
Specification of the traits classes for CGAL arrangements of
curves

Efi Fogel, Dan Halperin, Ron Wein

Tel Aviv University

Monique Teillaud

INRIA Sophia-Antipolis

Eric Berberich, Arno Eigenwillig, Susan Hert, Lutz Kettner

Max-Planck Institut für Informatik, Saarbrücken

May 4, 2003

Abstract

This document describes the specification of the new and improved traits classes for CGAL

arrangements of curves. It is the product of collaboration between TAU in Israel, INRIA in France,
and MPI in Germany. Together we were able to tighten the set of requirements of the arrangement
traits, that is the interface between arrangements and the primitives they use. The dialog also
emphasized the need for a redesign and a new implementation of the sweep-line module. This has
been successfully completed recently.

1 Introduction

During the last year the Computational Geometry Lab at the Tel-Aviv University was involved in
several mini-projects where different parties form various institutions across Europe collaborated to
achieve a few mutual goals. The Computational Geometry Lab is the author and the maintainer of,
among others, the arrangement packages of CGAL, the Computational Geometry Algorithms Library.
The development of these packages is an ongoing activity. Different parts of these packages are
constantly improved. Aside of daily maintenance that consists of bug fixing, documentation enhance-
ment, etc., entire modules are rewritten and replaced and new modules are introduced. The process
of detecting weak spots, inefficiencies, and missing functionalities followed by the rectification of the
problems, purification of the code, and the introduction of new and innovative techniques that in some
cases requires redesign of internal parts and establishment of new user interfaces was boosted due to
the successful cooperation.

2 Preliminaries

CGAL arrangement packages consist of a hierarchy of three objects. At the bottom, the Planar map
2 object represents the subdivision of the plane induced by a collection of x-monotone curves that

1

are mutually disjoint in their interiors, but may have common endpoints. Higher in the hierarchy,
the Planar map with intersections 2 object, derived from the former, handles curves that are not
necessarily x-monotone and may intersect each other. Such curves are split into several x-monotone
subcurves if necessary, before they are inserted into the planar map. At the top, the Arrangement 2
object maintains the hierarchical history for each subcurve in the planar map.

The arrangement classes are parameterized with corresponding traits-interface classes that define the
abstract interface between the arrangement object and the primitives it uses. The concept of traits
for Arrangement 2 is a refinement of the concept of traits for Planar map with intersections 2. The
latter refines the concept of traits for Planar map 2 in turn.

The arrangement packages are charged with default traits classes implemented in exact arithmetic
for various curve-type primitives such as segments, polylines, and circle and conic arcs. The CGAL

kernel encapsulates representations of constant-size non-modifiable geometric primitive object such
as points and segments, and operations (predicates and constructors) on these objects. It is adaptable
and extensible, it is efficient, and is suitable to be used as a traits class for algorithms. In fact, the
traits classed are parameterized by a kernel representation.

Any arrangement supports incremental and aggregate constructions. The latter is the most efficient
method to construct a planar map, as it is based on an efficient and optimized sweep-line algorithm.
It is suitable, however, only in cases where all the curves are known in advance. The nature of the
sweep-line algorithm, sweeping a line in the plane in a given direction, relaxes the requirements
of the traits classes. This induces a mutual exclusive refinement relation between the traits used
for aggregate construction and the traits used for incremental construction. Notice, however, that
this subtle observation has little practical affect, as any point-location query applied to a constructed
arrangement implies the full set of requirements.

3 Specification

The following three subsections specify the three new and improved interface traits-classes and their
interrelations in details. The set of requirements was made sound and complete. A couple of re-
quirements were eliminated, few others were redefined, and some were renamed. The hierarchy of
three traits classes was established to include only the necessary requirements at each level. It was
determined that for the aggregate insertion-operation based on a sweep-line algorithm only a subset of
the requirements is needed. Preconditions were added where appropriate to tighten the requirements
further.

Concept PlanarMapTraits 2

Definition

A model of the PlanarMapTraits 2 concept aggregates the geometric types and primitive operations
used by the data structure Planar map 2<Dcel,Traits>. It must provide the types and operations listed

2

below.

Types

The geometric types defined below must have a default constructor, copy constructor, and assignment
operator.

PlanarMapTraits 2:: X monotone curve 2

A type that holds an x-monotone curve in the plane.

