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Abstract

Arrangements of planar curves are fundamental structures in computational geometry. Recently, the arrangement package of
CGAL, the Computational Geometry Algorithms Library, has been redesigned and re-implemented exploiting several advanced
programming techniques. The resulting software package, which constructs and maintains planar arrangements, is easier to use,
to extend, and to adapt to a variety of applications. It is more efficient space- and time-wise, and more robust. The implemen-
tation is complete in the sense that it handles degenerate input, and it produces exact results. In this paper we describe how
various programming techniques were used to accomplish specific tasks within the context of computational geometry in general
and arrangements in particular. These tasks are exemplified by several applications, whose robust implementation is based on
the arrangement package. Together with a set of benchmarks they assured the successful application of the various programming
techniques.
Crown Copyright © 2007 Published by Elsevier B.V. All rights reserved.
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1. Introduction

Given a set C of planar curves, the arrangement A(C) is the subdivision of the plane induced by the curves in C
into maximally connected cells of dimensions 0 (vertices), 1 (edges), or 2 (faces). The planar map of A(C) is the
embedding of the arrangement as a planar graph, such that each arrangement vertex corresponds to a planar point,
and each edge corresponds to a planar subcurve of one of the curves in C, whose interior is disjoint from all other
subcurves. Arrangements and planar maps are ubiquitous in computational geometry, and have numerous applications
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[12,23]. Hence, many potential users in academia and in industry may benefit from a generic implementation of a
complete software package that constructs and maintains planar arrangements.

CGAL, the Computational Geometry Algorithms Library,1 is the product of a collaborative effort of several sites
in Europe and Israel, aiming to provide a generic and robust, yet efficient, implementation of widely used geometric
data structures and algorithms. The library consists of a geometric kernel [17,27], which in turn consists of types of
constant-size non-modifiable geometric primitive objects (such as points, line segments, triangles, etc.) and predicates
and operations on objects of these types. On top of the kernel layer, the library consists of a collection of mod-
ules, which provide implementation of many fundamental geometric data structures and algorithms. The arrangement
package is a part of this layer.

The software described in this paper rigorously adapts, as does CGAL in general, the generic programming para-
digm [3], making extensive use of C++ class-templates and function-templates. The generic-programming paradigm
uses a formal hierarchy of abstract requirements on data types referred to as concepts, and a set of components that
conform precisely to the specified requirements, referred to as models. Concepts correspond to template parameters,
and models correspond to classes used to instantiate them.

In software engineering, design patterns are frequently used to supply standard solutions to common problems
recurring in software design. Design patterns supply a systematic high-level approach that focuses on the relations
between classes and objects, rather than designing individual components tailored for a specific programming task.
See the book by Gamma et al. [22] for a catalog of the most common design patterns.

While relations between objects in a design pattern are usually realized in terms of abstract data types and polymor-
phism, design patterns can successfully be applied in generic programming as well, as we show in this paper. A good
example are the implementations of the point-location algorithms bundled with the arrangement package. One of
the most important operations on arrangements is answering the point-location query: Given a query point q , find the
arrangement cell that contains q . We supply the implementation of several point-location algorithms, and enable pack-
age users to employ the algorithm best suited for their application. To this end, we use the strategy design-pattern,
which defines a family of algorithms, each implemented by a separate class, and we make them interchangeable,
letting the algorithm in use vary according to the client choice.

In traditional object-oriented programming, the point-location process could be realized with an abstract base class
that provides a pure virtual function, locate(q), which accepts a point q , and results with the arrangement cell
containing it. All concrete point-location classes would inherit from the base class, and all arrangement algorithms
that issue point-location queries would use a pointer to an abstract base object, which would actually point to one of the
concrete point-location classes. When using generic programming, we rely less on inheritance or virtual functions.
Instead, we define a concept named ArrangementPointLocation, such that all models of this concept must supply a
locate() function. All the various point-location classes model this concept. Note that the concept definition has
no trace in the actual C++ code, so from a syntactical point of view, these classes are completely unrelated. Any
generic algorithm that issues point-location queries is implemented as a template parameterized by a point-location
type, which must be instantiated with a model of the ArrangementPointLocation concept.

In the rest of the paper we provide a full overview of the CGAL arrangement package. We describe the main
classes it comprises and show how additional design patterns are exploited in the package in conjunction with generic
programming techniques. The application of combinations of advanced programming techniques is argued to be syn-
ergistic. Not only does it make the implementation more generic, it also improves the quality of the software in many
measurable aspects, as shown in this paper through various examples and experiments.

1.1. Related work

In the classic computational geometry literature two assumptions are usually made to simplify the design and
analysis of geometric algorithms: First, inputs are in “general position”. That is, degenerate input (e.g., three curves
intersecting at a common point) is precluded. Secondly, operations on real numbers yield accurate results (the “real
RAM” model [39], which also assumes that each basic operation takes constant time). Unfortunately, these assump-
tions do not hold in practice. Thus, an algorithm implemented from a textbook may yield incorrect results, get into

1 See the CGAL project homepage: http://www.cgal.org/.
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an infinite loop, or just crash, while running on a degenerate, or nearly degenerate, input (see [31,41] for examples).
This is one of the problems addressed successfully by CGAL in general and by the CGAL arrangement package in
particular.

Advances in computer algebra enabled the development of efficient software libraries that offer exact arithmetic
manipulations on unbounded integers, rational numbers (GMP—Gnu’s multi-precision library2), and even algebraic
numbers (the CORE library3 [29] and the numerical facilities of LEDA4 [34, Chapter 4]). These exact-number types
serve as fundamental building-blocks in the robust implementation of many geometric algorithms; see [48] for a
review.

Both closely related MAPC5 [33] and ESOLID6 [32] libraries consist of an arrangement-construction module for
algebraic curves. However, these implementations make some general-position assumptions on the input curves. The
LEDA library [34] includes geometric facilities that allow the robust construction and maintenance of planar maps of
line segments that may contain degeneracies. However, the resulting planar maps are represented as simple graphs
that cannot fully represent the topological structure of the arrangement. For example, it is impossible to encode the
containment relations between disconnected components of the graph (i.e., to keep track of the holes contained in
a face; see Section 2.1). LEDA-based implementation of arrangements of conic curves and of cubic curves were
developed under the EXACUS project7 [6].

CGAL’s arrangement package was the first complete software implementation, designed for constructing arrange-
ments of arbitrary planar curves and supporting operations and queries on such arrangements. More details on the
design and implementation of the previous versions of this package can be found in [19,25]. Many users have em-
ployed the arrangement package to develop a variety of applications; see, for example, [11,14,40]. We have also used
it ourselves in various applications [2,20,28,47].

In this paper we show how concurrent applications of advanced programming techniques improve the quality of the
CGAL arrangement software-package, achieving a software package designed according to the generic-programming
paradigm that is more modular and easy to use than previous versions, and at the same time an implementation that
is more extensible, adaptable, and efficient. We remark that in the ensuing sections we assume some familiarity of
the reader with advanced programming paradigms and techniques such as generic programming [3], object-oriented
programming, and design patterns [22].

1.2. Outline

The rest of this paper is organized as follows: Section 2 describes the interface of the main components of the
CGAL arrangement package, introducing key terms and presenting the architecture of the package. Special attention
is devoted to the traits concept, one of the central components of the package.

In the four succeeding sections we describe the main features of the package that allow users to conveniently ex-
tend it for the special needs of their applications. Several examples of applications that use the various new features of
the package are provided as well. In Section 3 we explain how an arrangement instance can be interpreted as a graph
so we can apply the graph algorithms offered by the BOOST library8 [42] on it. Section 4 describes the notification
mechanism that allows external classes to be notified on changes in the structure of a particular arrangement instance.
In Section 5 we review the two major algorithmic frameworks used in the arrangement package: the sweep-line
framework and the zone framework, and explain how they are extended and used in the package. Section 6 describes
how users can associate auxiliary information to the curves that induce the arrangement. In Section 7 we highlight
the performance of our methods on various benchmarks. Finally, concluding remarks and future-work directions are
given in Section 8.

