A Generalization of Varnavides's Theorem

Asaf Shapira*

Abstract

A linear equation E is said to be *sparse* if there is c > 0 so that every subset of [n] of size n^{1-c} contains a solution of E in distinct integers. The problem of characterizing the sparse equations, first raised by Ruzsa in the 90's, is one of the most important open problems in additive combinatorics. We say that E in k variables is *abundant* if every subset of [n] of size εn contains at least $poly(\varepsilon) \cdot n^{k-1}$ solutions of E. It is clear that every abundant E is sparse, and Girão, Hurley, Illingworth and Michel asked if the converse implication also holds. In this note we show that this is the case for every E in 4 variables. We further discuss a generalization of this problem which applies to all linear equations.

1 Introduction

Turán-type questions are some of the most well studied problems in combinatorics. They typically ask how "dense" should an object be in order to guarantee that it contains a certain small substructure. In the setting of graphs, this question asks how many edges an *n*-vertex graph should contain in order to force the appearance of some fixed graph H. For example, a central open problem in this area asks, given a bipartite graph H, to determine the smallest $T = T_H(\varepsilon)$ so that for every $n \ge T$ every *n*-vertex graph with $\varepsilon {n \choose 2}$ edges contains a copy of H (see [3] for recent progress). A closely related question which also attracted a lot of attention, is the *supersaturation* problem, introduced by Erdős and Simonovits [5] in the 80's. In the setting of Turán's problem for bipartite H, the supersaturation question asks to determine the largest $T_H^*(\varepsilon)$ so that every *n*-vertex graph with $\varepsilon {n \choose 2}$ edges contains at least $(T_H^*(\varepsilon) - o_n(1)) \cdot n^h$ labelled copies of H, where h = |V(H)| and $o_n(1)$ denotes a quantity tending to 0 as $n \to \infty$. One of the central conjectures in this area, due to Sidorenko, suggests that $T_H^*(\varepsilon) = \varepsilon^m$, where m = |E(H)| (see [4] for recent progress).

We now describe two problems in additive number theory, which are analogous to the graph problems described above. We say that a homogenous linear equation $\sum_{i=1}^{k} a_i x_i = 0$ is *invariant* if $\sum_i a_i = 0$. All equations we consider here will be invariant and homogenous. Given a fixed linear equation E, the Turán problem for E asks to determine the smallest $R = R_E(\varepsilon)$ so that for every $n \geq R$, every $S \subseteq [n] := \{1, \ldots, n\}$ of size εn contains a solution to E in distinct integers. For example, when E is the equation a + b = 2c we get the Erdős–Turán–Roth problem on sets avoiding 3-term arithmetic progressions (see [7] for recent progress). Continuing the analogy with the previous paragraph, we can now ask to determine the largest $R_E^*(\varepsilon)$ so that every $S \subseteq [n]$ of size εn contains at least $(R_E^*(\varepsilon) - o_n(1)) \cdot n^{k-1}$ solutions to E, where k is the number of variables in E. We now turn to discuss two aspects which make the arithmetic problems more challenging than the graph problems.

^{*}School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel. Email: asafico@tau.ac.il. Supported in part by ERC Consolidator Grant 863438 and NSF-BSF Grant 20196.

Let us say that E is sparse if there is C = C(H) so that $R_E(\varepsilon) \leq \varepsilon^{-C}$. The first aspect which makes the arithmetic landscape more varied is that while in the case of graphs it is well known (and easy) that for every bipartite H we have $T_H(\varepsilon) = \text{poly}(1/\varepsilon)$, this is no longer the case in the arithmetic setting. Indeed, while Sidon's equation a + b = c + d is sparse, a well known construction of Behrend [1] shows that a + b = 2c is not sparse². The problem of determining which equations Eare sparse is a wide open problem due to Ruzsa, see Section 9 in [9].

