
Explaining White-box Classifications to Data

Scientists (technical report)

Daniel Deutch Nave Frost

Abstract

A main component of many Data Science applications is the invoca-
tion of Machine Learning (ML) classifiers. The typical complexity of these
classification models makes it difficult to understand the reason for a re-
sult, and consequently to assess its trustworthiness and detect errors. We
propose a simple generic approach for explaining classifications, by identi-
fying relevant parts of the input whose perturbation would be significant
in effecting the classification. Our solution requires white-box access to
the model internals and a specification of constraints that define which
perturbations are “reasonable” in the application domain; both are typi-
cally available to the data scientist. We have implemented the approach
for prominent ML models such as Random Forests and Neural Networks.
We demonstrate, through use cases and experiments, the effectiveness of
our solution, and in particular of its novel use of constraints.

1 Introduction

Data Science heavily relies on the use of Machine Learning classifiers to de-
rive insights and predictions in multiple domains. As these models get more
and more sophisticated, the quality of prediction generally increases; but the
downside is hampering understandability: why did we get a result? what would
change it? Such questions that are often investigated in the context of database
queries, generally remain unanswered when a complex Machine Learning model
is used. This in turn is harmful to the applications quality and to the trust level
in their results.

A particular application domain for which we will demonstrate the presenta-
tion of explanations is that of image classification, namely the process of associ-
ating images with labels that describe their contents. Typically multiple labels
are assigned to each image, and each is given a confidence score. Explaining
the reason for the assigned labels can potentially reveal recurring errors of the
classification model, and thus guide its improvement, e.g. by further training
on images of a particular flavour.

A major conceptual challenge is how do we define explanations? Our ap-
proach is to explain output instances by focusing on minimal hypothetical per-
turbations to the input (e.g. features or pixels) that significantly change the

1

model confidence in a particular label of interest. Intuitively, the input parts
that are modified through such a perturbation were the most influential for the
model original decision. Both positive and negative contributions, i.e. ones that
significantly increase or decrease the model confidence in a particular decision
(label), are informative in this respect – they both indicate the impact of the
input part on the label.

A conceptual problem with this approach is that an impactful modification
is not necessarily informative for presentation as an explanation. In particular,
there is a flourish of research on adversarial Machine Learning [13, 5, 46, 21, 39],
demonstrating that minor, unnoticeable changes spread throughout the input
(in particular, an image) can in practice “fool” the model, leading to a significant
change of the labelling decision. Such unnoticeable perturbation to (almost)
every pixel of the image is clearly uninformative for explanations.

To this end, our approach is to impose constraints over the allowed pertur-
bation, and then aim at finding optimal perturbations out of those that satisfy
the constraints. The constraints intuitively capture the usefulness of a pertur-
bation in the context of explanations. For instance, it may bound the number
of pixels or super-pixels (sets of pixels that are “semantically” related) that may
be modified, thus leading the perturbation to be focused on a small number of
pixels/areas which in turn can be transformed into a meaningful explanation
(see Example 3.4, explained in detail in Section 3). For other classification tasks
(beyond image classification) the constraints may bound the domain of (mod-
ified) features, impose functionality constraints between multiple features, etc.
Designing constraints requires some domain knowledge, but we demonstrate
that even reasonably simple constraints can lead to satisfactory explanations in
practical settings. We propose a formalism for constraints – linear inequalities
over the original and modified values – and demonstrate that it allows specifi-
cation of realistic and useful constraints. We further discuss extensions beyond
this class.

The input to our algorithm is then (1) a “white-box” ML model instance,
such as the trees of a Random Forest [25, 26] or the instance of a given Neural
Network [36, 33, 20], (2) an input whose classification we wish to explain, (3) a
classification class of interest and a required confidence level, and (4) a specifi-
cation of constraints. The algorithm’s goal, at a high level, is demonstrated in
Figure 1a. x is the input point, currently classified as “blue”. The classification
class of interest is “red”, and we either wish to explain what would change the
decision to be red, and be sufficiently confident at that – i.e. push the classi-
fication beyond the “Sred” line, or conversely, to further reduce the confidence
in “red”, i.e. find a modification to be classified beyond the “Rred” line. We
further have constraints on the allowed modifications; these are captured by the
dark blue box. Our goal is to find a closest point to x that is classified as “red”
with the required confidence, and is also inside the “allowed” area. So x′, which
may be the closest point to x having the required “red” confidence, does not
qualify since it does not satisfy the constraints. Instead the result we wish to
obtain is the point denoted as x+ ∆x∗Sred

. Similarly if we wish to (sufficiently)
decrease the confidence in “red”, then the result should be x+ ∆x∗Rred

.

2

(a) Optimal changes example

(b) Optimal changes path

Figure 1: Optimal changes

To achieve that, the algorithm operates iteratively, as illustrated in Figure
1b. Each iteration consists of two steps, as follows.

Perturb The first step is perturbation, where we look for minimal changes to
the input so that the output is changed in the “right” direction (ignoring the
constraints). The implementation of this step depends on the type of the ML
model, and performing it optimally is already NP-hard for e.g. Random Forests
and Neural Networks; still, we provide effective heuristics for these models. For
Random Forests, the algorithm iterates over the decision trees one by one. For
each tree we compute a “candidate” perturbation that will lead the decision
to one of the relevant leaves. Eventually, the algorithm selects the candidate
agreed upon by the majority of trees. For Neural Networks we rely on each of
the input features gradient, that is obtained by back-propagation through the
network. The perturbation will then shift each feature value according to its
gradient.

Project As demonstrated in Figure 1b, the perturbation step may lead to a
point that violates the constraints. If this is the case, we project it back to the
constrained area, i.e. find a closest point that does satisfy the constraints. The

3

projection step is oblivious to the model and depends only on the constraints.
For constraints that are expressed as linear inequalities (which, as mentioned
above, is a reasonably expressive formalism), the projection step can be effec-
tively implemented through Quadratic Programming. We also briefly discuss
the implementation of this step for non-linear, convex constraints.

Each application of perturb intuitively “pushes” the point in the right direc-
tion in terms of its tag. The application of project then returns the point to
the constrained area. If the projection step had not made “too much harm” in
terms of the model decision, then we have obtained a “legal” point that is closer
to the tag we wish to achieve, and we can continue iterating to improve it. The
algorithm is not guaranteed to converge in general, but our experimental study
indicates its effectiveness in practice.

We have implemented the algorithm with concrete perturbation and pro-
jection functions for multiple ML models (Linear model, Random Forests and
Neural networks), and multiple types of constraints. We have applied it to
state-of-the-art ML solutions (including in particular Google’s Inception-v3

[44, 45]). We demonstrate the effectiveness of our solution in multiple ways:
first, we show examples of the explanations that are obtained through our imple-
mentation (see Figure 8), and show two particular use cases where we have used
explanations for concrete insights on how to improve existing models. Then, we
provide a user study comparing our solution both to a simple baseline of com-
puting explanations based solely on minimal changes (as in adversarial ML),
and to the state-of-the-art tool for ML instance explanation, LIME [41] (see dis-
cussion of related work in Section 2). Finally, we analyze computational aspects
of our solution, comparing it to the optimal one where applicable.