2 http://www.swox.com/gmp/.
3 http://www.cs.nyu.edu/exact/core/.
4 http://www.algorithmic-solutions.com/enleda.htm.
5 http://www.cs.unc.edu/~geom/MAPC/.
6 http://www.cs.unc.edu/~geom/ESOLID/.
7 http://www.mpi-sb.mpg.de/projects/EXACUS/.
8 http://www.boost.org/libs/graph/doc/index.html.
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Fig. 1. A portion of an arrangement of circles with some of the DCEL records that represent it. f̃ is the unbounded face. The halfedge e (and its
twin e′) correspond to a circular arc that connects the vertices v1 and v2 and separates the face f1 from f2. The predecessors and successors of e

and e′ are also shown. Note that e, together with its predecessor and successor halfedges, form a closed chain representing the outer boundary of
f1 (f1 is lightly shaded). Also note that the face f3 (darkly shaded) has a more complicated structure, as it contains a hole.

2. The architecture

2.1. The main component

The Arrangement_2 class-template9 represents the planar embedding of a set of weakly x-monotone10 pla-
nar curves that are pairwise disjoint in their interiors. It provides the necessary capabilities for maintaining the
planar graph, while associating geometric data with the vertices, edges, and faces of the graph. The arrangement
is represented using a doubly-connected edge list (DCEL), a data structure that enables efficient maintenance of two-
dimensional subdivisions.

There are several variants of the DCEL data-structure. In the structure we use, each curve is represented using a pair
of directed halfedges, one directed from the xy-lexicographically smaller endpoint of the curve to its larger endpoint,
and the other (its twin halfedge) going in the opposite direction. The DCEL structure consists of containers of vertices
(associated with planar points), halfedges, and faces, where halfedges are used to separate faces and to connect ver-
tices. We store a pointer from each halfedge to the face lying to its left. Moreover, halfedges are connected in circular
lists and form chains, such that all edges of a chain are incident to the same face and wind in a counterclockwise
direction along its outer boundary (see Fig. 1 for an illustration). A non simply-connected face stores a non-empty
container of holes, where each hole is represented by an arbitrary halfedge on the clockwise-oriented chain that forms
its boundary. The full details concerning the DCEL structure are omitted here; see [12, Section 2.2] for further details
and examples. We also extend the DCEL data-structure, allowing isolated vertices to be located in the interior of a
face.11

The Arrangement_2<Traits,Dcel> class-template must be instantiated with two classes as follows:

• A traits class, which provides the geometric functionality, and is tailored to handle a specific family of curves.
It encapsulates implementation details, such as the number type used, the coordinate representation, and the
geometric or algebraic computation methods; see Section 2.2 for more details.

• A DCEL class, which represents the underlying topological data structure, and defaults to Arr_default_
dcel<Traits>. It associates a point with each DCEL vertex and an x-monotone curve with each halfedge
pair, where the geometric types of the point and the x-monotone curve are defined by the traits class. Users may

9 CGAL prescribes the suffix _2 for all data structures of planar objects as a convention.
10 A continuous planar curve C is x-monotone, if every vertical line intersects it at most once. Vertical segments are defined to be weakly x-
monotone and can also be handled by the arrangement class. In what follows, the term x-monotone refers to weakly x-monotone as well.
11 Unlike other CGAL packages, the arrangement package does not base its DCEL representation on the halfedge data-structure [30] as this
structure does not currently support holes and isolated vertices.
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Fig. 2. The various insertion procedures. The inserted x-monotone curve is drawn with a light dashed line, surrounded by two solid arrows that
represent the twin halfedges added to the DCEL. Existing vertices are shown as black dots while new vertices are shown as light dots. Existing
halfedges that are affected by the insertion operations are drawn as dashed arrows. (a) Inserting a subcurve into the interior of face f , which
becomes a hole of this face. (b) Inserting a subcurve, one endpoint of which corresponds to the existing vertex u. (c) Inserting a subcurve, both
endpoints of which correspond to the existing vertices u1 and u2. In this case, the new pair of halfedges close a new face f ′ , where the hole h1,
which used to belong to f , now becomes an enclave in this new face.

extend the default DCEL implementation, in order to attach additional data to the DCEL records, as explained in
Section 2.3, or even supply their own DCEL class written from scratch.

The two template parameters enable the separation between the topological and geometric aspects of the planar
subdivision. This separation is advantageous, as it allows users with limited expertise in computational geometry to
employ the package with their own representation of any special family of curves. They must however supply the
relevant traits-class types and methods, which mainly involve algebraic computation. The separation is enabled by the
modular design and conveniently implemented within the generic-programming paradigm. It is a key aspect of the
package, as well as of other central CGAL components, such as the various triangulation packages [9] and convex-hull
algorithms (see [1] for more details), has been forced since its early stages, and heightened by the new design.

The interface of Arrangement_2 consists of various methods that enable the traversal of arrangement features.
For example, the class supplies iterators over its vertices, halfedges, or faces. The classes Vertex, Halfedge, and
Face, nested in the Arrangement_2 class, supply in turn methods for local traversals. For example, it is possible
to visit all halfedges incident to a specific vertex, or traverse all the halfedges along the outer boundary of a given face.

Alongside with the traversal methods, the arrangement class also supports several methods that modify the
arrangement, the most important ones being the special insertion functions. The functions insert_in_face_
interior(C,f), insert_from_left_vertex(C,u) (with a symmetric function named insert_from_
right_vertex(C,u)) and insert_at_vertices(C,u1,u2) create an edge that corresponds to an x-
monotone curve C, whose interior is disjoint from existing edges and vertices. The choice of which one to use
depends on whether the curve endpoints are associated with existing non-isolated arrangement vertices: (i) If both
curve endpoints do not correspond to any existing vertex, insert_in_face_interior() is used to generate
a new hole inside an existing face (see Fig. 2(a)). (ii) If exactly one endpoint corresponds to an existing DCEL ver-
tex, one of the functions insert_from_left_vertex() or insert_from_right_vertex() is called,
depending on which endpoint is associated with an existing vertex. It forms an “antenna” emanating from an ex-
isting connected component (see Fig. 2(b)). (iii) Otherwise, both endpoints correspond to existing vertices, and
insert_at_vertices() is called to connect these vertices using a pair of twin halfedges (see Fig. 2(c)). These
functions hardly involve any geometric operations, if at all.12 They accept topologically related parameters, and use
them to operate directly on the DCEL records, thus avoiding algebraic operations, which are especially expensive
when high-degree curves are involved.

Other modification methods included in the arrangement class enable users to split an edge into two, to merge two
edges incident to a common vertex, and to remove an edge from the arrangement. It is also possible to insert a point
in the interior of a given face, creating an isolated vertex that corresponds to this point, or to remove an isolated vertex
from the arrangement.

12 Unless, of course, we force checking preconditions. In this case the precondition evaluation involves geometric computation.
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Fig. 3. The main Arrangement_2 class and its template parameters, including some of the traits classes provided by the package. A plain arrow
designates a reference to a concept associated with a template parameter, solid lines directed through a triangle mark an inheritance or a refinement
relation, and dashed lines directed through a triangle designates “is a model of” relation.

An important guideline in the design is to decouple the arrangement representation from the various algorithms
that operate on it. Thus, the Arrangement_2 class provides only a restricted set of methods for locally modifying
the arrangement. Non-trivial algorithms that involve geometric operations are implemented as free (global) functions
that make use of the interface of the arrangement class. This way we keep the fundamental arrangement class more
lightweight and allow for greater modularity in the design and implementation of algorithms that operate on planar
arrangements.

For example, the package offers a free function named insert_curve() that inserts a general curve into the
arrangement. This curve may not necessarily be x-monotone, can intersect the existing arrangement curves, and its
insertion location is unknown a priori. The general idea is to subdivide the input curve into several x-monotone
subcurves, then to treat each subcurve separately. We locate the arrangement feature that contains the left endpoint
of each x-monotone subcurve, and then split the subcurve at its intersection points with the arrangement features; the
resulting subcurves are finally inserted into the arrangement using one of the special insertion methods listed above.
Note that the point-location operation is provided by an auxiliary point-location class and not by Arrangement_2
itself. The arrangement class is also not capable of computing intersections and splitting curves—such methods are
employed by the insert_curve() function, and should be provided by the instantiated traits class.