Our main goal in this paper is to study another aspect which differentiates the arithmetic and graph theoretic problems. While it is easy to translate a bound for $T_H(\varepsilon)$ into a bound for $T_H^*(\varepsilon)$ (in particular, establishing that $T_H^*(\varepsilon) \ge \operatorname{poly}(\varepsilon)$ for all bipartite H), it is not clear if one can analogously transform a bound for $R_E(\varepsilon)$ into a bound for $R_E^*(\varepsilon)$. The first reason is that while we can average over all subsets of vertices of graphs, we can only average over "structured" subsets of [n]. This makes is hard to establish a black-box reduction/transformation between $R_E(\varepsilon)$ and $R_E^*(\varepsilon)$. The second complication is that, as we mentioned above, we do not know which equations are sparse. This makes it hard to directly relate these two quantities. Following [6], we say that E is *abundant* if $R_E^*(\varepsilon) \ge \varepsilon^C$ for some C = C(E). Clearly, if E is abundant then it is also sparse. Girão, Hurley, Illingworth and Michel [6] asked if the converse also holds, that is, if one can transform a polynomial bound for $R_E(\varepsilon)$ into a polynomial bound for $R_E^*(\varepsilon)$. Our aim in this note is to prove the following.

Theorem 1.1. If an invariant equation E in 4 variables is sparse, then it is also abundant. More precisely, if $R_E(\varepsilon) \leq \varepsilon^{-C}$ then $R_E^*(\varepsilon) \geq \frac{1}{2}\varepsilon^{8C}$ for all small enough ε .

Given the above discussion it is natural to extend the problem raised in [6] to all equations E.

Problem 1.2. Is it true that for every invariant equation E there is c = c(E), so that for all small enough ε

$$R_E^*(\varepsilon) \ge 1/R_E(\varepsilon^c)$$
.

It is interesting to note that Varnavides [11] (implicitly) gave a positive answer to Problem 1.2 when E is the equation a + b = 2c. In fact, essentially the same argument gives a positive answer to this problem for all E in 3 variables. Hence, Problem 1.2 can be considered as a generalization of Varnavides's Theorem. Problem 1.2 was also implicitly studied previously in [2, 8]. In particular, Kosciuszko [8], extending earlier work of Schoen and Sisask [10], gave direct lower bounds for R_E^* which, thanks to [7], are quasi-polynomially related to those of R_E .

The proof of Theorem 1.1 is given in the next section. For the sake of completeness, and as a preparation for the proof of Theorem 1.1, we start the next section with a proof that Problem 1.2 holds for equations in 3 variables. We should point that a somewhat unusual aspect of the proof of Theorem 1.1 is that it uses a Behrend-type [1] geometric argument in order to find solutions, rather than avoid them.

2 Proofs

In the first subsection below we give a concise proof of Varnavides's Theorem, namely, of the fact that Problem 1.2 has a positive answer for equations with 3 variables. In the second subsection we prove Theorem 1.1.

¹It is easy to see that this definition is equivalent to the one we used in the abstract.

²More precisely, it shows that in this case $R_E(\varepsilon) \ge (1/\varepsilon)^{c \log 1/\varepsilon}$. Here and throughout this note, all logarithms are base 2.

2.1 Proof of Varnavides's theorem

Note that for every equation E, there is a constant C such that for every prime $p \ge Cn$ every solution of E with integers $x_i \in [n]$ over \mathbb{F}_p is also a solution over \mathbb{R} . Since we can always find a prime $Cn \le p \le 2Cn$, this means that we can assume that n itself is prime³ and count solutions over \mathbb{F}_n . So let S be a subset of \mathbb{F}_n of size εn and let $R = R_E(\varepsilon/2)$. For $b = (b_0, b_1) \in (\mathbb{F}_n)^2$ and $x \in [R]$ let $f_b(x) = b_1 x + b_0$ and $f_b([R]) = \{x \in [R] : f_b(x) \in S\}$. Pick b_0 and b_1 uniformly at random from \mathbb{F}_n and note that for any $x \in [R]$ the integer $f_b(x)$ is uniformly distributed in \mathbb{F}_n . Hence,

$$\mathbb{E}|f_b([R])| = \varepsilon R \; .$$

It is also easy to see that for every $x \neq y$ the random variables $f_b(x)$ and $f_b(y)$ are pairwise independent. Hence

$$\operatorname{Var}|f_b([R])| \leq \varepsilon R$$
.