PlanarMapTraits 2:: Point 2

A type that holds the position of a vertex in the plane. The type of the end points
of X monotone curve 2 curves.

The following methods that have a curve parameter of type X monotone curve 2 have the implicit
precondition that requires the curve to be x-monotone.

Enumerations

enum Comparison result { SMALLER, EQUAL, LARGER};

a constant describing the relative position between objects.

Creation

Only a default constructor is required. Note that further constructors can be provided.

PlanarMapTraits 2 ;

A default constructor.

Operations

Comparison result

pm traits.compare x(Point 2 p0, Point 2 p1)

compares the x-coordinates of p0 and p1. Re-
turns LARGER if x(p0) > x(p1); SMALLER if
x(p0) < x(p1); EQUAL otherwise.

3

Comparison result

pm traits.compare xy(Point 2 p0, Point 2 p1)

compares lexicographically the two points p0 and
p1. First the x-coordinates are compared. In case
of a tie, the y-coordinates are compared. Returns
LARGER if x(p1) > x(p2), or if x(p1) = x(p2)
and y(p1) > y(p2); SMALLER if x(p1) < x(p2),
or if x(p1) = x(p2) and y(p1) < y(p2); EQUAL
otherwise.

bool pm traits.curve is vertical(X monotone curve 2 cv)

returns true if cv is a vertical segment, false oth-
erwise.

bool pm traits.point is in x range(X monotone curve 2 cv, Point 2 pnt)

returns true if pnt is in the x range of cv, false
otherwise.

Comparison result

pm traits.curves compare y at x(X monotone curve 2 cv1,
X monotone curve 2 cv2,
Point 2 pnt)

compares the y-coordinate of cv1 and cv2 at
the x-coordinate of pnt. Returns LARGER
if cv1(x(q)) > cv2(x(q)); SMALLER if
cv1(x(q)) < cv2(x(q)); EQUAL otherwise.
Precondition: cv1 and cv2 are defined at pnt’s
x-coordinate.

Comparison result

pm traits.curves compare y at x to right(X monotone curve 2 cv1,
X monotone curve 2 cv2,
Point 2 pnt)

compares the y-coordinate of cv1 and cv2 imme-
diately to the right of the x-coordinate of pnt.
Precondition: cv1 and cv2 meet at pnt x-
coordinate.
Precondition: cv1 and cv2 are defined to the right
of pnt’s x-coordinate.

4

Comparison result

pm traits.curves compare y at x to left(X monotone curve 2 cv1,
X monotone curve 2 cv2,
Point 2 pnt)

compares the y-coordinate of cv1 and cv2 imme-
diately to the left of the x-coordinate of pnt. This
predicate is not required for the aggregate inser-
tion of curves into the planar map. Recall, that
the aggregate insertion is based on a sweep-line
algorithm.
Precondition: cv1 and cv2 meet at pnt x-
coordinate.
Precondition: cv1 and cv2 are defined to the left
of pnt’s x-coordinate.

Comparison result

pm traits.curve compare y at x(X monotone curve 2 cv, Point 2 pnt)

compares the y-coordinates of pnt and the verti-
cal projection of pnt on cv. Returns SMALLER if
cv(x(p)) < y(p); LARGER if cv(x(p)) > y(p);
EQUAL otherwise (p is on the curve).
Precondition: cv is defined at pnt’s x-coordinate.

bool pm traits.curve is equal(X monotone curve 2 cv1, X monotone curve 2 cv2)

returns true if cv1 and cv2 have the same graph,
false otherwise.

bool pm traits.point is equal(Point 2 p1, Point 2 p2)

returns true if p1 is the same as p2, false other-
wise.

Point 2 pm traits.curve source(X monotone curve 2 cv)

returns the source of cv.

Point 2 pm traits.curve target(X monotone curve 2 cv)

returns the target of cv.

5

Has Models

Pm segment traits 2<Kernel>

Concept PlanarMapWithIntersectionsTraits 2

Definition

A model of the PlanarMapWithIntersectionsTraits 2 concept aggregates the geometric types and
primitive operations used by the data structure Planar map with intersections 2<Dcel,Traits>.

Note that the concept PlanarMapWithIntersectionsTraits 2 refines the concept PlanarMapTraits 2
and inherits all its types and operations.