The rest of this paper is organized as follows. Section 2 overviews related
work. Section 3 formally defines the problem and provides examples. Section
4 introduces the general framework and algorithm, and in Sections 5 and 6
we provide concrete implementations for the perturbation and projection func-
tions. Section 7 shows use cases and results of our implementation, and Section
8 describes the results of our experimental evaluation. We conclude with a
discussion of future work in Section 9.

2 Related Work

We overview related work in three areas: works that aim at explaining ML
models and results; explanations in database contexts; and adversarial Machine
Learning.

Explanations for ML The need for explanations in the context of Machine
Learning, notably rising from the complexity of employed models, is well rec-
ognized in the ML community. Consequently there is a large body of work
on the problem, usually under the umbrella of interpretable Machine Learning
[47, 15, 29, 40]. A prominent approach in this respect is to attempt at explaining
the model as a whole, e.g. by approximating its specification through an instance

4

of a simpler-to-understand (interpretable) model. For example, [27, 28] com-
putes, for a given ML model, a reasonably small set of logical rules that should
intuitively capture a similar reasoning to that of the model. An inherent limita-
tion of this approach is that such simple rules would generally fail to capture all
the nuances of the model decisions. A second approach, that we follow here, is
not to explain the model as a whole but rather the reasoning underlying individ-
ual classifications. Notably, LIME [41] is one of the first solutions following this
approach. Unlike our work, [41] assumes neither access to the internals of the
model instance (i.e. the model is a black box) nor constraints. At a high-level,
their approach is to randomly choose points in space that are in the proximity
of the point whose prediction they wish to explain, and probe the model in-
stance for predictions at these points. Then, they train a simple interpretable
model (e.g. a linear model or a decision tree), using the decisions of the original
predictor as training data. Finally, for such simple models it is easy to identify
the most influencing features of the input, and these are used for explanations.

There are several aspects distinguishing our work from that of LIME and
similar works [43, 30]. Our solution requires additional input: white-box rather
than black-box access to the ML model instance, and the specification of con-
straints. These additional pieces of information are typically available to the
data scientist or can be designed by her with a reasonable effort. Our main
contribution is in demonstrating that we can leverage this domain knowledge
to significantly improve the quality of explanations. In particular, the use of
constraints for explanations has, to our knowledge, not been studied in the con-
text of ML. It is consistent with conventional wisdom in data management (see
discussion below), and as such our approach may pave the way for holistic ex-
planations that account for the full data science cycle. A further distinguishing
factor of our approach in this respect is that it is deterministic and purely al-
gorithmic (e.g. LIME uses randomization and Machine Learning to compute the
explanations). See further discussion in Section 9.

Provenance for DB Queries There is a large body of work on provenance
and explanations for database queries (see e.g. [23, 8, 42, 10, 12]), as well as
some recent work on provenance for Data Mining [19]. Specifically, the approach
of explaining query results based on minimal changes in the input database,
and related notions of causality and responsibility, has been studied in e.g.
[38, 37, 48]. Explanations for non-answers have been studied in multiple lines of
work, e.g. by identifying responsible query operators [9] or relevant input tuples
(e.g. [4]). Our use of constraints is somewhat related to the work on repairs (e.g.
[2, 17, 3, 18]) which typically aims at minimal changes to a “dirty” database
that satisfy the given constraints. In a sense, we “transfer” the approach of
constrained-based minimal changes to the setting of explanations for ML. As
mentioned above, beyond the direct contribution of improving explanations of
the ML model classification, this consistency of approaches is advantageous for
future integration of explanation solutions.

5

Adversarial Machine Learning In the context of ML, minimal modifica-
tions in the input that change the model output have been extensively studied
as means of “fooling” the ML model (see e.g. [22, 46]). Surprisingly, it was
shown that carefully placed, minor changes to the input can cause the model to
output a different class with high confidence. Adversarial algorithms have been
in particular designed for Neural Networks, Decision Trees and, among many
others (see e.g. [39, 1, 32]). Even though the changes are specifically tailored to
the model instance, they look to the human eye as plain noise. This is a highly
favourable feature for adversarial examples, which is the goal of these works,
but (as we show) it makes the solution unsuitable for explanations. Our more
refined model that restricts the modified inputs to satisfy some pre-specified
constraints allows to identify “areas” that have the most impact on the model
output, and use these for explanations.

3 Problem Statement

We formally define a generic formulation of the problem. Let d be the dimension
of inputs to the Machine Learning model and let L be its domain of classification
labels. The input to the problem is then:

• A Machine Learning model instance M , which may be expressed as a
function M : Rd × L 7→ [0, 1], such that ∀x ∈ Rd, M satisfies that∑
l∈LM(x, l) = 1, i.e. it assigns a probability to each pair of possible

input and a class label1. We will consider particular types of ML models
below.

• An vector x ∈ Rd, which is the input to M whose classification we wish
to explain.

• A label l ∈ L of interest and required confidence levels in [0, 1].

• A constraint function, mapping vectors in Rd to sub-spaces of Rd. For a
given input x ∈ Rd, the set Cx ⊆ Rd denotes the allowed modifications of
x.

Intuitively, we are interested in minimal changes to the input vector such
that the model will be either more or less confident in a given label. The
problem is further parametrized by the level of confidence that we are looking
for. As explained in the Introduction, imposing constraints on the allowed
modifications is necessary to avoid “adversarial” changes that do not serve as
meaningful explanations.

We next formalize the problem; recall that M(y, l) is the confidence assigned
by M to labeling the input vector y using the label l.

Definition 3.1 Given a model M , input x, desired label l and a set of con-
straints Cx the label supporting modifications set defined as:

Sl = {∆x | (x+ ∆x) ∈ Cx and M(x+ ∆x, l) ≥ β1} (1)

1In practice, many labels may be associated a confidence value 0, and the model may
output a ranked list of labels ordered by confidence.

6

Similarly the label refuting modifications set defined as:

Rl = {∆x | (x+ ∆x) ∈ Cx and M(x+ ∆x, l) ≤ β2} (2)

Where β1 and β2 are constant values representing confidence thresholds.

We then define the optimal label supporting\refuting modification as
the smallest change in the respective set, as follows.

Definition 3.2 (Problem Statement) Given M,x, l and Cx as above, we de-
fine the optimal supporting modifications as ∆x∗Sl

= arg min∆x∈Sl
‖∆x‖ and the

optimal refuting modifications as ∆x∗Rl
= arg min∆x∈Rl

‖∆x‖. Our problem is
to find optimal supporting and refuting modifications.

