
A Generalization of Varnavides’s Theorem

Asaf Shapira*

Abstract

A linear equation E is said to be sparse if there is c > 0 so that every subset of [n] of
size n1−c contains a solution of E in distinct integers. The problem of characterizing the sparse
equations, first raised by Ruzsa in the 90’s, is one of the most important open problems in additive
combinatorics. We say that E in k variables is abundant if every subset of [n] of size εn contains
at least poly(ε) · nk−1 solutions of E. It is clear that every abundant E is sparse, and Girão,
Hurley, Illingworth and Michel asked if the converse implication also holds. In this note we show
that this is the case for every E in 4 variables. We further discuss a generalization of this problem
which applies to all linear equations.

1 Introduction

Turán-type questions are some of the most well studied problems in combinatorics. They typically ask
how “dense” should an object be in order to guarantee that it contains a certain small substructure.
In the setting of graphs, this question asks how many edges an n-vertex graph should contain in order
to force the appearance of some fixed graph H. For example, a central open problem in this area
asks, given a bipartite graph H, to determine the smallest T = TH(ε) so that for every n ≥ T every
n-vertex graph with ε

(
n
2

)
edges contains a copy of H (see [3] for recent progress). A closely related

question which also attracted a lot of attention, is the supersaturation problem, introduced by Erdős
and Simonovits [5] in the 80’s. In the setting of Turán’s problem for bipartite H, the supersaturation
question asks to determine the largest T ∗

H(ε) so that every n-vertex graph with ε
(
n
2

)
edges contains

at least (T ∗
H(ε) − on(1)) · nh labelled copies of H, where h = |V (H)| and on(1) denotes a quantity

tending to 0 as n → ∞. One of the central conjectures in this area, due to Sidorenko, suggests that
T ∗
H(ε) = εm, where m = |E(H)| (see [4] for recent progress).

We now describe two problems in additive number theory, which are analogous to the graph
problems described above. We say that a homogenous linear equation

∑k
i=1 aixi = 0 is invariant if∑

i ai = 0. All equations we consider here will be invariant and homogenous. Given a fixed linear
equation E, the Turán problem for E asks to determine the smallest R = RE(ε) so that for every
n ≥ R, every S ⊆ [n] := {1, . . . , n} of size εn contains a solution to E in distinct integers. For
example, when E is the equation a+ b = 2c we get the Erdős–Turán–Roth problem on sets avoiding
3-term arithmetic progressions (see [7] for recent progress). Continuing the analogy with the previous
paragraph, we can now ask to determine the largest R∗

E(ε) so that every S ⊆ [n] of size εn contains
at least (R∗

E(ε) − on(1)) · nk−1 solutions to E, where k is the number of variables in E. We now
turn to discuss two aspects which make the arithmetic problems more challenging than the graph
problems.
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Let us say that E is sparse if there is C = C(H) so that1 RE(ε) ≤ ε−C . The first aspect which
makes the arithmetic landscape more varied is that while in the case of graphs it is well known
(and easy) that for every bipartite H we have TH(ε) = poly(1/ε), this is no longer the case in the
arithmetic setting. Indeed, while Sidon’s equation a+ b = c+ d is sparse, a well known construction
of Behrend [1] shows that a+ b = 2c is not sparse2. The problem of determining which equations E
are sparse is a wide open problem due to Ruzsa, see Section 9 in [9].

Our main goal in this paper is to study another aspect which differentiates the arithmetic and
graph theoretic problems. While it is easy to translate a bound for TH(ε) into a bound for T ∗

H(ε) (in
particular, establishing that T ∗

H(ε) ≥ poly(ε) for all bipartite H), it is not clear if one can analogously
transform a bound for RE(ε) into a bound for R∗

E(ε). The first reason is that while we can average
over all subsets of vertices of graphs, we can only average over “structured” subsets of [n]. This
makes is hard to establish a black-box reduction/transformation between RE(ε) and R∗

E(ε). The
second complication is that, as we mentioned above, we do not know which equations are sparse.
This makes it hard to directly relate these two quantities. Following [6], we say that E is abundant
if R∗

E(ε) ≥ εC for some C = C(E). Clearly, if E is abundant then it is also sparse. Girão, Hurley,
Illingworth and Michel [6] asked if the converse also holds, that is, if one can transform a polynomial
bound for RE(ε) into a polynomial bound for R∗

E(ε). Our aim in this note is to prove the following.

Theorem 1.1. If an invariant equation E in 4 variables is sparse, then it is also abundant. More
precisely, if RE(ε) ≤ ε−C then R∗

E(ε) ≥
1
2ε

8C for all small enough ε.

Given the above discussion it is natural to extend the problem raised in [6] to all equations E.

Problem 1.2. Is it true that for every invariant equation E there is c = c(E), so that for all small
enough ε

R∗
E(ε) ≥ 1/RE(ε

c) .

