A Generalization of Varnavides's Theorem

Asaf Shapira*

Abstract

A linear equation E is said to be sparse if there is $c>0$ so that every subset of $[n]$ of size n^{1-c} contains a solution of E in distinct integers. The problem of characterizing the sparse equations, first raised by Ruzsa in the 90 's, is one of the most important open problems in additive combinatorics. We say that E in k variables is abundant if every subset of $[n]$ of size εn contains at least poly $(\varepsilon) \cdot n^{k-1}$ solutions of E. It is clear that every abundant E is sparse, and Girão, Hurley, Illingworth and Michel asked if the converse implication also holds. In this note we show that this is the case for every E in 4 variables. We further discuss a generalization of this problem which applies to all linear equations.

1 Introduction

Turán-type questions are some of the most well studied problems in combinatorics. They typically ask how "dense" should an object be in order to guarantee that it contains a certain small substructure. In the setting of graphs, this question asks how many edges an n-vertex graph should contain in order to force the appearance of some fixed graph H. For example, a central open problem in this area asks, given a bipartite graph H, to determine the smallest $T=T_{H}(\varepsilon)$ so that for every $n \geq T$ every n-vertex graph with $\varepsilon\binom{n}{2}$ edges contains a copy of H (see [3] for recent progress). A closely related question which also attracted a lot of attention, is the supersaturation problem, introduced by Erdős and Simonovits [5] in the 80 's. In the setting of Turán's problem for bipartite H, the supersaturation question asks to determine the largest $T_{H}^{*}(\varepsilon)$ so that every n-vertex graph with $\varepsilon\binom{n}{2}$ edges contains at least $\left(T_{H}^{*}(\varepsilon)-o_{n}(1)\right) \cdot n^{h}$ labelled copies of H, where $h=|V(H)|$ and $o_{n}(1)$ denotes a quantity tending to 0 as $n \rightarrow \infty$. One of the central conjectures in this area, due to Sidorenko, suggests that $T_{H}^{*}(\varepsilon)=\varepsilon^{m}$, where $m=|E(H)|$ (see [4] for recent progress).

We now describe two problems in additive number theory, which are analogous to the graph problems described above. We say that a homogenous linear equation $\sum_{i=1}^{k} a_{i} x_{i}=0$ is invariant if $\sum_{i} a_{i}=0$. All equations we consider here will be invariant and homogenous. Given a fixed linear equation E, the Turán problem for E asks to determine the smallest $R=R_{E}(\varepsilon)$ so that for every $n \geq R$, every $S \subseteq[n]:=\{1, \ldots, n\}$ of size εn contains a solution to E in distinct integers. For example, when E is the equation $a+b=2 c$ we get the Erdős-Turán-Roth problem on sets avoiding 3 -term arithmetic progressions (see [7] for recent progress). Continuing the analogy with the previous paragraph, we can now ask to determine the largest $R_{E}^{*}(\varepsilon)$ so that every $S \subseteq[n]$ of size εn contains at least $\left(R_{E}^{*}(\varepsilon)-o_{n}(1)\right) \cdot n^{k-1}$ solutions to E, where k is the number of variables in E. We now turn to discuss two aspects which make the arithmetic problems more challenging than the graph problems.

[^0]Let us say that E is sparse if there is $C=C(H)$ so that ${ }^{1} R_{E}(\varepsilon) \leq \varepsilon^{-C}$. The first aspect which makes the arithmetic landscape more varied is that while in the case of graphs it is well known (and easy) that for every bipartite H we have $T_{H}(\varepsilon)=\operatorname{poly}(1 / \varepsilon)$, this is no longer the case in the arithmetic setting. Indeed, while Sidon's equation $a+b=c+d$ is sparse, a well known construction of Behrend [1] shows that $a+b=2 c$ is not sparse ${ }^{2}$. The problem of determining which equations E are sparse is a wide open problem due to Ruzsa, see Section 9 in [9].