Input Specification Our problem statement is generic in that it may be ap-
plied to any ML model and any constraints. This leads to the question of how
is the input to the problem specified. For the ML model, we require white-box
access. This means that instantiations of our framework will, for example, take
as input the decision trees of a Random Forest, or the full net structure of a
Neural Net. As for constraints, we will in particular consider ones that are
specified as linear inequalities over the original and modified input values. Ex-
amples include constrains indicating that only specific features can be changed,
or restricting the total number of features that may be changed. In the domain
of image classification we can limit the number of pixels we allow to change
from the original picture; a more sophisticated constraint can first process the
image to identify different areas in the image (e.g. super-pixels) and prevent
modification of too many areas. These constraints may all be expressed through
linear inequalities, which are relatively simple to write. We discuss other types
of constraints in the sequel.

We next demonstrate the problem and the introduced notions through a
simple example.

Example 3.3 Consider a simple linear model for loan applications, where the
model takes into account two binary parameters, income and debt (so an input
vector is x = [xincome, xdebt]). For each loan request, the model will return a
score based on the following formula:

M(x,Approve) = 0.5 +
xincome

2
− xdebt

2
,

consequently M(x,Deny) = 1−M(x,Approve). In this simple example we as-
sume that modifications are constrained simply by the domain of variable values,
so Cx = {0, 1}2 for every x.

Further assume that loans are approved only if they have model score of 1
and consider an applicant with x = [1, 1] who applies for a loan. Her model score
is 0.5, and the application is consequently denied. Naturally, the applicant may
be interested in understanding the denial reason. In particular, she would like
to know what changes will support the loan approval (i.e. increase the model

7

score to β1 = 1). In this case, changing her profile to x = [1, 0] (setting debt
to be 0) will lead to the application approval. Note that changing her profile
to x = [2, 1] will have the same score, but it contradicts Cx (and indeed, this
is uninformative). Based on the supporting changes, we have identified that
the debt parameter has a major influence on the model result. We may further
look for changes that refute the loan approval (i.e. decrease the model score
to β2 = 0). This may be achieved by modifying the income value such that
x = [0, 1]. Combined, we observe that both income and debt parameters have a
significant influence on the model decision.

The following example shows explanations that we compute for decisions
made by image recognition model. The explanations are based on both sup-
porting and refuting modifications. To pictorially present them, we identify the
different areas (super-pixels) in the image. For each super-pixel, we measure the
L2 distance of the pixel modifications within it, and normalize by division in the
number of its pixels. The top-10 areas that contained the most modifications
are highlighted. We will also use this example to demonstrate the importance
of constraints.

Example 3.4 Figure 2a presents an image that was (correctly) labeled by the
Inception-v3 [45] model as a Meerkat, with 82% confidence. We look for
small changes to pixels that will impact the model decision, and we set our
target to reduce its certainty that the image contain a Meerkat to be below 15%.
Intuitively, pixels whose change would reduce the confidence in the label are
ones that are likely to have had significant influence on the original decision.
We show the results for three different cases of constraints, as explained below.
For each case, we show in the top row all pixels that have changed: each pixel
is coloured by its delta in each of the RGB components. In the bottom row we
highlight the parts of the image that contained the most changes as explained
above. Those parts are the intuitively the “reason” that the model tagged the
image as a Meerkat.

In Figure 2b we impose no constraints at all. Observe, as shown in the top
row, that this has resulted in changing all of the image pixels. Furthermore,
presenting the areas with most changes is also uninformative in this case, as we
found little correlation between the model decision and the areas of significant
modifications. This is consistent with adversarial ML: many pixels are (slightly)
modified, throughout the picture; the result does not lend itself towards useful
explanations.

In contrast, in Figure 2c we impose a simple constraint: we allow modifi-
cation of only 1% of the pixels. This leads our framework to look for the most
indicative pixels, and indeed the areas of major changes are now better focused:
they are mostly around the Meerkat’s head and torso, with a few exceptions.
Furthermore, more carefully designed constraints lead to better explanations. In
Figure 2d we show the results obtained for constraints that restrict the modifica-
tion of superpixels. Namely, we had first preprocessed the image and identified
the superpixels; then the constraints allow to modify only pixels that reside in up

8

to 10 superpixels. Observe that the resulting explanation is better focused and
more informative.

(a) Original
image

(b) Adver-
sarial

(c) Limited
pixels

(d) Limited
superpixels

Figure 2: Adversarial vs. Constraints

4 The General Case

We have formally defined the problem of finding optimal label supporting and
refuting modifications and illustrated its application to explanations. We have
defined the problem in general terms; in this section we propose a general algo-
rithmic framework for its solution.

We start by observing that in general, one cannot achieve optimal solutions,
unless P = NP . This holds (by a simple reduction from CNF satisfiability) for
the commonly used models of Random Forests and Neural Networks, and even
in the absence of constraints:

Proposition 4.1 Finding optimal label supporting and refuting modifications
is NP-Hard for both Random Forest and Neural Networks, and even if Cx = Rd
for every x.

We point out that for simpler models, such as decision trees and linear
models, and in the absence of constraints, the problem is tractable; see the
following section. Also see Section 6 for a discussion of tractable classes of
constraints.

We next present our generic framework, shown in Algorithm 1. The algo-
rithm operates in an iterative manner, at each step it applies two main steps,
each of which requires a specialized implementation. In each iteration, it first
aims at finding a small perturbation over the point in a direction that will lead
the model to classify it in the desired label (Line 3). However, the modified

9

point is not guaranteed to obey the constrains given by Cx, and so we project
the modified point into Cx (Line 4). This will ensure that after each step, and in
particular the final solution, will be legitimate and that the changes are mean-
ingful, as illustrated in the previous section. Refuting modifications are found
in a symmetric manner: we look for perturbations that shift the model decision
in the opposite direction, and use a stopping criteria when the confidence is
below the desired threshold.

Algorithm 1: Black Box - Supporting changes

input : ML model M , point x, label l, constraints Cx

output: Minimal legitimate changes to x according to Cx so it will be
tagged as l according to M with confidence higher than β

1 x′ = x;
2 while M.confidence(x′, l) > β do
3 x′ + ∆x′ = M.perturb(x′, l);
4 x′ = project(x′ + ∆x′, Cx);

5 return x′;

Example 4.2 Reconsider the illustration in Figure 1b. Point x was classified
to be Blue, but we are interested in finding a point that is close to x, classified as
Red and satisfies the constraints. At each iteration we find a small perturbation
that “pushes” the point to be Red, however in case the point does not satisfy
the constraints it will be projected into the constrained space specified by Cx.
This is done repeatedly, until we obtain a point labeled as Red with high enough
confidence, inside Cx and relatively close to x.

We note that the convergence of the algorithm is not guaranteed in general,
but our experimental study (Section 8) indicates that the algorithm typically
converges after a small number of iterations.

In the next two sections we will discuss in depth, and provide concrete im-
plementations for, the two main parts of the algorithm, i.e. perturb and project :

Perturb is a step that depends on the model structure, aiming to find a
small change to x′ in the desired direction. This can be achieved by examination
of the model and the point, and identification of the features with the highest
influence on the model decision. Since this is a white-box solution we can inspect
the model instance, guiding our search of perturbations. In section 5 we describe
how to find those perturbation for different types of models.

Project is a step that depends on the constraints. In case the perturbation
shifted the point to be illegitimate based on Cx this step will project the point to
satisfy the constraints. In section 6 we describe how to implement the projection
step, based on different types of constraints.