In the same spirit, the arrangement package offers free functions for incremental or aggregated insertion of curves.
The incremental version inserts one curve at a time by computing its zone [12, Section 8.3], as described above; see
also Section 5.3. The aggregated version inserts a set of general curves, using a sweep-line algorithm [12, Section 2.1];
see also Section 5.1.

Other algorithms that operate on planar arrangements, such as the computation of the overlay of two arrange-
ments [12, Section 2.3] (see Section 5.2) are implemented as free functions as well.

2.2. The arrangement-traits concepts

As mentioned in the previous section, the Arrangement_2 class-template is parameterized by a geometric traits
class that defines the abstract interface between the arrangement data-structure and the geometric primitives it uses.
The name “traits” was given by Myers [37] for a concept, a model of which supports certain predefined methods that
have a common denominator. In our case, a geometric traits class defines the family of curves handled. Moreover,
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details such as the number type used to represent coordinates, the type of coordinate system used (i.e., Cartesian or
homogeneous), the algebraic methods used, and auxiliary data stored with the geometric objects, if present, are all
determined by the traits class and are encapsulated within it.

The traits concept is factored into a hierarchy of refined concepts. The refinement hierarchy is defined according
to the identified minimal requirements imposed by different algorithms that operate on arrangements, thus alleviating
the production of traits classes, and increasing the usability of the algorithms.

Every model of a traits concept in the hierarchy must define two types of objects, namely Point_2 and
X_monotone_curve_2. The latter represents a planar x-monotone curve, and the former is the type of the end-
points of the curves, representing a point in the plane. The basic concept ArrangementBasicTraits_2 lists the minimal
set of predicates on objects of these two types sufficient to enable the operations provided by the Arrangement_2
class-template itself, namely the insertion of x-monotone curves that are interior disjoint from any vertex and edge in
the arrangement. The set follows.

(1) Compare two points by their x-coordinates only, or lexicographically, by their x and then by their y-coordinates.
(2) Return the lexicographically smaller (left), or the lexicographically larger (right), endpoint of a given x-monotone

curve.
(3) Determine whether a weakly x-monotone curve is a vertical segment.
(4) Given an x-monotone curve C and a point p = (x0, y0) such that x0 is in the x-range of C (namely x0 lies between

the x-coordinates of C’s endpoints), determine whether p is above, below, or lies on C.
(5) Given two x-monotone curves C1 and C2 that share a common left endpoint p, determine the relative position of

the two curves immediately to the right of p. The traits class can also provide a symmetric comparison method,
namely to the left of a common right endpoint. The latter is an optional requirement with ramifications in case it
is not fulfilled; see Section 2.2.1.

The set of predicates listed above is also sufficient for answering point-location queries by the various point-location
strategies, with the exception of the “landmarks” strategy, which requires a traits class that models the refined concept
ArrangementLandmarksTraits_2. This is described in Section 4.2.

If users wish to construct arrangements of x-monotone curves that may intersect in their interior, they must instan-
tiate the arrangement class-template with a traits class that models the concept ArrangementXMonotoneTraits_2. This
concept refines the basic arrangement-traits concept described above, as it adds methods for computing intersections
between x-monotone curves. An intersection point between two curves is also represented by the Point_2 type.
The refined traits concept also lists a method for splitting curves at these intersection points to obtain a set of interior
disjoint subcurves. A model of the refined concept must therefore provide the following additional operations:

(1) Compute the intersections between two given x-monotone curves C1 and C2, sorted in increasing lexicographical
order. Each intersection is represented by an intersection point and its geometric multiplicity,13 if the multiplicity
is defined and known, or by an x-monotone curve representing an overlapping portion of C1 and C2.
The introduction of multiplicity of intersection points enables the arrangement-construction algorithms to exploit
the geometric knowledge they may have, in order to avoid costly calls to other traits-class functions, since in many
cases the order of incident curves to the right of a common intersection point can be deduced from their order to
the left of the point and the intersection multiplicity.14

(2) Split a given x-monotone curve C at a given point p, which lies in C’s interior, into two subcurves.

The construction of an arrangement of general curves requires a model of the further refined concept
ArrangementTraits_2. In addition to the point and x-monotone curve types, a model of the refined concept must
define a third type that represents a general (not necessarily x-monotone) curve in the plane, named Curve_2. It

13 See, e.g., http://en.wikipedia.org/wiki/Intersection_number for an exact definition.
14 This is quite clear when we have two curves intersecting at a point, as they swap their relative order if and only if the multiplicity of intersection
is odd. See [7] for a generalization to the case of multiple curves intersecting at a common point.

http://en.wikipedia.org/wiki/Intersection_number
http://en.wikipedia.org/wiki/Intersection_number
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also has to supply a method that subdivides a given curve into simple x-monotone subcurves, and possibly isolated
points.15

All traits-class operations are implemented as function objects (functors) according to CGAL’s guidelines. This
allows extending the geometric types above, without the need to redefine the methods that operate on them (see [27]
for details on the extensible kernel). For a detailed specification of the various concept requirements see [46].

2.2.1. The traits-class adapter
In addition to the primitive operations involving curves and points listed above, the arrangement class needs to

perform several other geometric operations that can be implemented by using the traits-class primitives. For example,
in order to determine whether a point p is in the x-range of an x-monotone curve C, we simply have to compare p to
C’s endpoints, and check whether it lies to the right of the left endpoint and to the left of the right endpoint.

The generic-programming paradigm dictates that concepts should be as tight as possible. Indeed, the requirements
listed by the geometric traits concepts are made minimal. They include only the utterly essential types and methods,
and fully specify all the preconditions on the input data, as these may simplify the implementation of models of
this concept even further. Another important reason for reaching the minimal requirements is to avoid computing the
same algebraic entity in different ways. The importance of this is amplified in the context of geometry, because the
presence of more than a single way can lead to artificial degenerate conditions. To this end, Arrangement_2 and
its peripheral classes use a traits-class adapter that implements additional functors based on the functors supplied by
the traits class. The traits class is injected as a template parameter into the traits-class adapter, which inherits from it.

Traits concepts with minimal interface are important in our case not just for programming convenience—they also
have geometric implications. In previous versions of CGAL the traits classes had to include the following predicate:
given two interior disjoint x-monotone curves C1,C2 and a point p, whose x-coordinate lies in the x-ranges of both
curves, determine the y-order of the two curves with respect to a vertical line passing through p. This predicate is
required by the simple point-location algorithms (see Section 4.2) in order to locate the arrangement edge lying right
above the query point. Computing this predicate is trivial for line segments, but it involves algebraic expressions of
high order when handling algebraic curves of degree 2 or higher. In fact, some algebraic methods employed by the
traits classes mentioned in Section 2.2.4 cannot handle such a predicate in an exact manner at all.

The traits-class adapter handles this predicate in a very simple manner. Recall that C1 and C2 are interior disjoint,
but their x-ranges overlap, as they both contain the x-coordinate of p. Thus, we compare the left endpoints of both
curves, and select the rightmost one; assume without loss of generality it is the left endpoint of C1 (see the illustration
above). Then, we simply find the position of this point with respect to C2. If this point lies on C2, then the two curves
share a common endpoint, and we just compare them to the right of this point.

Reducing the requirements from the geometric traits-class and minimizing the number of invocations of traits-class
functions has a dramatic effect on the performance of our arrangement operations, as we report in Section 7.

In some cases, the traits-class adapter uses a tag-dispatching mechanism to select the appropriate implementation
of a traits-class functor. Tag dispatching is a technique that uses function overloading to dispatch a function at compile
time, based on properties of the types the function accepts.16 This mechanism enables users to implement their traits
class with a reduced set of functors. The traits class must define the two tags listed below that affect the operation of

15 For example, the curve (x2 +y2)(x2 +y2 − 1) = 0 comprises two x-monotone circular arcs, which together form the unit circle, and a singular
isolated point at the origin.
16 See, e.g., http://www.boost.org/more/generic_programming.html for more details.

http://www.boost.org/more/generic_programming.html
http://www.boost.org/more/generic_programming.html
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the adapter.