Our main goal in this paper is to study another aspect which differentiates the arithmetic and graph theoretic problems. While it is easy to translate a bound for $T_{H}(\varepsilon)$ into a bound for $T_{H}^{*}(\varepsilon)$ (in particular, establishing that $T_{H}^{*}(\varepsilon) \geq \operatorname{poly}(\varepsilon)$ for all bipartite H), it is not clear if one can analogously transform a bound for $R_{E}(\varepsilon)$ into a bound for $R_{E}^{*}(\varepsilon)$. The first reason is that while we can average over all subsets of vertices of graphs, we can only average over "structured" subsets of $[n]$. This makes is hard to establish a black-box reduction/transformation between $R_{E}(\varepsilon)$ and $R_{E}^{*}(\varepsilon)$. The second complication is that, as we mentioned above, we do not know which equations are sparse. This makes it hard to directly relate these two quantities. Following [6], we say that E is abundant if $R_{E}^{*}(\varepsilon) \geq \varepsilon^{C}$ for some $C=C(E)$. Clearly, if E is abundant then it is also sparse. Girão, Hurley, Illingworth and Michel [6] asked if the converse also holds, that is, if one can transform a polynomial bound for $R_{E}(\varepsilon)$ into a polynomial bound for $R_{E}^{*}(\varepsilon)$. Our aim in this note is to prove the following.

Theorem 1.1. If an invariant equation E in 4 variables is sparse, then it is also abundant. More precisely, if $R_{E}(\varepsilon) \leq \varepsilon^{-C}$ then $R_{E}^{*}(\varepsilon) \geq \frac{1}{2} \varepsilon^{8 C}$ for all small enough ε.

Given the above discussion it is natural to extend the problem raised in [6] to all equations E.
Problem 1.2. Is it true that for every invariant equation E there is $c=c(E)$, so that for all small enough ε

$$
R_{E}^{*}(\varepsilon) \geq 1 / R_{E}\left(\varepsilon^{c}\right)
$$

It is interesting to note that Varnavides [11] (implicitly) gave a positive answer to Problem 1.2 when E is the equation $a+b=2 c$. In fact, essentially the same argument gives a positive answer to this problem for all E in 3 variables. Hence, Problem 1.2 can be considered as a generalization of Varnavides's Theorem. Problem 1.2 was also implicitly studied previously in [2, 8]. In particular, Kosciuszko [8], extending earlier work of Schoen and Sisask [10], gave direct lower bounds for R_{E}^{*} which, thanks to [7], are quasi-polynomially related to those of R_{E}.

The proof of Theorem 1.1 is given in the next section. For the sake of completeness, and as a preparation for the proof of Theorem 1.1, we start the next section with a proof that Problem 1.2 holds for equations in 3 variables. We should point that a somewhat unusual aspect of the proof of Theorem 1.1 is that it uses a Behrend-type [1] geometric argument in order to find solutions, rather than avoid them.

2 Proofs

In the first subsection below we give a concise proof of Varnavides's Theorem, namely, of the fact that Problem 1.2 has a positive answer for equations with 3 variables. In the second subsection we prove Theorem 1.1.

[^1]
2.1 Proof of Varnavides's theorem

Note that for every equation E, there is a constant C such that for every prime $p \geq C n$ every solution of E with integers $x_{i} \in[n]$ over \mathbb{F}_{p} is also a solution over \mathbb{R}. Since we can always find a prime $C n \leq p \leq 2 C n$, this means that we can assume that n itself is prime ${ }^{3}$ and count solutions over \mathbb{F}_{n}. So let S be a subset of \mathbb{F}_{n} of size εn and let $R=R_{E}(\varepsilon / 2)$. For $b=\left(b_{0}, b_{1}\right) \in\left(\mathbb{F}_{n}\right)^{2}$ and $x \in[R]$ let $f_{b}(x)=b_{1} x+b_{0}$ and $^{4} f_{b}([R])=\left\{x \in[R]: f_{b}(x) \in S\right\}$. Pick b_{0} and b_{1} uniformly at random from \mathbb{F}_{n} and note that for any $x \in[R]$ the integer $f_{b}(x)$ is uniformly distributed in \mathbb{F}_{n}. Hence,

$$
\mathbb{E}\left|f_{b}([R])\right|=\varepsilon R .
$$

It is also easy to see that for every $x \neq y$ the random variables $f_{b}(x)$ and $f_{b}(y)$ are pairwise independent. Hence

$$
\operatorname{Var}\left|f_{b}([R])\right| \leq \varepsilon R
$$

Therefore, by Chebyshev's Inequality we have

$$
\mathbb{P}\left[\left|f_{b}([R])\right| \leq \frac{\varepsilon}{2} R\right] \leq \frac{\varepsilon R}{\varepsilon^{2} R^{2} / 4} \leq 1 / 2
$$