10

5 Perturbation Implementation

We present, in a high-level, three concrete ML models to which we will apply
our framework: Linear Models, Random Forests, and Neural Networks. For
each model, we present a dedicated implementation of the Perturb function.

5.1 Linear Models

Linear models are common and simple tools for learning a linear relationship
between the input space X and the outcome Y . The model decision is based
on a linear function h([x1, ..., xd]) = b + c1 · x1 + ... + cd · xd, whose value is
then tested to decide the label assigned to x = [x1, ..., xd]. We will consider the
case where one of two labels is assigned, based on whether or not the value of h
exceeds some threshold T ; the confidence of the model in its decision is defined
as |h(x) − T |. In this case, finding an optimal perturbation with respect to a
given input is straightforward, as follows.

Proposition 5.1 Let

h([x1, ..., xd]) = b+ c1x1 + ...+ cdxd,

and let x be an input vector such that h(x) = α. For any β > α the following
holds:

arg min
{x′|h(x′)=β}

‖x′ − x‖ = [x1 + εc1, ..., xd + εcd],

where ε = β−α∑
c2i

Proof 5.2 Let x′ = [x1 + a1, ..., xd + ad] be a vector such that h(x′) = β. This
means that:

h(x′)− h(x) =
∑
i

ciai = β − α.

According to the geometric definition of dot product:∑
i

ciai = ‖[c1, ..., cd]‖ · ‖[a1, ..., ad]‖ cos(θ) = β − α,

where θ is the angle between the vectors [c1, ..., cd] and [a1, ..., ad]. Hence, we
can derive that:

‖[a1, ..., ad]‖ =
β − α

cos(θ)‖[c1, ..., cd]‖
.

Since we wish to minimize ‖x′−x‖ = ‖[a1, ..., ad]‖ we have that cos(θ) = 1. This
means that θ = 0 which implies that [a1, ..., ad] is obtained by a linear function
of [c1, ..., cd], i.e. for every i ai = εci. Thus we conclude that:

x′ = [x1 +
β − α
Σc2i

c1, ..., xd +
β − α
Σc2i

cd].

11

Linear models are generally considered “interpretable”, in the sense that
identifying the most relevant attributes can be done by simply choosing those
that appear with the largest absolute value of their coefficient. The above result
thus serves mainly as a “sanity check” for our approach. Indeed, observe that our
pertubation function is consistent with this conventional wisdom: the obtained
modification value is in fact independent of x and indeed the magnitude of each
attribute modification is only based on its coefficient.

5.2 Random Forests

A Random Forest is an ensemble learning method [25, 26], used for many ML
tasks. It consists of a set of decision trees that were trained to classify the input
space; its output for a given input instance is the mean decision of the forest
trees. When it consists of many trees, it is hard to understand the reason for
the final model decision, as it depends on the interaction between the different
trees. This interaction will also be the main challenge for our solution.

We start by designing an algorithm for a single tree in the model, then
consider the full forest.

Decision Trees Algorithm 2 implements the Perturb function for a single
decision tree. Given a decision tree, an input vector x and a label l, the algorithm
returns a modified vector x′, such that x′ was obtained from x with minimal
number of changes, and the tree assigns the label l to x′. The algorithm iterates
over the tree leaves that contain the label l (Lines 2, 3). For each of these leaves,
it “climbs” upon the path from the leaf to the root (While loop in Line 6), and
gradually modifies the vector according to the conditions associated with nodes
along this path (Line 7). After the inner loop terminates, the updated vector
x′ is guaranteed to be labelled by the tree as l, as it satisfies all the conditions
along the path from the tree root to a leaf labelled l. In Line 9, x′ is added to
the set of candidate perturbation results. After iterating over all relevant leaves
and collecting their candidates, all that remains is to return the candidate with
minimal distance from x (Line 10).

Example 5.3 Consider the decision tree illustrated in Figure 3, and the input
vector x = [2, 3, 6]. The decision tree will label x as 0, since is classification will
lead to the highlighted leaf. Let us consider the minimal changes to x such that
the tree will classify the modified vector as 2. Algorithm 2 will traverse all of the
leaves labeled as 2 and will examine the minimal changes required to result in
each of them. For each leaf we will traverse the path up to the tree root (these
paths are highlighted in bold in Figure 3), and will update the vector according
to the accumulated conditions. After traversing all of these paths, for each leaf
labelled in 2 we will have one candidate vector that will lead to it. For this
example, the candidates are [2, 6, 6], [4, 3, 6] and [4, 5, 6], ordered by the order
of relevant leaves (underlined coordinates represent changes to the initial input
vector). Comparing these vector to the initial input x = [2, 3, 6] will reveal that

12

Algorithm 2: Decision Tree - Perturb

input : Decision Tree T , point x, label l, constraints Cx

output: Minimal changes to x so it will be tagged as l according to T

1 Xs = {};
2 foreach leaf ∈ T.leaves do
3 if leaf.label() = l then
4 x′ = x;
5 parent = leaf.parent();
6 while parent 6= Null do
7 x′ = Update(x′, parent.condition());
8 parent = parent.parent();

9 Xs.add(x′);

10 return arg minx′∈Xs‖x− x′‖;

Figure 3: Decision tree

the required minimal perturbation changes x[0] to 4. Thus the algorithm will
return x′ = [4, 3, 6].

For a single decision tree, we achieve optimal perturbations:

Proposition 5.4 Algorithm 2 guarantees to return optimal perturbation, i.e.

arg min
{x′|T (x′)=l}

‖x− x′‖.

Proof 5.5 Let x∗ = arg min{x′|T (x′)=l}‖x − x′‖ be the optimal perturbation.
Since T (x∗) = l we know that it leads to some leafx∗ whose label is l. Algorithm
2 found some candidate x′, based only on updates of features along the path from
the tree root to leafx∗ (denote this path by p). Now, assume that there exists a
feature i such that |x[i]−x∗[i]| < |x[i]−x′[i]|. Observe that i must appear in the
path p, since x′ only differs from x for features appearing in p. However, for
features that appear in p, Algorithm 2 performed the minimal update in order to
satisfy the condition required for cascading along p. Hence, since x∗ must also
satisfy this condition, this contradicts the fact that |x[i] − x∗[i]| < |x[i] − x′[i]|.
Thus there is no feature i such that |x[i]−x∗[i]| < |x[i]−x′[i]|, which means that
‖x− x′‖ ≤ ‖x− x∗‖, and since Algorithm 2 has x′ as a candidate for selection
(in its Line 10), it is guaranteed to return the optimal perturbation.

13

(a) Tree 1 (b) Tree 2

(c) Tree 3

Figure 4: Random Forest

Random Forest Given algorithm 2 we construct a solution (Algorithm 3) for
an ensemble of decision trees. For each tree in the forest, we obtain a “proposal”
for a small change in x such that the tree classifies it in the appropriate label.
Now we consider the application of the proposed perturbation to x, and store
the results (Lines 2–3). For each such result (Line 4), we re-evaluate all trees in
the forest, and count the number of trees returning l. We pick the perturbation
that maximizes this number.