• The tag Has_left_category indicates whether the traits class supports the comparison of two x-monotone
curves C1 and C2 to the left of a common right endpoint p. This predicate is required by some point-location
strategies and by the zone-computation algorithm, and while it may sometimes be fairly easy for the traits-class
implementer to provide it, it can be computed using other primitive traits-class predicates. Thus, when the has-left
tag is false, the traits-class adapter resorts to the following (somewhat less efficient) algorithm: It locates a new
reference point p′ to the left of p, namely the lexicographically largest left endpoint of C1 and C2, and determines
the relative position of the curves to its right.

• The tag Has_merge_category indicates whether a model of the ArrangementXMonotoneTraits_2 supports
the merge of x-monotone curves. If the tag is true, the traits class must provide the two following operations:
(1) Determine whether two x-monotone curves C1 and C2 that share a common endpoint are mergeable—that is,

whether they can be merged into a single continuous x-monotone curve representable by the traits class.
(2) Merge two mergeable x-monotone curves C1 and C2 into a single continuous x-monotone curve.
The merger operation is used to eliminate redundant features in the arrangement. For example, if we have a T-
shaped structure formed by two line segments, and the vertical segment forming the “leg” is removed, then it is
possible to merge the two horizontal sub-segments. When the has-merge tag is false, the adapter simply declares
any pair of curves as non-mergeable. The only effect on the arrangement is that we cannot remove redundant
vertices (of degree two) following the deletion of edges.

2.2.2. Segment-traits classes
The arrangement package provides two traits classes that handle line segments. The Arr_segment_traits_

2<Kernel> class-template is parameterized by a geometric kernel, that conforms to the CGAL-kernel concept [17].
We note that the Segment_2 type defined by most CGAL kernels is represented only by its two endpoints. When
a segment is split several times, the bit-length of the coordinates needed to represent its endpoints may grow expo-
nentially (see [21] for a discussion), which may significantly slow down the computation. Our traits class therefore
represents a segment by its supporting line and its two endpoints. When the traits class computes an intersection
point of two line segments, it uses the coefficients of their supporting lines. When a segment is split at an intersection
point, the underlying line of the two resulting sub-segments remains the same, and only their endpoints are updated.
The Arr_segment_traits_2<Kernel> thus overcomes the undesired effect of cascading intersection-point
representation described above.

The Arr_non_caching_segment_basic_traits_2<Kernel> class-template is a model of the
ArrangementBasicTraits_2 concept. It declares Kernel::Segment_2 as its x-monotone-curve type, and it uses
the kernel functors to operate on such segments. As the segments it handles are non-intersecting, the undesired effect
of cascaded representation of intersection points does not occur. The traits class Arr_non_caching_segment_
traits_2<Kernel> models the concept ArrangementTraits_2. It extends the basic-traits class with the capability
to handle intersections of segments. Naturally, it uses less space than the traits class Arr_segment_traits_2
uses. However, it achieves (slightly) faster running times only when sparse arrangements (of line segments) are con-
structed and maintained. In most cases the Arr_segment_traits_2 class is more efficient than the “non-caching”
traits class.

2.2.3. Polyline-traits classes
Continuous piecewise linear curves, referred to as polylines, are of particular interest, as they can be used to

approximate more complex curves. At the same time they are easier to deal with in comparison to higher-degree
algebraic curves (see next subsection), as rational arithmetic is sufficient to carry out exact computations on polylines.
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Previous releases of CGAL included a stand-alone polyline-traits class, which represented a polyline as a list
of points, and performed all geometric operations on this list [24]. The new arrangement package introduces the
Arr_polyline_traits_2<SegmentTraits> class-template, which must be instantiated with a geomet-
ric traits class that is able to handle line segments. A polyline curve is represented as a vector of Segment-
Traits::X_monotone_curve_2 objects (namely segments). The new polyline-traits class does not perform
any geometric operations directly. Instead, it solely relies on the functionality of the instantiated segment-traits class.
For example, when we need to determine the position of a point with respect to an x-monotone polyline, we use binary
search to locate the relevant segment that contains the point in its x-range, then we compute the position of the point
with respect to this segment. Thus, operations on x-monotone polylines of size m typically take O(logm) time.

Users are free to choose the underlying segment-traits class based on the number of expected intersection points
(see discussion above in Section 2.2.2). Moreover, it is possible to instantiate the polyline-traits class-template with a
traits class that handles segments with some additional data attached to them (see Section 6.1). This makes it possible
to associate different data objects with the different segments that comprise a polyline.

2.2.4. Traits classes for non-linear curves
The arrangement package includes several traits classes that handle non-linear curves: a traits class for circular arcs,

another for general conic arcs (bounded segments of algebraic curves of degree 2), and a traits class for arcs of graphs
of rational functions. As these traits classes handle more complex objects, they need to employ more sophisticated
algebraic methods in order to ensure the exactness and robustness of the computations they carry out; see, e.g., [44]
for more details.

Additional traits classes that are also compatible with the arrangement-traits concept have been developed by other
groups of researchers. Among these we can list traits classes for circular arcs and for conic arcs developed by Emiris
et al. [16], extending the predicates described by Devillers et al. [13], and traits classes for conic curves [7], cubic
curves [15], and special types of quartic curves [8] that were developed as part of the EXACUS project [6]. The work
of [16] is available in CGAL Version 3.2, under the circular kernel package. The EXACUS-based traits classes are
planned to be integrated into future versions of CGAL, as the basis for a curved kernel that handles algebraic curves
of arbitrary degree.

2.3. Extending the DCEL

As mentioned in Section 2.1, the Arrangement_2 is parameterized by a DCEL class, which is by default
Arr_default_dcel<Traits>. This default DCEL model simply associates a point with each DCEL vertex and
an x-monotone curve with each halfedge pair. However, it is sometimes necessary to extend the topological features
of the DCEL. While it is possible to store auxiliary data with the curves or points by extending their respective types
(see more details in Section 6.1), it is also possible to extend the vertex, halfedge, or face types of the DCEL through a
mechanism based on inheritance. Many times it is desired to associate extra data with the arrangement faces only. For
example, when an arrangement represents the subdivision of a country into regions associated with their population
density. In this case there is no alternative other than to extend the DCEL face, as there is no concrete geometric entity
that corresponds to an arrangement face.

We note that similar mechanisms of extending geometric features with auxiliary attributes can be found in
other components in CGAL, such as the triangulation packages [9] and the halfedge data-structure [30]. How-
ever, as the feature-extension technique is somewhat cumbersome and might be difficult for inexperienced users,
the arrangement package provides two DCEL adapters that give it a more intuitive interface. The class-template
Arr_face_extended_dcel<Traits,FaceData> extends each face in the Arr_default_dcel class with
a FaceData object, and provides interface for accessing and modifying this object. Similarly, the package also con-
tains a more general adapter named Arr_extended_dcel<Traits,VData,HData,FData> that extends the
DCEL vertex, halfedge, and face records with fields of types VData, HData and FData, respectively.

3. Adapting to BOOST graphs

The BOOST graph library (BGL) [42] is a generic library of graph algorithms and data structures designed in the
same spirit as the STL [3]. It supports graph algorithms, and as our arrangements are embedded as planar graphs, it is
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only natural to augment the DCEL with the interface that the BGL expects, and gain the ability to perform the oper-
ations that the BGL supports, such as shortest-path computations. We adapt Arrangement_2 instances to BOOST

graphs by specializing the boost::graph_traits template for the Arrangement_2 class and providing a set
of free functions for traversing the arrangement features that conform with the interface prescribed by the BGL.

In addition to the straightforward adaptation, which associates a vertex with each DCEL vertex and an edge with
each DCEL halfedge, we also offer a dual adapter, which associates a graph vertex with each DCEL face, such that
two vertices are connected, if and only if there is a DCEL halfedge that separates the two corresponding faces. Us-
ing this dual adapter it is possible, for example, to perform breadth-first or depth-first traversals on arrangement
faces.

This dual representation is very useful for many applications, such as answering motion-planning queries (see,
e.g., [28]). Assume that we have an arrangement of line segments and circular arcs that represents the configuration
space of a disk robot moving amidst polygonal obstacles in the plane. We extend the DCEL by attaching a Boolean
flag to each arrangement face, indicating whether it is free or forbidden. As the BGL enables the application of
filters on graph vertices, we can perform a breadth-first traversal starting at a given free face and filter out faces that
are marked as forbidden, considering only the free arrangement faces. This way we can efficiently answer motion-
planning queries.