Therefore, by Chebyshev's Inequality we have

$$\mathbb{P}\left[|f_b([R])| \le \frac{\varepsilon}{2}R\right] \le \frac{\varepsilon R}{\varepsilon^2 R^2/4} \le 1/2 .$$

In other words, at least $n^2/2$ choices of b are such that $|f_b([R])| \geq \frac{\varepsilon}{2}R$. By our choice of R this means that $f_b([R])$ contains 3 distinct integers x_1, x_2, x_3 which satisfy E and such that $f_b(x_i) \in S$. Note that if x_1, x_2, x_3 satisfy E then so do $f_b(x_1), f_b(x_2), f_b(x_3)$. Let us denote the triple $(f_b(x_1), f_b(x_2), f_b(x_3))$ by s_b . We have thus obtained $n^2/2$ solutions s_b of E in S. To conclude the proof we just need to estimate the number of times we have double counted each solution s_b . Observe that for every choice of $s_b = \{s_1, s_2, s_3\}$ and distinct $x_1, x_2, x_3 \in [R]$, there is exactly one choice of $b = (b_0, b_1) \in (\mathbb{F}_n)^2$ for which $b_1x_i + b_0 = s_i$ for every $1 \le i \le 3$. Since [R] contains at most R^2 solutions of E this means that for every solution $s_1, s_2, s_3 \in S$ there are at most R^2 choices of b for which $s_b = \{s_1, s_2, s_3\}$. We conclude that S contains at least $n^2/2R^2$ distinct solutions, thus completing the proof.

2.2 Proof of Theorem 1.1

As in the proof above, we assume that n is a prime and count the number of solutions of the equation $E: \sum_{i=1}^{4} a_i x_i = 0$ over \mathbb{F}_n . Let S be a subset of \mathbb{F}_n of size εn , and let d and t be integers to be chosen later and let X be some subset of $[t]^d$ to be chosen later as well. For every $b = (b_0, \ldots, b_d) \in (\mathbb{F}_n)^{d+1}$ and $x = (x_1, \ldots, x_d) \in X$ we use $f_b(x)$ to denote $b_0 + \sum_{i=1}^{d} b_i x_i$ and $f_b(X) = \{x \in X : f_b(x) \in S\}$. We call $b \mod if |f_b(X)| \ge \varepsilon |X|/2$. We claim that at least half of all possible choices of b are good. To see this, pick $b = (b_0, \ldots, b_d)$ uniformly at random from $(\mathbb{F}_n)^{d+1}$, and note that for any $x \in X$ the integer $f_b(x)$ is uniformly distributed in \mathbb{F}_n . Hence,

$$\mathbb{E}|f_b(X)| = \varepsilon |X| .$$

It is also easy to see that for every $x \neq y \in X$ the random variables $f_b(x)$ and $f_b(y)$ are pairwise independent. Hence

$$\operatorname{Var}|f_b(X)| \le \varepsilon |X| \; .$$

³The factor 2C loss in the density of S can be absorbed by the factor c in Problem 1.2.

⁴Since f([R]) is a subset of [R] (rather than S), it might have been more accurate to denote f([R]) by $f^{-1}([R])$ but we drop the -1 to make the notation simpler.

Therefore, by Chebyshev's Inequality we have⁵

$$\mathbb{P}\left[|f_b(X)| \le \frac{\varepsilon}{2} |X|\right] \le 4/\varepsilon |X| \le 1/2 , \qquad (2.1)$$

implying that at least half of the b's are good. To finish the proof we need to make sure that every such choice of a good b will "define" a solution s_b in S in a way that s_b will not be identical to too many other $s_{b'}$. This will be achieved by a careful choice of d, t and X.