Note that this is a greedy approach, and the optimality of the obtained per-
turbation is not guaranteed, as expected from Proposition 4.1. The effectiveness
of this approach is shown experimentally in Section 8.

Algorithm 3: Random Forest - Perturb

input : Forest F , point x, label l, constraints Cx

output: Minimal changes to x so it will be tagged as l according to F

1 Xs = {};
2 foreach T ∈ F.trees do
3 Xs.add(T.Perturb(x, l));

4 return arg maxx′∈Xs |{T ∈ F.trees : T (x′) = l}|;

Example 5.6 Consider the random forest consisting of the 3 trees depicted in
Figure 4. Further consider an input vector x = [7, 2, 2], leading the decision to
the highlighted leaves labeled as 0, 1, and 0. Suppose we are interested in the
minimal changes to x such that the model will classify it as 2. For each of the
trees, we will execute Algorithm 2 that will return candidate vectors labeled as
2 by the corresponding tree. In this case, the candidates will be [5, 2, 2], [6, 2, 2],
[7, 4, 2]. Each of these candidates will be evaluated on the remaining trees, and
the candidate that is agreed upon by the majority of the trees will be chosen. In
this case, [5, 2, 2] will be classified as 2 by both 4a and 4a, while each of [6, 2, 2]
and [7, 3, 2] will each be classified as 2 by a single tree. Thus, x′ = [5, 2, 2] will
be returned.

14

Returning to Algorithm 1, its iterative process will continue and once again
the Perturb function of the Random Forest model will be invoked (assuming
constraints are satisfied). Again, for each tree we will examine what changes to
[5, 2, 2] will lead to the label 2. For both Tree 1 and Tree 2, no change is required,
while for Tree 3 we will obtain the candidate x′ = [5, 4, 2] which is agreed upon
by all the trees in the forest. Eventually [5, 4, 2] will be returned, and it is tagged
by 2 with confidence of 100%.

5.3 Neural Network

Neural networks are composed from neurons organized in multiple layers. The
input of each neuron is the output of neurons from the previous layer. Given its
input x1, ..., xn it performs a linear computation, i.e returns b+w1x1 + ...wnxn
followed by a nonlinear activation. Combined, all the neurons in the network
can learn complex and non-linear functions. It is typically extremely hard to
interpret the cause for a neural net decision as it requires us to understand the
interactions between many neurons in the network. However, there are known
techniques to measure the effect of each individual feature. In particular, using
backpropagation, we can fix the values of all except for one feature xi, and
examine the effect of changes in xi over the output of the network (for these
particular values of the other features). We denote the obtained value (called the
gradient of the xi with respect to the network n) by ∂n

∂xi
. We then perturb the

input by changing each of its features in a direction that should adjust the output
slightly towards the desired direction as follows: x′ = (x1 + ε ∂n∂x1

, ..., xd + ε ∂n∂xd
),

where ε controls the magnitude of the change. Due to the highly non-linear
structure of neural networks, the gradient of each feature changes rapidly, hence
small ε values should be used.

We note that finding a small perturbation in a desired direction has been
extensively studied in the context of adversarial examples [22]. It is known that
the perturbation themselves are not indicative, and can not be interpretable
or give us indication on informative changes to the original vector. However,
as we will show, by integrating the perturbation with projection over a con-
strained space, we can understand which are the meaningful modifications to
be presented as explanations.

6 Project Implementation

Recall that algorithm 1 includes two repeating steps, namely perturb and project.
The perturb step outputs a modification x′+∆x′ to the previous point x′, but it
does not account for the constraints Cx, and so it is possible that x′+∆x′ 6∈ Cx.
In the project step we wish to apply minimal changes to x′ + ∆x′ so that the
result will satisfy the constraints. Formally, for a point x′ 6∈ Cx we aim for
project(x′, Cx) to return arg minx′′∈Cx

‖x′′− x′‖, i.e. return the closest point in
Cx.

We explain multiple possible implementations of the projection step, for

15

different types of constraints; then we discuss an optimization that performs
perturbation and projection in a single step where possible.

6.1 Implementing Project

We start by the case of linear constraints, then discuss extensions to other types.

Linear Constraints Many practical constraints may be captured through lin-
ear inequalities. In this case, the projection step amounts to solving a quadratic
programming problem. Formally, we say that Cx defines linear constraints if
Cx = {v ∈ Rd | Axv ≤ b}, where Ax ∈ Rm×d is a matrix, derived from the
original input x, defining the parameters for m inequality equations; b ∈ Rm
defines the thresholds for the inequality equations. Given linear constraints Cx,
and a point x′ 6∈ Cx, we then have that project(x′, Cx) = x∗, where x∗ is the
solution to the following quadratic programming problem:

Minimize ‖x∗ − x′‖
Subject to Axx

∗ ≤ b
(3)

Based on Hilbert projection theorem, the problem is guaranteed to have a
unique solution, but finding the solution for general quadratic programming is
NP-hard. However, for our case, where we are interested in minimizing ‖x∗−x′‖
the problem is much simpler, and the ellipsoid method [24] solves the problem
in polynomial time.

Example 6.1 Let us revisit example 5.3, in which got as an input x = [2, 3, 6]
which was modified by the perturb step to be x′ = [4, 3, 6]. Assume additionally
that the constraints require that the change in x[0] will be smaller or equal to
the change in x[1], i.e. Cx = {v ∈ R3 | (v[0] − 2) − (v[1] − 3) ≤ 0}. Simpli-
fying the equation, it can be represented as Cx = {v ∈ R3 | Axv ≤ b} where
Ax = [1,−1, 0] and b = [−1]. The perturbed vector x′ does not satisfy the con-
straints, as 4 − 3 6≤ −1. Thus we will project it over Cx so that the changes
will be legitimate. Finding the projection result amounts to solving the following
optimization problem:

Minimize
√

(x∗[0]− 4)2 + (x∗[1]− 3)2 + (x∗[2]− 6)2

Subject to x∗[0]− x∗[1] ≤ −1
(4)

A solution to this problem is x∗ = [3, 4, 6]; note that x∗ ∈ Cx since 3− 4 ≤ −1,
i.e. x∗ is obtained by legitimate modifications to the original point x. However,
the projected point is no longer classified as 2 by the forest, and so a second
round of perturb and project will occur. Only after the second iteration a result
in Cx that is classified as 2 will be obtained.

Convex non-linear constraints Many natural constraints may be formu-
lated as linear ones, including all of our examples thus far. Still, there are
natural non-linear constraints such as ones requiring that the modifications are

16

all in a particular circle around a given point. Non-linear but convex constraints
can be represented as a set of linear equalities (based on Ax) and convex in-
equalities (based on fx,i):

Axy = b, fx,i(y) ≤ 0, i = 1, ...,m,

and finding the projection of x′ on Cx solving the convex non-linear optimization
problem (see [6]):

Minimize ‖x∗ − x′‖
Subject to Axx

∗ = b

fx,i(x
∗) ≤ 0, i = 1, ...,m

(5)

For convex non-linear optimization problem, project still guaranteed to have
a unique solution. The optimization problem has been studied thoroughly and
multiple efficient approximation algorithms have been proposed (see [7]). Natu-
rally, for particular constraints, one may design specialized projection functions
and avoid solving the above optimization problem. For example, if we know in
advance that Cx is the Unit Ball then we have that project(x′, Cx) = x′

max{1,‖x′‖} .