3.1. Example: Cumulative polygon operations

Assume that we are given a set P1,P2, . . . ,Pn of simple polygons, where each polygon is represented by a closed
polyline (see Section 2.2.3) with counterclockwise orientation that forms its boundary. Namely, the polyline winds
in a counterclockwise direction around the interior of the polygon. Using this representation we can compute the
arrangement of the boundary polylines. The distinct property of the planar subdivision represented by this arrangement
is that if two points p,q ∈ R

2 belong to the same arrangement face, they are covered by the same subset of poly-
gons.

Let N(f ) denote the number of polygons that cover the face f . We extend the face type of the DCEL (see Sec-
tion 2.3) with a counter: an unsigned integer that stores the value of N(f ). This representation enables the computation
of several cumulative set operations on our input polygons. It immediately follows that the union of polygons is given
by

⋃n
i=1 Pi = {f | N(f ) > 0}, their intersection is simply

⋂n
i=1 Pi = {f | N(f ) = n}, and their cumulative symmetric

difference is defined as
⊕n

i=1 Pi = {f | N(f ) is odd}.17

17 For simplicity, we describe here regularized set operations. The regularized result is obtained by taking the closure of the interior of the ordinary
result, thus eliminating its low-dimensional features (i.e., “antennas” and isolated vertices). We note however that using an appropriately extended
DCEL class, it is not difficult to compute the low-dimensional features of the result as well; see [18, Appendix A] for the details.
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When we know all input polygons in advance, it is possible to construct the arrangement of their boundary polylines
using the aggregated insertion function (see Section 5.1 for more details). Once the arrangement is constructed, it
is possible to compute N(f ) for each face applying a variant of the breadth-first search (BFS) algorithm on the
dual-graph representation of our arrangement (as described above), starting from the graph vertex that corresponds
to the unbounded face f0. We maintain the distance variable, and each time we visit a face, we update its counter
accordingly.18 As mentioned above, extracting the regularized result of a cumulative set operation on the polygons set
is trivial given the extended face information N(f ).

4. Notifying external classes on changes

Some arrangement-based algorithms and applications should be bound to a specific arrangement instance and
receive notifications on various topological changes this arrangement undergoes. This is not just a convenience, but
crucial to the usability of the package, as it might be the only way for providing the external algorithm with a certain
input, such as data that should be associated with the topological features of the arrangement, and is available only
during construction; see Section 4.3 for an example.

In previous versions of the arrangement package [19] it was possible to provide the various insertion functions
with a pointer to a change-notification class. If the pointer pointed to an operative notification object, the arrangement
would invoke notification functions implemented by this class—for example, it would call on_split_face()
when a face was split into two. The main disadvantage of this approach was that only a single change-notification
class was supported. Indeed, this class might have informed several other objects on the changes, but this would have
reduced the reusability of such notification classes. In addition, the trapezoidal RIC point-location strategy (see more
details in Section 4.2) used a specialized notification mechanism, which forced a point-location instance to be tightly
coupled with an arrangement instance.

In Version 3.2 we introduce a new notification mechanism that is based on arrangement observers. The observer
design-pattern “defines a one-to-many dependency between objects, so that when one object changes state, all its
dependents are notified and updated automatically” (Gamma et al. [22]). Using this new mechanism it is possible
to attach any number of observer instances to a specific arrangement, such that all attached observers get notified on
local and global changes the arrangement undergoes.

In the following subsections we give a detailed description of the notification mechanism, describe how it is used
by different point-location strategies, and give an example of a user-defined observer.

4.1. The notification mechanism

The Arr_observer<Arrangement> class-template is parameterized by an arrangement type. It stores a
pointer to an arrangement object, and is capable of receiving notifications just before a structural change oc-
curs in the arrangement and immediately after such a change takes place. Hence, each notification comprises of
a pair of “before” and “after” functions (e.g., before_split_face() and after_split_face()). The
Arr_observer<Arrangement> class-template serves as a base class for other observer classes and defines
a set of virtual notification functions, giving them all a default empty implementation. The interface of the base
class is designed to capture all possible changes that arrangements can undergo, with a minimal set of topological
events.

The set of functions can be subdivided into three categories as follows.

(1) Notifiers of changes that affect the entire topological structure. Such changes occur when the arrangement is
cleared or when it is assigned with the contents of another arrangement.

(2) Notifiers of a local change to the topological structure. Among these changes are the creation of a new vertex
or an edge, the splitting of an edge or a face, the formation of a new hole inside a face, the removal of an edge,
etc.

18 Special attention should be exercised in the presence of degeneracies, such as overlapping boundary curves. For simplicity of presentation, we
assume here that no such degeneracies exist. The reader is referred to [18, Appendix A] for a review of the complete solution.
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(3) Notifiers of a global change initiated by a free (global) function, and called by the free function (e.g., incremen-
tal or aggregated insert; see Section 2). This category consists of a single pair of notifiers, neither of them is
called by methods of the Arrangement_2 class-template itself. It is required that no point-location queries
(or any other queries for that matter) are issued between the calls to the “before” and “after” functions of this
pair.19

See [46] for a detailed specification of the arrangement observer class sketched above.
Each arrangement object stores a list of pointers to Arr_observer objects, and whenever one of the structural

changes listed in the first two categories above is about to take place, the arrangement object invokes the appropriate
function of each of its observers. It also does so immediately after the change has taken place. In addition, a free
function may choose to trigger a similar notification, which falls under the third category above.

The observer list of an arrangement object is not made public, and can only be accessed by the Arr_observer
class. A pointer to a valid arrangement object must be supplied to the constructor of an Arr_observer object.
The newly created observer object adds itself to the observer list of the arrangement. From that moment on, it starts
receiving notifications whenever the associated arrangement object changes. In case the new observer is attached to a
non-empty arrangement, its constructor may extract the relevant data from the non-empty arrangement using various
traversal methods offered by the public interface of the Arrangement_2 class, and update any internal data stored
in the observer. This is necessary, for example, in case of the point-location strategies that maintain auxiliary data
structures described in the next subsection.

4.2. Point-location observers

Several types of queries on arrangements are supported by the package, the most important one being the point-
location query: given a point, find the arrangement cell that contains it. Typically, the result of the point-location
query is one of the arrangement faces, but in degenerate situations the query point can lie on an edge, or it may
coincide with a vertex. Since the arrangement representation is decoupled from the algorithms that operate on it,
the Arrangement_2 class does not support point-location queries directly. Instead, the package provides a set of
classes that are capable of answering such queries, all are models of the concept ArrangementPointLocation. Each class
employs a different algorithm or strategy for answering queries. A model of this concept must define the locate()
function that accepts an input query point and returns an object representing the arrangement cell that contains this
point (a polymorphic CGAL::Object instance that can either be a Face_handle, a Halfedge_handle, or a
Vertex_handle).

The following models of the concept ArrangementPointLocation are included in the arrangement package. Each
employs a different point-location strategy.

• Arr_naive_point_location locates the query point naïvely, by exhaustively scanning all arrangement
cells.

• Arr_walk_along_a_line_point_location simulates a reverse traversal along an imaginary vertical
ray emanating from the query point toward infinity. It starts from the unbounded face of the arrangement and
moves downward toward the query point until it locates the arrangement cell containing it.

• Arr_landmarks_point_location<Generator> uses an auxiliary generator class to create a set of
“landmark” points, whose location in the arrangement is known. Given a query point, it uses a nearest-neighbor
search structure (e.g., KD-tree) to find the nearest landmark, and then traverses the straight-line segment connect-
ing this landmark to the query point.20 See [26] for more details.

19 This constraint can improve the efficiency of the maintenance of auxiliary data structures for the relevant point-location strategies, which have
to update their data structures according to the changes the arrangement undergoes (see the next section for more details). Since no point-location
queries are issued between the invocation of before_global_change() and after_global_change(), it is not necessary to perform
an update each time a local topological change occurs, and it is possible to postpone the updates until after the global operation is completed.
20 The “landmarks” strategy, requires that the arrangement is instantiated with a traits class that models the ArrangementLandmarksTraits_2
concept, which adds two requirements to the basic ArrangementBasicTraits_2 concept: (i) Approximating the coordinates of a given point p using
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Fig. 4. The point-location classes and the notification mechanism. Solid lines directed through a triangle mark an inheritance relation, dashed lines
directed through a triangle designate “is a model of” relation, a line with an arrow head or a similar line with a rhombus-shaped tail indicate that
the source class stores a reference to an object of the target type or a container of objects of the target type, respectively.