In other words, at least $n^{2} / 2$ choices of b are such that $\left|f_{b}([R])\right| \geq \frac{\varepsilon}{2} R$. By our choice of R this means that $f_{b}([R])$ contains 3 distinct integers x_{1}, x_{2}, x_{3} which satisfy E and such that $f_{b}\left(x_{i}\right) \in S$. Note that if x_{1}, x_{2}, x_{3} satisfy E then so do $f_{b}\left(x_{1}\right), f_{b}\left(x_{2}\right), f_{b}\left(x_{3}\right)$. Let us denote the triple $\left(f_{b}\left(x_{1}\right), f_{b}\left(x_{2}\right), f_{b}\left(x_{3}\right)\right)$ by s_{b}. We have thus obtained $n^{2} / 2$ solutions s_{b} of E in S. To conclude the proof we just need to estimate the number of times we have double counted each solution s_{b}. Observe that for every choice of $s_{b}=\left\{s_{1}, s_{2}, s_{3}\right\}$ and distinct $x_{1}, x_{2}, x_{3} \in[R]$, there is exactly one choice of $b=\left(b_{0}, b_{1}\right) \in\left(\mathbb{F}_{n}\right)^{2}$ for which $b_{1} x_{i}+b_{0}=s_{i}$ for every $1 \leq i \leq 3$. Since $[R]$ contains at most R^{2} solutions of E this means that for every solution $s_{1}, s_{2}, s_{3} \in S$ there are at most R^{2} choices of b for which $s_{b}=\left\{s_{1}, s_{2}, s_{3}\right\}$. We conclude that S contains at least $n^{2} / 2 R^{2}$ distinct solutions, thus completing the proof.

2.2 Proof of Theorem 1.1

As in the proof above, we assume that n is a prime and count the number of solutions of the equation $E: \sum_{i=1}^{4} a_{i} x_{i}=0$ over \mathbb{F}_{n}. Let S be a subset of \mathbb{F}_{n} of size εn, and let d and t be integers to be chosen later and let X be some subset of $[t]^{d}$ to be chosen later as well. For every $b=\left(b_{0}, \ldots, b_{d}\right) \in\left(\mathbb{F}_{n}\right)^{d+1}$ and $x=\left(x_{1}, \ldots, x_{d}\right) \in X$ we use $f_{b}(x)$ to denote $b_{0}+\sum_{i=1}^{d} b_{i} x_{i}$ and $f_{b}(X)=\left\{x \in X: f_{b}(x) \in S\right\}$. We call b good if $\left|f_{b}(X)\right| \geq \varepsilon|X| / 2$. We claim that at least half of all possible choices of b are good. To see this, pick $b=\left(b_{0}, \ldots, b_{d}\right)$ uniformly at random from $\left(\mathbb{F}_{n}\right)^{d+1}$, and note that for any $x \in X$ the integer $f_{b}(x)$ is uniformly distributed in \mathbb{F}_{n}. Hence,

$$
\mathbb{E}\left|f_{b}(X)\right|=\varepsilon|X|
$$

It is also easy to see that for every $x \neq y \in X$ the random variables $f_{b}(x)$ and $f_{b}(y)$ are pairwise independent. Hence

$$
\operatorname{Var}\left|f_{b}(X)\right| \leq \varepsilon|X|
$$

[^2]Therefore, by Chebyshev's Inequality we have ${ }^{5}$

$$
\begin{equation*}
\mathbb{P}\left[\left|f_{b}(X)\right| \leq \frac{\varepsilon}{2}|X|\right] \leq 4 / \varepsilon|X| \leq 1 / 2 \tag{2.1}
\end{equation*}
$$

implying that at least half of the b 's are good. To finish the proof we need to make sure that every such choice of a good b will "define" a solution s_{b} in S in a way that s_{b} will not be identical to too many other $s_{b^{\prime}}$. This will be achieved by a careful choice of d, t and X.

We first choose X to be the largest subset of $[t]^{d}$ containing no three points on one line. We claim that

$$
\begin{equation*}
|X| \geq t^{d-2} / d \tag{2.2}
\end{equation*}
$$

Indeed, for an integer r let B_{r} be the points $x \in[t]^{d}$ satisfying $\sum_{i=1}^{d} x_{i}^{2}=r$. Then every point of $[t]^{d}$ lies on one such B_{r}, where $1 \leq r \leq d t^{2}$. Hence, at least one such B_{r} contains at least t^{d-2} / d of the points of $[t]^{d}$. Furthermore, since each set B_{r} is a subset of a sphere, it does not contain three points on one line.