Naturally, constraints may in principle also be non-convex; such domain-tailored
projection functions will be required in such cases.

6.2 Optimization

A natural optimization to consider is to avoid the separation between the pertur-
bation and projection steps, and instead already in the perturbation step make
sure that the result satisfies the constraints. We next discuss this optimization
for the case of linear constraints and for the different ML models.

Random Forests We perform the optimization for each individual tree of
the Random Forest in Algorithm 4. The idea is to encode in a single quadratic
program both the perturbation and projection steps. The algorithm operates in
a similar manner to Algorithm 2, with the difference being that for each path,
instead of applying immediate updates to the point, we store the conditions that
need to be satisfied (Line 7). For each leaf (with label l), the accumulated con-
ditions, together with the constraints, form a quadratic programming instance.
We solve it (Line 9), and obtain for each leaf its locally-optimal perturbation
that satisfies the constraints. The solutions obtained for the different leaves
are accumulated (Line 10), and eventually (Line 11) we choose the overall best
solution (i.e. one with minimal distance).

Example 6.2 Again consider the decision tree illustrated in Figure 3, and the
setting from Examples 5.3 and 6.1. The input x = [2, 3, 6] is classified as 0, and
the goal is to find x∗ ∈ Cx = {v ∈ R3 | v[0] − v[1] ≤ −1} labelled as 2, such
that ‖x − x∗‖ is minimal. For each 2-labeled leaf, Algorithm 4 will accumulate
the conditions in the path from it up to the tree root. Eventually, a quadratic

17

Algorithm 4: Decision Tree - Perturb & Project

input : Decision Tree T , point x, label l, constraints Cx

output: Minimal legitimate changes to x according to Cx so it will be
tagged as l according to T

1 Xs = {};
2 foreach leaf ∈ T.leaves do
3 if leaf.label() = l then
4 Conditions = {};
5 parent = leaf.parent();
6 while parent 6= Null do
7 Conditions.add(parent.condition());
8 parent = parent.parent();

9 x′ = solve(x,Conditions ∪ Cx);
10 Xs.add(x′);

11 return arg minx′∈Xs‖x− x′‖;

programming problem based on both Cx and the accumulated conditions will be
solved. For example, for the rightmost leaf labeled as 2, the following conditions
will be accumulated: {x∗[0] ≤ 6 ∧ x∗[1] ≥ 5 ∧ x∗[0] ≥ 4} (in case the tree path
“goes right”, we use the condition that feature ≥ threshold+1). The following
optimization problem will then be solved:

Minimize
√

(x∗[0]− 2)2 + (x∗[1]− 3)2 + (x∗[2]− 6)2

Subject to x∗[0]− x∗[1] ≤ −1

x∗[0] ≥ 4

x∗[1] ≥ 5

x∗[0] ≤ 6

(6)

Solving this minimization problem results in [4, 5, 6]. Note that combining
the perturbation and projection into a single operation has resulted in this case in
obtaining a result already in the first iteration, unlike the non-optimized version
that required 2 iterations.

The optimized algorithm can then be used for Random Forests, by simply
applying it to each of the forest trees. Namely, the only change to Algorithm 3
is in Line 3, which now uses the optimized version for its decision trees. This
guarantees that the perturbation computed for the entire Random Forest will
also satisfy the constraints, as it leads to a result returned by one of its tress.

For other models, such as Neural Networks, the implementation of such
optimization remains an open problem. The difficulty is that the optimization
requires understanding of interactions between different features in order to find
a perturbation that satisfies the constraints. For the case of random forests, we
were able to find a change in the input so that the constraints continue to hold,
since we could infer from the model structure the entire group of features that

18

need to be modified. In contrast, for Neural Networks, we can infer the impact
of each individual feature by computing the gradient, but the effect of a change
of multiple features remains unknown.

7 Use-Cases

We have now presented our approach and algorithms for explaining the results
of ML models. In this section we demonstrate the use of our solution to derive
insights for commonly used models and real-life data.

Example 7.1 We have trained a simple Random Forest with 50 trees at maxi-
mal depth of 6 over the MNIST dataset [34]. The model had mediocre performance
of 89% accuracy. Figure 5 presents in its upper row an image of a handwritten
4 that was erroneously classified by the model as 9 with 39% confidence. At first,
it is unclear what caused the model to believe the image is a handwritten 9. Two
examples for explanations of the “4” decision are shown in the middle row. On
the left, there were no constraints on the allowed modifications, and we can see
that 32 pixels have changed (blue indicates addition of pixels, and red indicates
deletions). Additionally, we can see the modified digit and the updated model
decision (classified correctly as 4 with 60% confidence). Some of the changes are
not even close to the digit, and do not serve as a convincing explanation. On
the right we present the result of the minimal sequence of pixel deletions (the
constraint is that only deletions are allowed) that lead to the tag “4”. We can
see that 10 out of the 13 deletions were of pixels in the top part of the digit,
providing some insight on model decision.

Further insight is gained by looking at all images of 4 in the dataset that
were tagged as 9 by our model. We have executed our algorithm (allowing only
deletions) for each of these images individually, and then computed the average
pixel-by-pixel value for the modifications (presented on the left of the bottom
row). Now we can clearly see a trend: deleting pixels in the top area of the digit
is generally most effective in leading the model to tag these images as 4. This
means that the existence of these pixels, and in other words the “closed top”
of the 4 digit is a characteristic explanation for its misclassification as 9. The
correctness of this explanation can be further verified by looking at the average
of 4 images that were tagged correctly by the random forest model (on the right
of the bottom row), and observing that in those, the upper part of the digit is
indeed open. On the other hand the top is close in the average of 4 images that
were misclassified as 9 (middle of the bottom row).

The next use-case shows insights we have derived with respect to a state-of-
the-art Neural Network model, namely Google Inception-v3 [45].

Example 7.2 We have used a collection of flower images from ImageNet [31]
and classified them using Google’s Inception-v3 model. We observed that a
large portion of the images were classified by the model as a Bee in its top-
5 labels. Note that none of these images contain a bee, and so the Bee tag

19

Original Image
M(x, 9) = 39%

No Constraints
M(x′, 4) = 60%

Deletions
M(x′, 4) = 55%

Summarization
Figure 5: MNIST - Single and summarized explanations

is incorrect. For those images we ran our algorithm using a constraint that
restricts modification of more than 10 super-pixels, aiming at explaining the
Bee label. Figure 6a presents 4 images of flowers with their Bee explanation;
observe that our explanations are generally focused on the center of the flower.
Looking at the ImageNet dataset, that was used to train the model, we see that
many Bee-tagged images include a bee on top of a flower. Indeed, when running
our algorithm to explain the tagging of these images (see Figure 6b), it correctly
identifies the bees in the flower center. Our explanations indicate that the model
could be improved, e.g. by adding more training data including images of bees
without flowers.