• Arr_trapezoidal_ric_point_location implements Mulmuley’s point-location algorithm [36], which
is based on the vertical decomposition of the arrangement into pseudo-trapezoids.

The last two strategies are more efficient. However, they require preprocessing and consume more space, as they
maintain auxiliary data structures. The first two strategies do not require any extra data and operate directly on the
DCEL that represents the arrangement.

Each of the “landmarks” point-location class and the trapezoidal point-location class defines a nested observer
class that inherits from Arr_observer, and is used to receive notifications whenever the arrangement is modified
(see Fig. 4). For example, the default generator employed by the “landmarks” strategy uses the arrangement vertices
as landmarks, so whenever a new vertex is created (by the insertion of a new edge or by the splitting of an existing
edge), it should be inserted into the nearest-neighbor search structure maintained by the respective landmark class.
The usage of the notification mechanism makes it possible to associate several point-location objects with the same
arrangement simultaneously.

The “landmarks” and the trapezoidal point-location strategies are both characterized by very efficient query time at
the account of time-consuming preprocessing. Naturally, these strategies exhibit better overall performance when the
number of arrangement updates is relatively small compared to the number of issued queries. For a report on extensive
experiments with the various point-location strategies see [26].

4.3. Example: Online cumulative polygon operations

In addition to the point-location observer classes, users can inherit their own observer classes from Arr_
observer, and use the notification mechanism for a variety of purposes, such as dynamically maintaining extra
data they store with the arrangement features. Let us revisit the cumulative set-operation example introduced in Sec-
tion 3. However, we now assume that the polygon set is not static, namely that new input polygons arrive as time
progresses. In this case we incrementally insert each new polygon into the arrangement upon arrival and efficiently
update the face counters accordingly.

We use an observer that stores a face handle fin and another container of face handles, denoted Fout. Each time we
handle a new polygon P ∗, we set fin to be an invalid handle and reset the container Fout. As the boundary curve of
the polygon is inserted into the arrangement, existing faces are split into two. Our observer is notified each time such
an event occurs. It receives handles for the two new faces f1, f2 resulting from the split and a handle for the halfedge
e that causes the split. Recall that the polygon boundary is properly oriented, such that its interior always lie to the left
of its boundary curve. Thus, we can easily identify the face lying to the left of e. Assume, without loss of generality,
it is f1, and set fin ←− f1. (Note that fin is updated each time a face-split event takes place. As we explain next,
we only need a handle to some face that lies inside the new polygon.) The other face f2 is not contained in the new

double-precision arithmetic; and (ii) constructing an x-monotone curve that connects two given points p and q , where p represents a landmark
point and q is the query point. Most traits classes included in the arrangement package are models of this refined concept.
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polygon and is inserted into Fout.

When the insertion process is over, we can easily update the face counters using the information accumulated by the
observer. We perform a filtered breadth-first search on the graph dual to the arrangement (Section 3), starting from
fin. Whenever we visit a face f , we increment its counter N(f ). The faces of Fout are used to filter the breadth-first
traversal: as they completely surround the boundary of P ∗, we are guaranteed to visit only the faces covered by this
new polygon. The figure above illustrates the insertion process of a new polygon into an arrangement induced by two
polygons. The final counters (after the insertion of P ∗) appear in brackets, and those incremented during the traversal
are slanted. In this case, the two other arrangement faces form Fout.

5. Major algorithmic frameworks

We have identified two main algorithmic frameworks related to arrangements of planar curves: the sweep-line
framework and the zone-computation framework. Each framework serves as the foundation of a family of concrete
algorithms. For instance, the implementation of operations like aggregated insertion of a set of curves into an arrange-
ment and the overlay computation of two arrangements is based on the sweep-line framework, while the incremental
insertion of a single curve into an arrangement involves the computation of the zone of this curve.

We provide two class-templates, namely Sweep_line_2 and Arrangement_zone_2, that implement these
two fundamental algorithms common to the two families of concrete algorithms, respectively. Each class template is
parameterized, among the other, by a visitor class—a model of the appropriate visitor concept. The concrete algorithms
are realized through sweep-line visitors or through zone-computation visitors. The visitor design-pattern “represents
an operation to be performed on an object or on the elements of an object structure. Visitors allow the definition of
new operations without changing the classes of the elements on which they operate” (Gamma et al. [22]). The visitor
classes receive notifications of the events handled by the basic procedure and can construct their output structures
accordingly. We gain a centralized, reusable, and easy to maintain code. For example, we use sweep-line visitors to
obtain a variety of different results: computing all intersection points induced by a set of curves, constructing the
arrangements of these curves, inserting the curves into an existing arrangement, etc. Moreover, users may introduce
their own sweep-based or zone-based algorithms, as implementing such an algorithm reduces to implementing an
appropriate visitor class.

There is a certain similarity between observers and visitors, as typically each of their methods is triggered as
a response to a certain event—a member of a pre-determined list of events. The main difference between them is
that observers define a one-to-many mapping between objects, while visitors define a one-to-one mapping. Recall
that a single arrangement may register many observers, but it is only natural to relate a single visitor to a specific
algorithmic framework in order to realize a certain concrete algorithm. Consequently, observers must be derived from
a common base class, and their methods must be virtual. Recall that arrangement observers must be derived from
Arr_observer. In contrast, while visitors must model certain concepts, they can, and typically are, syntactically
unrelated. The requirements of the visitor concepts of the two algorithmic frameworks are described in the next
sections. We mention that the BOOST Graph Library, for example, uses visitors [42, Section 12.3] to support user-
defined extensions to its fundamental graph algorithms.

5.1. The generic sweep-line algorithm

Sweeping the plane with a line is one of the most fundamental algorithmic frameworks in computational geometry.
The famous sweep-line algorithm of Bentley and Ottmann [5] was originally formulated for sets of non-vertical
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line segments, with the “general position” assumptions that no three segments intersect at a common point and no
two segments overlap. An imaginary vertical line is swept over the plane from left to right, transforming the static
two-dimensional problem into a dynamic one-dimensional one. At each time during the sweep a subset of the input
segments intersect this vertical line in a certain order. The subset of segments and their order along the sweep line
may change as the line moves along the x-axis, implying a change in the topology of the arrangement, only at a finite
number of event points, namely intersection points of two segments and left endpoints or right endpoints of segments.
The event points, namely segment endpoints and all intersection points that have already been discovered, are stored
in an xy-lexicographic order in a dynamic event queue, named the X-structure. The ordered sequence of segments
intersecting the imaginary vertical line is stored in a dynamic structure called the Y -structure. Both structures are
maintained as balanced binary trees, such as red-black trees, that enable their efficient maintenance. In particular, we
use an advanced implementation of red-black trees [45] that offers extended functionality over other alternatives such
as STL maps.

The Sweep_line_2<Traits,Event,Subcurve,Visitor> class-template implements a generic sweep-
line algorithm that can handle any set of arbitrary x-monotone curves [43], containing all possible kinds of degenera-
cies (see [12, Section 2.1] and [34, Section 10.7] for the treatment of degeneracies induced by line segments), using a
small set of geometric predicates and constructions involving the curves. The Traits parameter must be instantiated
with a model of the ArrangementXMonotoneTraits_2 concept (see Section 2.2). The Visitor parameter must be
instantiated with a model of the SweepLineVisitor_2 concept, whose functionality is explained in details next.

The Sweep_line_2 class-template uses two auxiliary classes: Event_base, which stores a Point_2 object
that represents the coordinates of an event point, and Subcurve_base, associated with a portion of an x-monotone
curve (represented as an X_monotone_curve_2 object), whose interior is disjoint from all other subcurves at the
current location of the sweep line (it may intersect yet undiscovered subcurves as the sweep line advances). These
two auxiliary classes also store additional data members needed internally by the sweep-line algorithm, which are
not exposed to external users. The Sweep_line_2 parameters Event and Subcurve are instantiated with these
two types by default. Users may however extend these types with data required by their visitor class by inheriting an
event class and a subcurve class from the respective base classes, and using these extended classes to instantiate the
sweep-line template.