We now turn to choose t and d. Let C be such that $R_{E}(\varepsilon) \leq(1 / \varepsilon)^{C}$. Set $a=\sum_{i=1}^{4}\left|a_{i}\right|$ and pick t and d satisfying

$$
\begin{equation*}
(1 / \varepsilon)^{2 C} \geq t^{d} \geq\left(\frac{2 d t^{2} a^{d}}{\varepsilon}\right)^{C} \tag{2.3}
\end{equation*}
$$

Taking $t=2^{\sqrt{\log 1 / \varepsilon}}$ and $d=2 C \sqrt{\log 1 / \varepsilon}$ satisfies ${ }^{6}$ the above for all small enough ε. Note that by (2.3) and our choice of C we have $R_{E}\left(\frac{\varepsilon}{2 d t^{2} a^{d}}\right) \leq t^{d}$.

Let us call a collection of 4 vectors $x^{1}, x^{2}, x^{3}, x^{4} \in X$ helpful if they are distinct, and they satisfy E in each coordinate, that is, for every $1 \leq i \leq d$ we have $\sum_{j=1}^{4} a_{j} x_{i}^{j}=0$. We claim that for every good r, there are useful $x^{1}, x^{2}, x^{3}, x^{4} \in f_{r}(X)$. To see this let M denote the integers $1, \ldots,(a t)^{d}$ and note that (2.2) along with the fact that r is good implies that

$$
\begin{equation*}
\left|f_{r}(X)\right| \geq \varepsilon|X| / 2 \geq \frac{\varepsilon t^{d}}{2 t^{2} d}=\frac{\varepsilon}{2 d t^{2} a^{d}} \cdot|M| \tag{2.4}
\end{equation*}
$$

Now think of every d-tuple $x \in X$ as representing an integer $p(x) \in[M]$ written in base at. So we can also think of $f_{r}(X)$ as a subset of $[M]$ of density at least $\varepsilon / 2 d t^{2} a^{d}$. By (2.3), we have

$$
M=(a t)^{d} \geq t^{d} \geq R_{E}\left(\frac{\varepsilon}{2 d t^{2} a^{d}}\right)
$$

implying that there are distinct $x^{1}, x^{2}, x^{3}, x^{4} \in f_{r}(X)$ for which $\sum_{j=1}^{4} a_{j} \cdot p\left(x^{j}\right)=0$. But note that since the entries of $x^{1}, x^{2}, x^{3}, x^{4}$ are from $[t]$ there is no carry when evaluating $\sum_{j=1}^{4} a_{j} \cdot p\left(x^{j}\right)$ in base at, implying that $x^{1}, x^{2}, x^{3}, x^{4}$ satisfy E in each coordinate. Finally, the fact that $\sum_{j} a_{j}=0$ and that $x_{i}^{1}, x_{i}^{2}, x_{i}^{3}, x_{i}^{4}$ satisfy E for each $1 \leq i \leq d$ allows us to deduce that

$$
\sum_{j=1}^{4} a_{j} \cdot f_{b}\left(x^{j}\right)=\sum_{j=1}^{4} a_{j} \cdot\left(b_{0}+\sum_{i=1}^{d} b_{i} x_{i}^{j}\right)=\sum_{i=1}^{d} b_{i} \cdot\left(\sum_{j=1}^{4} a_{j} x_{i}^{j}\right)=0,
$$

which means that $f_{b}\left(x^{1}\right), f_{b}\left(x^{2}\right), f_{b}\left(x^{3}\right), f_{b}\left(x^{4}\right)$ forms a solution of E. So for every good b, let s_{b} be (some choice of) $f_{b}\left(x^{1}\right), f_{b}\left(x^{2}\right), f_{b}\left(x^{3}\right), f_{b}\left(x^{4}\right) \in S$ as defined above. We know from (2.1) that at least

[^3]$n^{d+1} / 2$ of all choices of b are good, so we have thus obtained $n^{d+1} / 2$ solutions s_{b} of E in S. To finish the proof we need to bound the number of times we have counted the same solution in S, that is, the number of b for which s_{b} can equal a certain 4 -tuple in S satisfying E.

