], let Yi be the boolean random variable that is 1 iff
M(x, yi) answered correctly. Denote µi = E[Yi] ≥ 1

2 + ε. We answer according to the median of the
T trials. By Chebyshev and pairwise independence,

Pr[we are wrong] ≤ Pr

[∣∣∣∣∣
T∑
i=1

Yi − µi

∣∣∣∣∣ ≥ εT
]

≤
Var[

∑
i Yi]

ε2T 2
≤

(1
2 − ε)(

1
2 + ε)

ε2T
≤ 1

ε2T
= δ.

We thus choose T = 1
ε2δ

. The sample space is of size at most 22m so overall 2m random coins are
used. If we want to amplify a non-negligible gap to a constant gap, it is sufficient to use pairwise
independence.

4.2 Via k-wise independence

We proceed with k = 4. For every i ∈ [T ], let Xi be the output of the i-th run and let X =
∑

iXi,
µi = E[Xi] and µ =

∑
i µi. By Markov,

Pr[|X − µ| ≥ A] ≤ Pr[(X − µ)4 ≥ A4] ≤ E[(X − µ)4]

A4
.

Denote Zi = Xi − µi, E[Zi] = 0. By linearity,

E[(X − µ)4] = E[(
∑
i

Zi)
4] =

∑
i1,i2,i3,i4

E[Zi1Zi2Zi3Zi4 ].

By four-wise independence, whenever all i1, i2, i3, i4 are different, E[Zi1Zi2Zi3Zi4 ] = E[Zi1 ] ·E[Zi2 ] ·
E[Zi3 ] · E[Zi3 ]. However, for every i, E[Zi] = 0, and so the term vanishes. In fact, this is true for
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every term i1, i2, i3, i4 in which some term appears with an odd power. Thus, the only terms that
survive are those where every term appears an even number of times. Thus,

E[(X − µ)4] =
∑
a

E[Z4
a ] +

(
4

2

) ∑
1≤a<b≤T

E[Z2
a ]E[Z2

b ]

=
∑
a

E[Z4
a ] +

(
4

2

) ∑
1≤a<b≤T

Var[Za] Var[Zb].

As for every i, Var[Zi] = µi(1− µi) ≤ 1,

E[(X − µ)4] ≤ T +

(
4

2

)(
T

2

)
≤ 4T 2.

We then obtain:

Pr[we are wrong] ≤ Pr

[∣∣∣∣∣
T∑
i=1

Yi − µi

∣∣∣∣∣ ≥ εT
]

≤ E[(X − µ)4]

ε4T 4
≤ 4T 2

ε4T 4
=

4

ε4T 2
= δ.

So, with four-wise independence, we get an error of O(T−2). Specifically, we take T = 2
ε2

√
1
δ . For

arbitrary 2k-independence, similar analysis shows that the error decreases like O(T−k).

Lemma 14. Let X be the average of T k-wise independent random variables for an even integer
k, and let µ = E[X]. Then,

Pr[|X − µ| ≥ ε] ≤
(

k2

4Tε2

) k
2

.

The situation we have so far:

Table 1: Amplifying (1
2 − ε,

1
2 + ε) to (δ, 1− δ) if r random bits are initially required

Number of samples Number of random bits

Truly random O(
log 1

δ
ε2

) r ·O(
log 1

δ
ε2

)

k-wise independence O( 1
ε2

k2

δ
2
k

) O(kr + k log 1
ε + log 1

δ )

Pairwise independence O( 1
ε2

1
δ ) O(r + log 1

δε)

4.3 Via expanders

We start with a one-sided error (0, α) algorithm. With full independence, O( 1
α log 1

δ ) trials are
sufficient (Check, and compare to the two sided error). Now, consider an expander G = (V =
{0, 1}m , E) with a constant degree D and a constant λ = min

{
λ2(G),−λ|V |(G)

}
< 1.

The construction: Choose y1 uniformly at random and take a random walk on G of length T − 1
to obtain y2, . . . , yT . Accept iff one of M(x, yi) accepted. Fix x ∈ {0, 1}n. If x /∈ L then we always
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reject, so we assume from now on that x ∈ L. Let Bad ⊆ {0, 1}m be the set of strings that are bad
for x. That is, Bad = {y ∈ {0, 1}m |M(x, y) = 0}. Thus,

Pr[we are wrong] = Pr

[
T∧
i=1

(yi ∈ Bad)

]
.

Then:

Theorem 15. Using our above notations,

Pr

[
T∧
i=1

(yi ∈ Bad)

]
≤ (β + (1− β)λ)T ,

where β = |Bad|
|V | .

In our case, β ≤ α and (β+(1−β)λ) = 1−(1−λ)(1−β) < 1. Thus, withm+logD·(T−1) = m+O(T )
random coins we can amplify, say, (0, 1

2) to (0, 1− 2−Ω(T )).

Proof. The proof has two main components. First, we need to translate the condition
∧T
i=1(yi ∈

Bad) to an algebraic terminology, and then we analyze it.