In addition to the requirements of the PlanarMapTraits 2 concept, it must provide the types and
operations listed below.

Refines

PlanarMapTraits 2

Types

The geometric types defined below must have a default constructor, copy constructor, and assignment
operator.

PlanarMapWithIntersectionsTraits 2:: Curve 2

A type that holds a general curve in the plane. Its end points must be of type
Point 2. Curves of type either X monotone curve 2 or Curve 2 can be inserted
into a Planar map with intersections 2<Dcel,Traits> object.

Operations

bool pmwx traits.curves do overlap(X monotone curve 2 cv1,
X monotone curve 2 cv2)

returns true if cv1 and cv2 overlap in a one-
dimensional subcurve (i.e., not in a finite number
of points), false otherwise.

6

template<class OutputIterator>
OutputIterator pmwx traits.make x monotone(Curve 2 cv, OutputIterator res)

cuts cv into x-monotone subcurves and stores
them in a sequence starting at res. The order in
which they are stored defines their order in the hi-
erarchy tree. Returns past-the-end iterator of the
sequence.

void pmwx traits.curve split(X monotone curve 2 cv,
X monotone curve 2& c1,
X monotone curve 2& c2,
Point 2 split pt)

splits cv at split pt into two curves, and assigns
them to c1 and c2 respectively.
Precondition: split pt is on cv but is not one of its
endpoints.

bool pmwx traits.nearest intersection to right(X monotone curve c1,
X monotone curve c2,
Point 2 pt,
Point 2& p1,
Point 2& p2)

finds the nearest intersection point (or points) of
c1 and c2 lexicographically to the right of pt
not including pt itself, (with one exception ex-
plained below). If the intersection of c1 and c2
is an X monotone curve 2, that is, they overlap
at infinitely many points, then if the right end-
point and the left endpoint of the overlapping sub-
curve are strictly to the right of pt, they are re-
turned through the two point references p1 and
p2 respectively. If pt is between the overlapping-
subcurve endpoints, or pt is its left endpoint, pt
and the right endpoint of the subcurve are re-
turned through p1 and p2 respectively. If the in-
tersection of the two curves is a point to the right
of pt, it is returned through p1 and p2. Returns
true if c1 and c2 do intersect to the right of pt,
false otherwise.

bool pmwx traits.nearest intersection to left(X monotone curve c1,

7

X monotone curve c2,
Point 2 pt,
Point 2& p1,
Point 2& p2)

finds the nearest intersection point (or points) of
c1 and c2 lexicographically to the left of pt not
including pt itself, (with one exception explained
below). If the intersection of c1 and c2 is an
X monotone curve 2, that is, they overlap at in-
finitely many points, then if the left endpoint and
the left endpoint of the overlapping subcurve are
strictly to the left of pt, they are returned through
the two point references p1 and p2 respectively.
If pt is between the overlapping-subcurve end-
points, or pt is its left endpoint, pt and the left
endpoint of the subcurve are returned through p1
and p2 respectively. If the intersection of the two
curves is a point to the left of pt, it is returned
through p1 and p2. Returns true if c1 and c2 do
intersect to the left of pt, false otherwise. This
constructor is not required for the aggregate in-
sertion of curves into the planar map. Recall, that
the aggregate insertion is based on a sweep-line
algorithm.

Has Models

Arr segment traits 2<Kernel>
Arr segment cached traits 2<Kernel>
Arr conic traits 2<Kernel>
Arr polyline traits 2<Kernel,Container>
Arr segment circle traits 2<NT>

Concept ArrangementTraits 2

Definition

A model of the ArrangementTraits 2 concept aggregates the geometric types and primitive operations
used by the data structure Arrangement 2<Dcel,Traits>.

Note that the concept ArrangementTraits 2 refines the concept PlanarMapWithIntersectionTraits 2
and inherits all its types and operations.

8

In addition to the requirements of the PlanarMapWithIntersectionTraits 2 concept, it must provide
the operation listed below.

Refines

PlanarMapWithIntersectionsTraits 2

Creation

ArrangementTraits 2 ;

A default constructor.

Operations

X monotone curve 2

arr traits.curve flip(X monotone curve 2 cv)

flip the curve cv. This constructor is not required
for the aggregate insertion of curves into the pla-
nar map. Recall, that the aggregate insertion is
based on a sweep-line algorithm.

9