Fix $s=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ and recall that $s_{b}=s$ only if there is a helpful 4-tuple $x^{1}, x^{2}, x^{3}, x^{4}$ (as defined just before equation (2.4)) such that $f_{b}\left(x^{i}\right)=s_{i}$. We claim that for every helpful 4 -tuple $x^{1}, x^{2}, x^{3}, x^{4}$, there are at most n^{d-2} choices of $b=\left(b_{0}, \ldots, b_{d}\right)$ for which $s_{b}=s$. Indeed recall that by our choice of X the vectors x^{1}, x^{2}, x^{3} are distinct and do not lie on one line. Hence they are affine independent ${ }^{7}$ over \mathbb{R}. But since the entries of x^{i} belong to $[t]$ and $t \leq 1 / \varepsilon$ we see that for large enough n the vectors x^{1}, x^{2}, x^{3} are also affine independent over \mathbb{F}_{n}. This means that the system of three linear equations

$$
\begin{aligned}
b_{0}+b_{1} x_{1}^{1}+\ldots+b_{d} x_{d}^{1} & =s_{1} \\
b_{0}+b_{1} x_{1}^{2}+\ldots+b_{d} x_{d}^{2} & =s_{2} \\
b_{0}+b_{1} x_{1}^{3}+\ldots+b_{d} x_{d}^{3} & =s_{3}
\end{aligned}
$$

(in $d+1$ unknowns b_{0}, \ldots, b_{d} over \mathbb{F}_{n}) has only n^{d-2} solutions, implying the desired bound on the number of choices of b. Since $|X| \leq t^{d} \leq(1 / \varepsilon)^{2 C}$ by (2.3) we see that X contains at most $(1 / \varepsilon)^{8 C}$ helpful 4 -tuples. Altogether this means that for every $s_{1}, s_{2}, s_{3}, s_{4} \in S$ satisfying E, there are at most $(1 / \varepsilon)^{8 C} n^{d-2}$ choices of b for which $s_{b}=s$. Since we have previously deduced that S contains at least $\frac{1}{2} n^{d+1}$ solutions s_{b}, we get that S contains at least $\frac{1}{2} \varepsilon^{8 C} n^{3}$ distinct solutions, as needed.

Acknowledgment: I would like to thank Yuval Wigderson and an anonymous referee for helpful comments and suggestions.

References

[1] F. A. Behrend, On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. U. S. A. 32 (1946), 331-332.
[2] T. F. Bloom, Translation invariant equations and the method of Sanders, Bull. Lond. Math. Soc. 44 (2012), 1050-1067.
[3] B. Bukh, Extremal graphs without exponentially-small bicliques, Duke Math. J., to appear.
[4] D. Conlon, J. H. Kim, C. Lee and J. Lee, Some advances on Sidorenko's conjecture, J. London Math. Soc. 98 (2018), 593-608.
[5] P. Erdős and M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (1983), 181-192.
[6] A. Girão, E. Hurley, F. Illingworth and L. Michel, Abundance: asymmetric graph removal lemmas and integer solutions to linear equations, arXiv:2310.18202.
[7] Z. Kelley and R. Meka, Strong bounds for 3-progressions, arXiv:2302.05537.
[8] T. Kosciuszko, Counting solutions to invariant equations in dense sets, arXiv:2306.08567.
[9] I. Z. Ruzsa, Solving a linear equation in a set of integers I, Acta Arith. 65 (1993), 259-282.

[^4][10] T. Schoen and O. Sisask, Roth's theorem for four variables and additive structures in sums of sparse sets, Forum Math. Sigma 4 (2016) e5, 28.
[11] P. Varnavides, On certain sets of positive density, J. London Math. Soc. 34 (1959) 358-360.

[^0]: *School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel. Email: asafico@tau.ac.il. Supported in part by ERC Consolidator Grant 863438 and NSF-BSF Grant 20196.

[^1]: ${ }^{1}$ It is easy to see that this definition is equivalent to the one we used in the abstract.
 ${ }^{2}$ More precisely, it shows that in this case $R_{E}(\varepsilon) \geq(1 / \varepsilon)^{c \log 1 / \varepsilon}$. Here and throughout this note, all logarithms are base 2 .

[^2]: ${ }^{3}$ The factor $2 C$ loss in the density of S can be absorbed by the factor c in Problem 1.2.
 ${ }^{4}$ Since $f([R])$ is a subset of $[R]$ (rather than S), it might have been more accurate to denote $f([R])$ by $f^{-1}([R])$ but we drop the -1 to make the notation simpler.

[^3]: ${ }^{5}$ We will make sure $|X| \geq 8 / \varepsilon$.
 ${ }^{6}$ Recalling (2.2), we see that since $C \geq 1$ (indeed, a standard probabilistic deletion method argument shows that if an equation has k variables, then $\left.C(E) \geq 1+\frac{1}{k-2}\right)$, we indeed have $|X| \geq 8 / \varepsilon$ as we promised earlier.

[^4]: ${ }^{7}$ That is, if we turn these three d-dimensional vectors into $(d+1)$-dimensional vectors, by adding a new coordinate whose value is 1 , we get three linearly independent vectors.