The translation to algebraic terminology. Let M be the transition matrix of G and denote
|V | = 2m = N . Pick y1 ∈ V uniformly at random. That is, the initial distribution over the
vertices is u = 1

N 1N . Define an N × N diagonal matrix B with B[y, y] = 1 if y ∈ Bad and
0 otherwise. In this terminology, |〈1, Bu〉| is the probability a random element belongs to
BAD (and so is β). |〈1, BMBu〉| is the probability in a random walk of length two, both
samples belong to BAD. Similarly, |〈1, (BM)kBu〉| is the probability in a random walk of
length k + 1 the walk is confined to the set BAD, i.e., all samples belong to BAD.

Reducing the analysis to understanding a single step : As B is a projection, B2 = B, and
so (BM)kBu = (BMB)kBu. Also, the vector is supported only on coordinates from Bad,
Cauchy-Schwartz implies

|〈1, (BMB)TBu〉| ≤
√
βN

∥∥(BMB)TBu
∥∥

2

and since ‖AB‖2 ≤ ‖A‖2 ‖B‖2,

|〈1, (BMB)TBu〉| ≤
√
βN ‖BMB‖T2 ‖Bu‖2

=
√
βN

√
β

N
‖BMB‖T2

= β ‖BMB‖T2 ≤ ‖BMB‖T2 .

Summing up, it is enough to bound ‖BMB‖2, i.e., it is enough to analyze a single step.

Thus, we are left with analyzing a single step. We will show, ‖BMB‖2 ≤ β + (1− β)λ.
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Claim 16 ([3], Proposition 3.2). Let G be an undirected regular graph on n vertices, with λ =
min

{
λ2(G),−λ|V |(G)

}
and its transition matrix is B. Then, B = (1− λ)J + λE for some E with

‖E‖2 ≤ 1 and J that is the normalized all-ones matrix. I.e., B is a convex combination of J (that
corresponds to a completely random walk) and E (that is some arbitrary error matrix).

Proof. The first eigenvector of B is u the all one vector (possibly normalized) with eigenvalue 1. u
is also an eigenvector of J with eigenvalue 1. We conclude that u is a common eigenvector of B, J
and E and with eigenvalue 1 for all of them (Check!).

What about vectors in the orthogonal complement? Let W⊥ denote all vectors perpendicular to
x, i.e., all x such that 〈x, u〉 = 0. Then Jx = 0 (Why?). Also, W⊥ is invariant under B (Why?).
Thus, W⊥ is invariant also under E (Why?).

Thus, to bound the norm of E, it is enough to limit attention to W⊥. For v ∈ W⊥, ‖Ev‖ =
1
λ ‖Av‖ ≤

λ
λ ‖v‖ = ‖v‖. Thus, ‖E‖2 ≤ 1.

Now, let us express BMB in this decomposition. We get

BMB = B((1− λ)J + λE)B = (1− λ)BJB + λBEB

The BJB part is the part corresponding to a true random walk step, the other part is “junk”, and
indeed we easily see that ‖BEB‖2 ≤ ‖B‖2 ‖E‖2 ‖B‖2 ≤ 1. Thus, we are now reduced to analyzing
BJB, i.e., one true random walk step. For any x 6= 0, x =

∑
i xiei. Then, (BJBx)[i] = 1

N

∑
i∈Bad xi

if i ∈ Bad and 0 otherwise (check!). Thus, by Cauchy-Schwarz,

‖BJBx‖2 =

√√√√βN

(
1

N

∑
i∈Bad

xi

)2

=

√
β

N

∑
i∈Bad

xi ≤
√
β

N

√
βN ‖x‖2 = β,

which completes the proof.

The two-sided error case is along the same ideas, but a bit more complicated. The analysis may
use the useful expander Chernoff bound.

Theorem 17. Let G be an undirected D-regular graph with 1 = λ1 > λ2 ≥ . . . ≥ λn and spectral
gap 1 − λ̄ and let fi : V → [0, 1] for i ∈ [T ]. Take a random walk v1, . . . , vT and let Xi be the
random variable fi(vi). Denote µi = E[Xi] and µ̄ = 1

T

∑
i µi. Then,

Pr

[∣∣∣∣∣ 1

T

∑
i

Xi − µ̄

∣∣∣∣∣ ≥ ε
]
≤ 2e−

1
4

(1−λ̄)ε2T .

We can then add the expander walk technique to our table, obtaining:

Table 2: Amplifying (1
2 − ε,

1
2 + ε) to (δ, 1− δ) if r random bits are initially required

Number of samples Number of random bits

Truly random O(
log 1

δ
ε2

) r ·O(
log 1

δ
ε2

)

Expander walk O(
log 1

δ
ε2

) r +O(
log 1

δ
ε2

)

k-wise independence O( 1
ε2

k2

δ
2
k

) O(kr + k log 1
ε + log 1

δ )

Pairwise independence O( 1
ε2

1
δ ) O(r + log 1

δε)
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