We first choose X to be the largest subset of $[t]^d$ containing no three points on one line. We claim that

$$|X| \ge t^{d-2}/d$$
. (2.2)

Indeed, for an integer r let B_r be the points $x \in [t]^d$ satisfying $\sum_{i=1}^d x_i^2 = r$. Then every point of $[t]^d$ lies on one such B_r , where $1 \le r \le dt^2$. Hence, at least one such B_r contains at least t^{d-2}/d of the points of $[t]^d$. Furthermore, since each set B_r is a subset of a sphere, it does not contain three points on one line.

We now turn to choose t and d. Let C be such that $R_E(\varepsilon) \leq (1/\varepsilon)^C$. Set $a = \sum_{i=1}^4 |a_i|$ and pick t and d satisfying

$$(1/\varepsilon)^{2C} \ge t^d \ge \left(\frac{2dt^2a^d}{\varepsilon}\right)^C . \tag{2.3}$$

Taking $t = 2\sqrt{\log 1/\varepsilon}$ and $d = 2C\sqrt{\log 1/\varepsilon}$ satisfies⁶ the above for all small enough ε . Note that by (2.3) and our choice of C we have $R_E\left(\frac{\varepsilon}{2dt^2a^d}\right) \leq t^d$. Let us call a collection of 4 vectors $x^1, x^2, x^3, x^4 \in X$ helpful if they are distinct, and they satisfy E in each coordinate, that is, for every $1 \leq i \leq d$ we have $\sum_{j=1}^{4} a_j x_i^j = 0$. We claim that for every good r, there are useful $x^1, x^2, x^3, x^4 \in f_r(X)$. To see this let M denote the integers $1, \ldots, (at)^d$ and note that (2.2) along with the fact that r is good implies that

$$|f_r(X)| \ge \varepsilon |X|/2 \ge \frac{\varepsilon t^d}{2t^2 d} = \frac{\varepsilon}{2dt^2 a^d} \cdot |M|$$
(2.4)

Now think of every d-tuple $x \in X$ as representing an integer $p(x) \in [M]$ written in base at. So we can also think of $f_r(X)$ as a subset of [M] of density at least $\varepsilon/2dt^2a^d$. By (2.3), we have

$$M = (at)^d \ge t^d \ge R_E\left(\frac{\varepsilon}{2dt^2a^d}\right) ,$$

implying that there are distinct $x^1, x^2, x^3, x^4 \in f_r(X)$ for which $\sum_{j=1}^4 a_j \cdot p(x^j) = 0$. But note that since the entries of x^1, x^2, x^3, x^4 are from [t] there is no carry when evaluating $\sum_{i=1}^4 a_i \cdot p(x^i)$ in base at, implying that x^1, x^2, x^3, x^4 satisfy E in each coordinate. Finally, the fact that $\sum_j a_j = 0$ and that $x_i^1, x_i^2, x_i^3, x_i^4$ satisfy E for each $1 \le i \le d$ allows us to deduce that

$$\sum_{j=1}^{4} a_j \cdot f_b(x^j) = \sum_{j=1}^{4} a_j \cdot (b_0 + \sum_{i=1}^{d} b_i x_i^j) = \sum_{i=1}^{d} b_i \cdot (\sum_{j=1}^{4} a_j x_i^j) = 0 ,$$

which means that $f_b(x^1), f_b(x^2), f_b(x^3), f_b(x^4)$ forms a solution of E. So for every good b, let s_b be (some choice of) $f_b(x^1), f_b(x^2), f_b(x^3), f_b(x^4) \in S$ as defined above. We know from (2.1) that at least

⁵We will make sure $|X| \ge 8/\varepsilon$.

⁶Recalling (2.2), we see that since $C \ge 1$ (indeed, a standard probabilistic deletion method argument shows that if an equation has k variables, then $C(E) \ge 1 + \frac{1}{k-2}$, we indeed have $|X| \ge 8/\varepsilon$ as we promised earlier.