It is interesting to note that Varnavides [11] (implicitly) gave a positive answer to Problem 1.2
when E is the equation a + b = 2c. In fact, essentially the same argument gives a positive answer
to this problem for all E in 3 variables. Hence, Problem 1.2 can be considered as a generalization
of Varnavides’s Theorem. Problem 1.2 was also implicitly studied previously in [2, 8]. In particular,
Kosciuszko [8], extending earlier work of Schoen and Sisask [10], gave direct lower bounds for R∗

E

which, thanks to [7], are quasi-polynomially related to those of RE .

The proof of Theorem 1.1 is given in the next section. For the sake of completeness, and as a
preparation for the proof of Theorem 1.1, we start the next section with a proof that Problem 1.2
holds for equations in 3 variables. We should point that a somewhat unusual aspect of the proof of
Theorem 1.1 is that it uses a Behrend-type [1] geometric argument in order to find solutions, rather
than avoid them.

2 Proofs

In the first subsection below we give a concise proof of Varnavides’s Theorem, namely, of the fact
that Problem 1.2 has a positive answer for equations with 3 variables. In the second subsection we
prove Theorem 1.1.

1It is easy to see that this definition is equivalent to the one we used in the abstract.
2More precisely, it shows that in this case RE(ε) ≥ (1/ε)c log 1/ε. Here and throughout this note, all logarithms are

base 2.
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2.1 Proof of Varnavides’s theorem

Note that for every equation E, there is a constant C such that for every prime p ≥ Cn every
solution of E with integers xi ∈ [n] over Fp is also a solution over R. Since we can always find a
prime Cn ≤ p ≤ 2Cn, this means that we can assume that n itself is prime3 and count solutions over
Fn. So let S be a subset of Fn of size εn and let R = RE(ε/2). For b = (b0, b1) ∈ (Fn)

2 and x ∈ [R]
let fb(x) = b1x+ b0 and4 fb([R]) = {x ∈ [R] : fb(x) ∈ S}. Pick b0 and b1 uniformly at random from
Fn and note that for any x ∈ [R] the integer fb(x) is uniformly distributed in Fn. Hence,

E|fb([R])| = εR .

It is also easy to see that for every x ̸= y the random variables fb(x) and fb(y) are pairwise indepen-
dent. Hence

Var|fb([R])| ≤ εR .

Therefore, by Chebyshev’s Inequality we have

P
[
|fb([R])| ≤ ε

2
R
]
≤ εR

ε2R2/4
≤ 1/2 .

In other words, at least n2/2 choices of b are such that |fb([R])| ≥ ε
2R. By our choice of

R this means that fb([R]) contains 3 distinct integers x1, x2, x3 which satisfy E and such that
fb(xi) ∈ S. Note that if x1, x2, x3 satisfy E then so do fb(x1), fb(x2), fb(x3). Let us denote the
triple (fb(x1), fb(x2), fb(x3)) by sb. We have thus obtained n2/2 solutions sb of E in S. To conclude
the proof we just need to estimate the number of times we have double counted each solution sb.
Observe that for every choice of sb = {s1, s2, s3} and distinct x1, x2, x3 ∈ [R], there is exactly one
choice of b = (b0, b1) ∈ (Fn)

2 for which b1xi + b0 = si for every 1 ≤ i ≤ 3. Since [R] contains at most
R2 solutions of E this means that for every solution s1, s2, s3 ∈ S there are at most R2 choices of
b for which sb = {s1, s2, s3}. We conclude that S contains at least n2/2R2 distinct solutions, thus
completing the proof.

2.2 Proof of Theorem 1.1

As in the proof above, we assume that n is a prime and count the number of solutions of the equation
E :

∑4
i=1 aixi = 0 over Fn. Let S be a subset of Fn of size εn, and let d and t be integers to be chosen

later and let X be some subset of [t]d to be chosen later as well. For every b = (b0, . . . , bd) ∈ (Fn)
d+1

and x = (x1, . . . , xd) ∈ X we use fb(x) to denote b0 +
∑d

i=1 bixi and fb(X) = {x ∈ X : fb(x) ∈ S}.
We call b good if |fb(X)| ≥ ε|X|/2. We claim that at least half of all possible choices of b are good.
To see this, pick b = (b0, . . . , bd) uniformly at random from (Fn)

d+1, and note that for any x ∈ X
the integer fb(x) is uniformly distributed in Fn. Hence,

E|fb(X)| = ε|X| .

It is also easy to see that for every x ̸= y ∈ X the random variables fb(x) and fb(y) are pairwise
independent. Hence

Var|fb(X)| ≤ ε|X| .
3The factor 2C loss in the density of S can be absorbed by the factor c in Problem 1.2.
4Since f([R]) is a subset of [R] (rather than S), it might have been more accurate to denote f([R]) by f−1([R]) but

we drop the −1 to make the notation simpler.
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Therefore, by Chebyshev’s Inequality we have5

P
[
|fb(X)| ≤ ε

2
|X|

]
≤ 4/ε|X| ≤ 1/2 , (2.1)

implying that at least half of the b’s are good. To finish the proof we need to make sure that every
such choice of a good b will “define” a solution sb in S in a way that sb will not be identical to too
many other sb′ . This will be achieved by a careful choice of d, t and X.