During the sweep-line process the event objects in the X-structure are sorted lexicographically, and the subcurve
objects are stored in the Y -structure in the same order as the lexicographic order of their intersection with the imag-
inary sweep-line. The Sweep_line_2 class performs only the operations required to maintain the X-structure and
the Y -structure, while the visitor class is responsible for producing the actual output of the algorithm. Whenever the
sweep-line class handles an event point p, it sends a notification to its visitor, with the relevant Event object and
the Subcurve objects incident to it. The latter is specified by a pair of iterators that define the subcurve range. Us-
ing this information, the visitor can access not only the subcurves incident to p, but also the neighboring subcurves
from above and below. In the example depicted above, the event point p is sent to the visitor with the iterator range
[first,last], which defines the three subcurves that share p as a common left endpoint; the subcurves Ca and Cb

lying above and below p can be accessed by dereferencing the expressions --first and ++last, respectively. The
sweep-line visitor is capable of attaching auxiliary data members and adding functionality to the event and subcurve
objects. It can also construct its output accordingly.

It should be mentioned that Bartuschka et al. [4] designed and implemented a generic sweep-line algorithm in the
LEDA library. They offer a class that couples a sweep-traits class with a visitor. However, in their implementation the
traits class is responsible for performing almost the entire sweep-line algorithm, whereas our class performs the bare
sweep-line procedure, and requires only a traits class that supplies a small set of geometric primitives. Hence, our
approach provides a more modular framework that is easier to extend.
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A simple sweep-line visitor class is used for reporting all intersection points induced by a set of input curves.21 This
visitor does not require storing any auxiliary data structures with events or with subcurves. The default Event_base
and Subcurve_base types are sufficient and used to instantiate the sweep-line class-template. The visitor simply
reports an event point p, if it has more than a single incident subcurve.

As mentioned above, a key operation implemented with the aid of a sweep-line visitor is the construction of a DCEL

that corresponds to the arrangement induced by a set of input curves. The visitor class in this case is more complicated,
as it needs to store extra data with the subcurves and the events as follows. The event class is extended by a handle for
a DCEL vertex that corresponds to the event point. As long as the vertex has not been created yet, the handle is invalid.
The subcurve class is extended with a pointer to an event point that corresponds to the left endpoint of the subcurve.
When processing an event point p, it is possible to go over all subcurves such that p is their right endpoint (they lie to
the left of p) and use this auxiliary data to insert the subcurves into the arrangement using one of the special insertion
methods (see Section 2). In fact, additional information stored with each subcurve helps performing the insertion in
the most efficient manner, utilizing all available geometric and topological information. We omit the related technical
details here.

Another operation closely related to the construction of a DCEL structure from scratch is the aggregated insertion
of new curves into an existing arrangement and efficiently updating an existing DCEL structure. In this case we have to
sweep over the plane and account for the set C of new curves as well as the consolidated set of all subcurves associated
with the existing DCEL halfedges. Our goal is to discover the intersections involving the new curves, and to update the
existing DCEL accordingly. We first extend the x-monotone curve type defined by the traits class (see [21] for details)
with a handle for one of its corresponding halfedge twins (this handle is invalid for the newly inserted curves). It is also
possible to extend the Subcurve type of the visitor, but attaching the auxiliary data at the traits-class level enables
a more efficient implementation of the traits-class methods. For example, it is possible to avoid the computation of
intersections between two curves that correspond to valid halfedges. This way we can easily identify events in which
only existing subcurves are involved, ignore them, and handle only those events in which newly inserted curves are
involved.

5.2. Overlaying arrangements

A fundamental operation that is straightforwardly implemented using a sweep-line visitor is the overlay of two
given arrangements, referred to as the “blue” and the “red” arrangements. We compute their overlay by sweeping a
vertical line over the plane, processing a consolidated set of the “blue” and “red” curves. As explained in the previous
subsection, it is convenient to use an extended traits class that extends the x-monotone curves with a color attribute
(whose value is either BLUE or RED in our case) and a halfedge handle. The extended traits class helps us to filter
out unnecessary computations. For example, we can ignore “monochromatic” intersections, and compute only red–
blue intersection points (or overlaps). This way the arrangement of a consolidated set of “blue” and “red” curves is
computed efficiently.

The major added difficulty over the previously mentioned visitors is the need to construct a DCEL that properly
represents the overlay of two potentially extended input arrangements. That is, the features of each one of the two
DCEL data-structures that represent the two respective input arrangements could have been extended with additional
data (see Section 2.3). If we put our arrangements one on top of the other, we get an arrangement whose faces
correspond to overlapping regions of the blue and red faces. An edge in the overlaid arrangement may be a blue edge,
a red edge, or an overlap of two differently colored edges. An overlay vertex may be a blue vertex, a red vertex, a
coincidence of two differently colored vertices, or it may correspond to a blue–red intersection. In each case, the data
associated with the overlaid DCEL feature should be computed from the red and blue DCEL features that induce it. To
this end, the overlay visitor is parameterized by an overlay-traits type, which defines the merger operations between
various DCEL features, achieving maximum genericity and flexibility for the users.

Let us recall the application of computing the cumulative set operations on polygon sets presented in Sections 3
and 4.3 to exemplify the use of an overlay traits. The polygon arrangement is represented using an extended DCEL

class, such that each face f stores the number N(f ) of polygons that cover it. Assume that we are given a “blue”

21 Indeed, this operation is not directly related to arrangements. However, it is implemented using the sweep-line framework.
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arrangement and a “red” arrangement, representing two polygon sets Sb and Sr respectively, and we wish to compute
the arrangement that represents the consolidated set Sb ∪ Sr . We overlay the two arrangements, using an overlay-
traits class that operates as follows. Given an overlay face fo induced by the intersection of a “blue” face fb and
a “red” face fr , the overlay-traits class simply sets N(fo) ←− N(fb) + N(fr). It is straightforward to see that the
resulting arrangement represents Sb ∪ Sr . Cumulative set operations on this consolidated set can be easily computed
as described in Section 3.

5.3. Zone-computation visitors

Many applications can make use of the following operation: Given an arrangement A and an x-monotone curve
C, compute the zone of C in A. That is, identify all arrangement cells that the curve crosses. The zone can be
computed by locating the left endpoint of C in the arrangement, and then “walking” along the curve towards the right
endpoint, keeping track of the vertices, edges, and faces crossed on the way (see, for example, [12, Section 8.3] for
the computation of the zone of a line in an arrangement of lines).

The primary usage of the zone-computation algorithm is the incremental insertion of an x-monotone curve into
the arrangement. However, it is sometimes necessary to compute the zone of a curve in an arrangement without
actually inserting the curve. In other situations, the entire zone is not required, as in the case of a process that only
checks whether a query curve passes through an existing arrangement vertex. If the answer is positive, the process can
terminate as soon as the vertex is located.

While the sweep-line algorithm operates on a set of input x-monotone curves and its visitors can just use the
notifications they receive to construct their output structures, the zone-computation algorithm operates on an arrange-
ment object and its visitors may modify the same arrangement object as the computation progresses. This makes the
interaction of the main class with its visitors slightly more intricate.

The Arrangement_zone_2<Arrangement,Visitor> class-template implements a generic zone-computation
algorithm. It is parameterized by an arrangement type and by a visitor type. Given a curve C, the zone visitor is noti-
fied whenever a maximal subcurve Ĉ of C is found, and Ĉ is reported. The interior of every reported subcurve does
not coincide with any arrangement vertex or halfedge and lies within a face f . The arrangement features that define
the subcurve endpoints are also reported, as well as the face f . In the example depicted above, the interior of Ĉ, a
maximal subcurve of the line segment whose zone we compute (drawn in a thick light line) is contained in the face
f whose outer boundary is also shown; the vertex v corresponds to Ĉ’s left endpoint while the right endpoint lies
on the halfedge e. Thus, if the visitor inserts this subcurve into the arrangement, it first has to split e at this point.
A similar notification is issued whenever a subcurve Ĉ that overlaps an arrangement edge is detected. In both cases,
the visitor returns a pair composed of a halfedge handle and a Boolean flag as a result. In case the visitor inserts
the subcurve Ĉ into the arrangement, it returns a handle to one of the newly created halfedge twins. Otherwise, it
returns an invalid handle. The Boolean value indicates whether the zone-computation process could terminate. This is
conveniently used by the zone procedure to gain efficiency in those applications that do not require the computation
to proceed.