8 Experiments

We have conducted two kinds of experiments: a user study to assess the quality
of presented explanations, and automated experiments to evaluate computa-
tional facets (the source code is available in [16]).

8.1 User Study

To evaluate the quality of our explanations we have compared them to state of
the art technique for ML explanations, i.e. LIME [41], for the task of explaining
results obtained by Inception-v3 [45]. Our study included 30 images from
ImageNet [14]; images were drawn randomly from the cases that were accurately
identified by the model. For each of those images, 4 different explanations
generated by the following techniques were shown:

• LIME - Explanation of top 10 features generated by LIME after training
an explanation model using 1000 examples. We have used the default

20

(a) Flowers with Bee explanations

(b) Bees explanation

Figure 6: Inception-v3 - Bee summarization

parameters of the algorithm as given in LIME’s open-source package[35]
for image explanations.

• Adversarial - Adversarial examples were generated by running our algo-
rithm without constraints.

• Limited Pixels - Our algorithm, with a constraint limiting the change
to only 0.1% of the image pixels.

• Limited Superpixels - Our algorithm allowing to change only pixels in
10 of the image super-pixels.

For the last 3 techniques we generated both supporting and refuting expla-

nations, by tuning β to be m(x)+5
6 and m(x)

6 respectively (where m(x) is the
initial model confidence in the explained label). In cases the algorithm had not
achieved the required β in 30 iterations, we halted and used the obtained result.
The presented explanation is the average between both supporting and refuting
explanations.

The user study was conducted using CrowdFlower platform. Since we aimed
at examining the usefulness of explanations to data scientists, we have not re-
leased the task to anonymous users but rather manually recruited data scientists

21

for the evaluation, asking them to rank the quality of each explanation from 1
(Very Bad) to 5 (Very Good). To avoid a potential bias, the users were not
informed of which of the explanations were generated by which system. The
task, as given to the users, is available in [11].

Each image was evaluated by 8–15 different data scientists and we averaged
their ranking for each of the techniques. The results are shown in Figures 7a,
7b, 7c and 7d. Clearly, trying to explain the model using adversarial examples
leads to very poor results, as 44% of the images got Very Bad rating using this
approach. For LIME, much better results have been achieved where for 56% of
the images, the explanations were given the neutral rating of 3. Our results
indicate that by leveraging knowledge on the problem domain and imposing
constraints, we can significantly improve user satisfaction. In particular, using
Limited Pixels and Superpixels constraints, the explanations for 64% and 73%
of the cases (respectively) have been given a positive rating (4 or 5).

(a) Adver-
sarial

(b) LIME

(c) Limited
Pixels

(d) Limited
Superpixels

(e) Best Rat-
ing

Figure 7: User-Study Results

We also report for each image which technique got the highest average rating.
This measurement shows the same trend: for 15 out of the 30 images, the
Limited Superpixels explanations received the highest average rating. This was
the case for Limited Pixels for 9 images, and explanations computed by LIME

have received the highest score for 5 images. The adversarial (no constraints)
solution has received the highest score for a single image.

In figure 8 we illustrate multiple explanations obtained by the Limited Su-

22

(a) Prairie
chicken

(b) Chickadee (c) Rock crab (d) Capuchin (e) Brown
bear

(f) Brown
bear

(g) Sea lion (h) Sea lion (i) Sea lion (j) Race car

(k) Lion (l) Lion (m) Guenon
monkey

(n) Baboon (o) Bullet
train

(p) Bee (q) Lynx (r) Nudi-
branch

(s) Labrador
retriever

(t) Langur

Figure 8: Output examples

perpixels execution over the images from the user study. Observe that indeed,
the explanations mostly focus on areas that contain meaningful information for
the model prediction.

8.2 Automated Experiments

We have further studied computational aspects of our algorithms: how often
does the algorithm achieve the given confidence? how many iterations are re-
quired for that? how far is the achieved result from the input? How does this
compare with the optimal result (when available)? What is the effect of our
optimization in this respect?

Random Forest We have generated a synthetic dataset of 1K data points
using sklearn make classification method having 2 classes with 5 features (3
informative and 2 redundant) with class sep = 0.5. Over this dataset we have
trained a Random Forest classifier with 50 trees having maximal depth of 5, the
classifier reached 88% accuracy over a test set. Using our domain knowledge
on the dataset creation, which contains only 3 informative features, we have

23

(a) RF Coverage (b) RF Distance (c) RF Iterations

Figure 9: Random Forest Experiments

devised a constraint that allows to change up to 2 of the input features. Then,
we looked at 300 cases that the model misclassified. Since the input space is of
low dimension, we can compute the optimal change using a brute force solution,
and then compared three solutions:

• Optimal - Exact brute-force solution to the NP-Hard problem of finding
the optimal label supporting change.

• Optimized - The result obtained by the optimization for Random Forest
model, combining the perturb and project into a single step.

• Non-Optimized - The result obtained by the non-optimized version of
the Random Forest model, where the perturb and project are two different
steps.

First, we evaluated for each confidence level, the algorithms coverage – the
percentage out of the 300 cases where we were able to reach a given β, limited
by 30 iterations. In 9a we observe the improvement that the optimized version
achieves over the non-optimized one. The highest difference was for β = 85%
where the optimized returned a result for 72% of the cases and the non optimized
version was able to answer only 40% of the cases. Additionally, when both
algorithms found an answer they were (with the exception of 2 cases) the same
one. Thus, the remaining figures include only the optimized version.

In Figure 9b we compare the L2 distance, from the input vector, of the results
returned by optimized algorithm and those of the optimal solution. Results are
presented only for the cases where the optimized algorithm was able to return
a valid solution. We observe that for small β, the difference is greater than for
large β values. This is because for small β values there are many more candidates
that satisfy the constraints and cause the model to change its decision to the
appropriate confidence level. On the other hand for high β values there are
only few possible candidates, and whenever the optimized algorithm returns an
answer it is very close to the optimal answer.

Last, in figure 9c we plot the average number of iterations incurred by our
optimized algorithm until returning an answer, as a function of β. Again, results
are shown only for the cases where the algorithm has succeeded in returning valid
results. As expected, requiring higher confidence results in more iterations made
by the algorithm. On average, the optimized algorithm has required less than 4
iterations for all confidence levels. Note the small drop in iteration number for

24

β = 75% that is explained by the large drop in coverage at the same confidence
level. Since the average number of iterations is measured only on successful
cases, many cases that required more iterations for β < 75% were removed from
the examination at that point.

(a) NN Coverage (b) NN Distance (c) NN Iterations

Figure 10: NN Experiments

Neural Networks In this experiment, we evaluated the performance of our
algorithm for the Neural Network model. Again we used Inception-v3 model
over 60 images from ImageNet. Observing in the user study that the superpixel
constraint yields the best explanations, we continued our evaluation using this
constraint. The images were chosen based on the model prediction: we took
images where the model was uncertain in regards to the prediction and looked
at its top-3 predictions. For each prediction we applied our algorithm with
the Limited Superpixel constraint and evaluated its performance (the optimal
solution was unavailable due to the complexity of the problem).

