System-level Crash Safe Sorting on Persistent Memory

Omri Arad*, Yoav Ben Shimon*,

Ron Zadicario*
Moshik Hershcovitch*$,

Daniel Waddington®,
Adam Morrison*

Tel-Aviv University”*, IBM Research,®
{omriarad, benshimon2, ronzadicario}@mail.tau.ac.il, daniel. waddington@ibm.com, moshikh@il.ibm.com,
mad@cs.tau.ac.il

1 INTRODUCTION

Sorting is a fundamental operation in software systems. An
example for that is a prepossessing phase before executing
analytical operations.

Persistent memory (PM) is a nonvolatile device with low
latency and byte-addressable access. Our experiments used
Intel’s first commercially available device- Intel Optane DC.

In this paper, we evaluate system-level Crash Safe Sort-
ing trade-offs between performance and persistence (crash
recovery), utilizing PM. In our scenario, cloud providers re-
ceive log records from machines across their data centers
and store them in a high-performance data store with PM. A
sorting operation is executed to prepare the data for analysis.
We assume that data arrives in chunks, with each chunk
containing many items of fixed size. The sorting goal is to
sort and merge these chunks into one sorted chunk, which
is then partitioned back to the original number of chunks.

We evaluate our sorting algorithm using MCAS (Memory
Centric Active Storage) [2], which is a high-performance
client-server key-value store explicitly designed for PM.

2 SORTING ALGORITHM

We use the merge-sort algorithm, which is widely used to
organize and search for information [1]. This algorithm con-
sists of two stages: Sorting stage - Sort the data in each
chunk using QuickSort. Merging stage- Merge the sorted
chunks. The Merge stage consists of multiple "Merge Phases"
in which all chunks are merged in pairs, until a sorted chunk
containing all data is generated. We integrate the merge-sort
algorithm into MCAS using its ADO (Active Data Objects)

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SYSTOR °22, June 13-15, 2022, Haifa, Israel

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9380-5/22/06.
https://doi.org/10.1145/3534056.3535008

plugin mechanism. We evaluate different approaches regard-
ing the use of PM. A log maintained on PM is used in crash
recovery scenarios:

(1) DRAM-SORT - The entire algorithm is executed in
DRAM. After a crash, the system needs to restart the
sorting algorithm from scratch.

(2) DRAM-WITH-RECOVERY - All stages are per-
formed in DRAM, with results backed up to PM after
the sorting stage and each merge phase. This enables
recovery to the start of the last completed merge phase
in case of a crash.

(3) PM-SORT - All stages are performed directly on
the data stored in PM, enabling recovery to the last
completed operation after a crash. The QuickSort is
not in place (persisting after each swap is very time-
consuming, causing x100 slower performance).

3 EVALUATION

In our benchmark, we generated 512 chunks. Each chunk
of size 128MB has items of size 100B with a key of size 10B.
The total data is 64 GB. The following table shows the time
difference of the sorting approaches. The results are divided
to the Sorting Stage and Merging Stage.

Task | Sorting Stage | Merging Stage | Total Time | relative
(1) 289.682s 307.233s 715.517s 1
2) 352.466s 588.793 1023.222s 1.43
(3) 409.997s 685.558s 1130.683s 1.58

4 CONCLUSION

Sorting fully on PM is only 1.58 slower than sorting on DRAM
while giving persistent ability. The results show that the
time for persisting the data is a bottleneck in crash safe
implementation, and demonstrate the potential for utilizing
a trade-off between performance and persistence.

References

[1] Zbigniew Marszalek. 2018. Performance tests on merge sort and recur-
sive merge sort for big data processing. Technical Sciences/University of
Warmia and Mazury in Olsztyn (2018).

[2] Daniel Waddington, Clem Dickey, Moshik Hershcovitch, and Sangeetha
Seshadri. 2021. An architecture for memory centric active storage
(MCAS). arXiv preprint arXiv:2103.00007 (2021).