 $n^{d+1}/2$ of all choices of b are good, so we have thus obtained $n^{d+1}/2$ solutions s_b of E in S. To finish the proof we need to bound the number of times we have counted the same solution in S, that is, the number of b for which s_b can equal a certain 4-tuple in S satisfying E.

Fix $s = \{s_1, s_2, s_3, s_4\}$ and recall that $s_b = s$ only if there is a helpful 4-tuple x^1, x^2, x^3, x^4 (as defined just before equation (2.4)) such that $f_b(x^i) = s_i$. We claim that for every helpful 4-tuple x^1, x^2, x^3, x^4 , there are at most n^{d-2} choices of $b = (b_0, \ldots, b_d)$ for which $s_b = s$. Indeed recall that by our choice of X the vectors x^1, x^2, x^3 are distinct and do not lie on one line. Hence they are affine independent⁷ over \mathbb{R} . But since the entries of x^i belong to [t] and $t \leq 1/\varepsilon$ we see that for large enough n the vectors x^1, x^2, x^3 are also affine independent over \mathbb{F}_n . This means that the system of three linear equations

$$b_0 + b_1 x_1^1 + \ldots + b_d x_d^1 = s_1$$

$$b_0 + b_1 x_1^2 + \ldots + b_d x_d^2 = s_2$$

$$b_0 + b_1 x_1^3 + \ldots + b_d x_d^3 = s_3$$

(in d + 1 unknowns b_0, \ldots, b_d over \mathbb{F}_n) has only n^{d-2} solutions, implying the desired bound on the number of choices of b. Since $|X| \leq t^d \leq (1/\varepsilon)^{2C}$ by (2.3) we see that X contains at most $(1/\varepsilon)^{8C}$ helpful 4-tuples. Altogether this means that for every $s_1, s_2, s_3, s_4 \in S$ satisfying E, there are at most $(1/\varepsilon)^{8C}n^{d-2}$ choices of b for which $s_b = s$. Since we have previously deduced that S contains at least $\frac{1}{2}n^{d+1}$ solutions s_b , we get that S contains at least $\frac{1}{2}\varepsilon^{8C}n^3$ distinct solutions, as needed.

Acknowledgment: I would like to thank Yuval Wigderson and an anonymous referee for helpful comments and suggestions.

References

- F. A. Behrend, On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. U. S. A. 32 (1946), 331-332.
- [2] T. F. Bloom, Translation invariant equations and the method of Sanders, Bull. Lond. Math. Soc. 44 (2012), 1050-–1067.
- [3] B. Bukh, Extremal graphs without exponentially-small bicliques, Duke Math. J., to appear.
- [4] D. Conlon, J. H. Kim, C. Lee and J. Lee, Some advances on Sidorenko's conjecture, J. London Math. Soc. 98 (2018), 593–608.
- [5] P. Erdős and M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (1983), 181-192.
- [6] A. Girão, E. Hurley, F. Illingworth and L. Michel, Abundance: asymmetric graph removal lemmas and integer solutions to linear equations, arXiv:2310.18202.
- [7] Z. Kelley and R. Meka, Strong bounds for 3-progressions, arXiv:2302.05537.
- [8] T. Kosciuszko, Counting solutions to invariant equations in dense sets, arXiv:2306.08567.
- [9] I. Z. Ruzsa, Solving a linear equation in a set of integers I, Acta Arith. 65 (1993), 259–282.

⁷That is, if we turn these three *d*-dimensional vectors into (d + 1)-dimensional vectors, by adding a new coordinate whose value is 1, we get three linearly independent vectors.

- [10] T. Schoen and O. Sisask, Roth's theorem for four variables and additive structures in sums of sparse sets, Forum Math. Sigma 4 (2016) e5, 28.
- [11] P. Varnavides, On certain sets of positive density, J. London Math. Soc. 34 (1959) 358–360.