We first choose X to be the largest subset of [t]d containing no three points on one line. We claim
that

|X| ≥ td−2/d . (2.2)

Indeed, for an integer r let Br be the points x ∈ [t]d satisfying
∑d

i=1 x
2
i = r. Then every point of [t]d

lies on one such Br, where 1 ≤ r ≤ dt2. Hence, at least one such Br contains at least td−2/d of the
points of [t]d. Furthermore, since each set Br is a subset of a sphere, it does not contain three points
on one line.

We now turn to choose t and d. Let C be such that RE(ε) ≤ (1/ε)C . Set a =
∑4

i=1 |ai| and pick
t and d satisfying

(1/ε)2C ≥ td ≥
(
2dt2ad

ε

)C

. (2.3)

Taking t = 2
√

log 1/ε and d = 2C
√

log 1/ε satisfies6 the above for all small enough ε. Note that by
(2.3) and our choice of C we have RE

(
ε

2dt2ad

)
≤ td.

Let us call a collection of 4 vectors x1, x2, x3, x4 ∈ X helpful if they are distinct, and they satisfy
E in each coordinate, that is, for every 1 ≤ i ≤ d we have

∑4
j=1 ajx

j
i = 0. We claim that for every

good r, there are useful x1, x2, x3, x4 ∈ fr(X). To see this let M denote the integers 1, . . . , (at)d and
note that (2.2) along with the fact that r is good implies that

|fr(X)| ≥ ε|X|/2 ≥ εtd

2t2d
=

ε

2dt2ad
· |M | (2.4)

Now think of every d-tuple x ∈ X as representing an integer p(x) ∈ [M ] written in base at. So we
can also think of fr(X) as a subset of [M ] of density at least ε/2dt2ad. By (2.3), we have

M = (at)d ≥ td ≥ RE

( ε

2dt2ad

)
,

implying that there are distinct x1, x2, x3, x4 ∈ fr(X) for which
∑4

j=1 aj · p(xj) = 0. But note that

since the entries of x1, x2, x3, x4 are from [t] there is no carry when evaluating
∑4

j=1 aj ·p(xj) in base

at, implying that x1, x2, x3, x4 satisfy E in each coordinate. Finally, the fact that
∑

j aj = 0 and

that x1i , x
2
i , x

3
i , x

4
i satisfy E for each 1 ≤ i ≤ d allows us to deduce that

4∑
j=1

aj · fb(xj) =
4∑

j=1

aj · (b0 +
d∑

i=1

bix
j
i ) =

d∑
i=1

bi · (
4∑

j=1

ajx
j
i ) = 0 ,

which means that fb(x
1), fb(x

2), fb(x
3), fb(x

4) forms a solution of E. So for every good b, let sb be
(some choice of) fb(x

1), fb(x
2), fb(x

3), fb(x
4) ∈ S as defined above. We know from (2.1) that at least

5We will make sure |X| ≥ 8/ε.
6Recalling (2.2), we see that since C ≥ 1 (indeed, a standard probabilistic deletion method argument shows that if

an equation has k variables, then C(E) ≥ 1 + 1
k−2

), we indeed have |X| ≥ 8/ε as we promised earlier.
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nd+1/2 of all choices of b are good, so we have thus obtained nd+1/2 solutions sb of E in S. To finish
the proof we need to bound the number of times we have counted the same solution in S, that is,
the number of b for which sb can equal a certain 4-tuple in S satisfying E.

Fix s = {s1, s2, s3, s4} and recall that sb = s only if there is a helpful 4-tuple x1, x2, x3, x4 (as
defined just before equation (2.4)) such that fb(x

i) = si. We claim that for every helpful 4-tuple
x1, x2, x3, x4, there are at most nd−2 choices of b = (b0, . . . , bd) for which sb = s. Indeed recall that
by our choice of X the vectors x1, x2, x3 are distinct and do not lie on one line. Hence they are
affine independent7 over R. But since the entries of xi belong to [t] and t ≤ 1/ε we see that for large
enough n the vectors x1, x2, x3 are also affine independent over Fn. This means that the system of
three linear equations

b0 + b1x
1
1 + . . .+ bdx

1
d = s1

b0 + b1x
2
1 + . . .+ bdx

2
d = s2

b0 + b1x
3
1 + . . .+ bdx

3
d = s3

(in d + 1 unknowns b0, . . . , bd over Fn) has only nd−2 solutions, implying the desired bound on the
number of choices of b. Since |X| ≤ td ≤ (1/ε)2C by (2.3) we see that X contains at most (1/ε)8C

helpful 4-tuples. Altogether this means that for every s1, s2, s3, s4 ∈ S satisfying E, there are at
most (1/ε)8Cnd−2 choices of b for which sb = s. Since we have previously deduced that S contains
at least 1

2n
d+1 solutions sb, we get that S contains at least 1

2ε
8Cn3 distinct solutions, as needed.
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