In figure 10 we show that the performance trends are similar to those ob-
served in our Random Forest experiment. As we require higher confidence, the
coverage decreases down to 55% with β = 0.95. The l2 distance increases as a
function of β but remains below 400. The number of iterations increases in an
almost linear fashion.

9 Conclusion and Limitations

We have proposed a novel approach to explaining individual classifications of
Machine Learning models. Our explanations are based on repeated perturbation
and projection of the input, the former to “push” it to the label of interest, and
the latter to enforce that the modified input “makes sense” in the context of the
problem domain. We demonstrate the effectiveness of our approch for multiple
prominent ML models and real-life data.

The main limitation of our approach is that it requires domain knowledge,
unlike the black-box approach of LIME. We thus view our solution as complemen-
tary to that of LIME, and envision it to be used primarily by data scientists. In
this context, our solution has the advantage of being purely algorithmic (rather

25

than applying Machine Learning itself), and thus “compatible” with explana-
tion efforts for data management (see Section 2). In future work we intend to
further explore this connection. In particular, we will study applications of our
technique in cases where the constraints originate from the Database.

References

[1] V. Behzadan and A. Munir. Vulnerability of deep reinforcement learning to policy
induction attacks. In International Conference on Machine Learning and Data
Mining in Pattern Recognition, pages 262–275, 2017.

[2] L. Bertossi. Database repairing and consistent query answering. Synthesis Lec-
tures on Data Management, 3(5):1–121, 2011.

[3] L. Bertossi, S. Kolahi, and L. V. Lakshmanan. Data cleaning and query answer-
ing with matching dependencies and matching functions. Theory of Computing
Systems, 52(3):441–482, 2013.

[4] N. Bidoit, M. Herschel, and A. Tzompanaki. Efficient computation of polynomial
explanations of why-not questions. In CIKM, pages 713–722. ACM, 2015.

[5] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto,
and F. Roli. Evasion attacks against machine learning at test time. In Joint
European conference on machine learning and knowledge discovery in databases,
pages 387–402, 2013.

[6] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,
2004.

[7] S. Bubeck et al. Convex optimization: Algorithms and complexity. Foundations
and Trends R© in Machine Learning, 2015.

[8] P. Buneman, S. Khanna, and W. Tan. Why and where: A characterization of
data provenance. In ICDT, 2001.

[9] A. Chapman and H. V. Jagadish. Why not? In SIGMOD, pages 523–534, 2009.
[10] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases: Why, how,

and where. Foundations and Trends in Databases, 2009.
[11] User study on crowdflower. https://tinyurl.com/yaw8rwoz.
[12] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in a

warehousing environment. ACM Trans. Database Syst., 2000.
[13] N. Dalvi, P. Domingos, S. Sanghai, D. Verma, et al. Adversarial classification. In

Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 99–108, 2004.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[15] F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable machine
learning. 2017.

[16] https://github.com/navefr/Explaining_White_box_Classifications_to_

Data_Scientists.
[17] W. Fan and F. Geerts. Foundations of data quality management. Synthesis

Lectures on Data Management, 4(5):1–217, 2012.
[18] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The llunatic data-cleaning

framework. Proceedings of the VLDB Endowment, 2013.
[19] B. Glavic, J. Siddique, P. Andritsos, and R. J. Miller. Provenance for data

mining. In Proceedings of the 5th USENIX Workshop on the Theory and Practice
of Provenance, 2013.

26

https://tinyurl.com/yaw8rwoz
https://github.com/navefr/Explaining_White_box_Classifications_to_Data_Scientists
https://github.com/navefr/Explaining_White_box_Classifications_to_Data_Scientists

[20] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

[21] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

[22] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing Adver-
sarial Examples. ArXiv e-prints, 2014.

[23] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS,
2007.

[24] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinato-
rial optimization, volume 2. Springer Science & Business Media, 2012.

[25] T. K. Ho. Random decision forests. In Document analysis and recognition, 1995.,
proceedings of the third international conference on, pages 278–282, 1995.

[26] T. K. Ho. The random subspace method for constructing decision forests. IEEE
transactions on pattern analysis and machine intelligence, 20(8):832–844, 1998.

[27] J. Huysmans, B. Baesens, and J. Vanthienen. Using rule extraction to improve
the comprehensibility of predictive models. 2006.

[28] J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, and B. Baesens. An empirical
evaluation of the comprehensibility of decision table, tree and rule based predictive
models. Decision Support Systems, 51:141–154, 2011.

[29] B. Kim. Interactive and interpretable machine learning models for human machine
collaboration. PhD thesis, Massachusetts Institute of Technology, 2015.

[30] P. W. Koh and P. Liang. Understanding black-box predictions via influence
functions. arXiv preprint arXiv:1703.04730, 2017.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

[32] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial examples in the physical
world. 2016.

[33] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436, 2015.
[34] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database. AT&T

Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2, 2010.
[35] https://github.com/marcotcr/lime.
[36] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.
[37] A. Meliou, W. Gatterbauer, J. Y. Halpern, C. Koch, K. F. Moore, and D. Suciu.

Causality in databases. IEEE Data Eng. Bull., 2010.
[38] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The complexity of

causality and responsibility for query answers and non-answers. Proceedings of
the VLDB Endowment, 2010.

[39] N. Papernot, P. McDaniel, and I. Goodfellow. Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277, 2016.

[40] F. Poursabzi-Sangdeh, D. G. Goldstein, J. M. Hofman, J. W. Vaughan, and
H. Wallach. Manipulating and measuring model interpretability. In NIPS 2017
Transparent and Interpretable Machine Learning in Safety Critical Environments
Workshop, 2017.

[41] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you?: Explaining
the predictions of any classifier. pages 1135–1144, 2016.

[42] A. D. Sarma, M. Theobald, and J. Widom. Exploiting lineage for confidence
computation in uncertain and probabilistic databases. In ICDE, 2008.

27

https://github.com/marcotcr/lime

[43] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. 2013.

[44] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, A. Rabinovich, et al. Going deeper with convolutions. 2015.

[45] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2818–2826, 2016.

[46] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and
R. Fergus. Intriguing properties of neural networks. CoRR, 2013.

[47] A. Vellido, J. D. Mart́ın-Guerrero, and P. J. Lisboa. Making machine learning
models interpretable. In ESANN, volume 12, pages 163–172, 2012.

[48] E. Wu and S. Madden. Scorpion: Explaining away outliers in aggregate queries.
Proceedings of the VLDB Endowment, 2013.

28

	Introduction
	Related Work
	Problem Statement
	The General Case
	Perturbation Implementation
	Linear Models
	Random Forests
	Neural Network

	Project Implementation
	Implementing Project
	Optimization

	Use-Cases
	Experiments
	User Study
	Automated Experiments

	Conclusion and Limitations