The visitor class Arr_inc_insert_zone_visitor performs the incremental insertion of an x-monotone
curve (see Fig. 5). It implements the functions described above to insert the generated subcurves by splitting the
halfedges intersected by the curve and using the special insertion functions. Other zone visitors, such as a visitor that
determines whether a query curve intersects with the curves of an arrangement, are even easier to implement.
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Fig. 5. The free functions (drawn as rectangles with a folded corner) that are implemented with the aid of visitor classes. Dotted arrows indicate the
usage of a visitor by a free function. The other line types are explained in Figs. 3 and 4.

6. Adding information to curves

It is sometimes necessary to attach auxiliary (perhaps non-geometric) information to the curves that induce a
specific arrangement instance. For example, in a geographical information system our curves may be polylines that
represent streets in a specific city, and we would like to attach the street names to these curves. Section 2.3 explains
how to extend the DCEL features. In particular, it is possible to extend the DCEL vertex and halfedge types. However, in
many instances it is more natural to extend their geometric mappings (i.e., point and x-monotone curve, respectively)
defined by the traits class at hand, as the auxiliary data is of geometric nature. Extending the x-monotone curve type
is also more space efficient than extending the halfedge type, as there are two twin halfedges associated with every
x-monotone curve.

In this section we present decorators that allow the extension of curve objects. The decorator design-pattern “at-
taches additional responsibilities to an object dynamically. Decorators provide a flexible alternative to sub-classing
for extending functionality”(Gamma et al. [22]). In our context, we use a traits-class decorator. Recall that the traits
classes do not have a common base class, but they are all models of a traits concept. Indeed, the traits-class decorator
must be instantiated with a model of the ArrangementTraits_2 concept, referred to as the base-traits class. The decora-
tor inherits some of the base-traits functors, while overriding others exploiting the auxiliary data maintained with the
geometric objects.

An important application of traits-class decorators is in the Arrangement_with_history_2 class-template,
which is in turn a decorator that operates on an arrangement class, and maintains its construction history, as we
describe in Section 6.2. In previous versions of the library [25] this construction history was stored in an auxiliary data
structure, which needed constant maintenance by the arrangement class. By using the proper decorators, in conjunction
with an arrangement observer, it is possible to obtain the construction history with only negligible overhead.

6.1. The traits-class decorators

We use traits-class decorators to extend the geometric entities defined by the traits class with additional, possi-
bly non-geometric, data. An alternative way to achieve this is to extend the geometric types of the kernel, as the
kernel is fully adaptable and extensible [27]. However, this indiscriminating extension may lead to an undue space-
consumption, as every geometric object is extended, regardless of its use. It also requires nontrivial knowledge about
the kernel structure and the techniques to extend it.

The Arr_curve_data_traits_2<BaseTraits,XData,Merge,CData,Convert> class template en-
ables the extension of the curve types defined by a geometric base-traits class, which must be a model of the
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ArrangementTraits_2 concept. It inherits its Curve_2 from the curve type defined in the base-traits class and ex-
tends it with an additional data field of type CData. The X_monotone_curve_2 type is also inherited from the
corresponding type in the base-traits class and is extended with a data field of type XData. The class also supplies
constructors and methods to access the data fields of its extended curve types.

The curve-data traits-decorator derives itself from the base-traits class and relies on the geometric operations de-
fined by this class. It extends these operations by maintaining the data fields associated with the curves as follows:

• When a curve is subdivided into x-monotone subcurves, its CData field is converted using the Convert functor
and propagated to all subcurves. By default, the CData and XData types are the same, and the data field is
simply copied to the x-monotone subcurves.

• When we split an x-monotone curve into two, its data field is duplicated and stored with both resulting subcurves.
• When two x-monotone curves overlap, their data fields are merged using the Merge functor and the result is

stored with the resulting subcurve that represents the overlap.
• We allow the merger of two x-monotone curves, only if they are geometrically mergeable (as determined by the

base-traits class) and their data fields are equivalent.

The Arr_consolidated_curve_data_traits_2<BaseTraits,Data> decorator specializes the
Arr_curve_data_traits_2 template by associating each curve with a single Data object and by attaching
a set of Data objects to each x-monotone curve. This set usually contains a single data object, unless the x-monotone
curve corresponds to an overlapping section of two curves or more. When a curve with a data field d is split into
x-monotone subcurves, each subcurve is associated with a singleton set {d}. When two x-monotone curves overlap,
the decorator takes the union of their data sets, and associates it with the resulting overlapping subcurve.

An example
Suppose that we are given a few sets of data for some country: A geographical map of the country divided into

regions, the national road and railroad network, and the water routes. Roads, railroads, and rivers are represented as
polylines and have attributes (e.g., a name). We wish to obtain all crossroads and all bridges in some region of this
country. To this end, we define the following classes:

stuct My_data {
enum {ROAD, RAILROAD, RIVER} type;
std::string name;

};
Arr_consolidated_curve_data_traits_2<Polyline_traits_2,

My_data> traits;



R. Wein et al. / Computational Geometry 38 (2007) 37–63 57
Fig. 6. The Arrangement_with_history_2 decorator. The unfilled rounded rectangles indicate nested classes. The line types are explained
in Figs. 3 and 4.

Each curve consists of a base-polyline (e.g., a road, a river) and a name. We construct the arrangement of all curves in
our data sets overlaid on top of the regional map. Then, we can simply iterate over all arrangement vertices located in
the desired region, and filter out those of degree less than four. If we encounter a vertex whose incoming halfedges are
only of types ROAD or RAILROAD, we conclude it represents a crossroad. A vertex where halfedges of types ROAD
(or RAILROAD) and RIVER meet represents a bridge. In any case, we can easily retrieve the names of the intersecting
roads or rivers and present them as part of the output. The figure above shows the main roads and railroad in the
Netherlands (drawn as dark curves), with the rivers and main water routes (drawn as lighter curves). The bridges, as
computed by the application, are marked by small dots.

6.2. Curves with history

Another major component of the CGAL arrangement package is the class-template Arrangement_with_
history_2<BaseTraits,Dcel>, which represents a planar arrangement of general curves, and maintains the
construction history of this arrangement. Recall that the input curves that induce the arrangement are eventually split
into x-monotone subcurves that are pairwise disjoint in their interior, and these subcurves are associated with the
arrangement halfedges. While in the Arrangement_2 class we lose track of the connections between input curves
and the subcurves they induce, in the Arrangement_with_history_2 class each halfedge stores a pointer to
the input curve associated with it, or a container of curve pointers in case the edge is associated with an overlapping
section of several curves. The arrangement decorator also stores the set of input curves, where each curve keeps the
set of edges it induces. Users can traverse through the original curves of each arrangement halfedge, or iterate over all
halfedges induced by a given input curve.

The Arrangement_with_history_2 class is nothing more than a simple decorator for Arrangement_2,
as shown in Fig. 6. It inherits from an arrangement class that is instantiated with the consolidated curve-data traits (Sec-
tion 6.1), where the extra data type is a pointer to a BaseTraits::Curve_2 object. Thus, the pointers from each
edge to its origin curve(s) are automatically maintained. The cross-pointers between input curves and arrangement
halfedges are maintained using an observer (Section 4) that keeps track of each change that involves an arrangement
halfedge and updates its underlying curve(s) accordingly.

Tracing back the curve (or curves) that induced an arrangement edge is essential in a variety of applications that
use arrangements, such as robot motion planning; see, e.g., [28]. It is possible, for example, to efficiently remove a
curve from the arrangement by deleting all edges it induces.

6.3. Example: Cumulative set operations on fully-dynamic polygon sets

Let us revisit the cumulative set-operation example. In Section 3 we devised a solution for static polygon sets,
and generalized it toward dynamic polygon sets in Section 4.3. We now generalize it further, and assume that
our polygon sets are fully dynamic. Namely, polygons may also be removed after they are inserted into a set. In
order to efficiently maintain the arrangement that encodes the topological structure of a polygon set, we use an
Arrangement_with_history_2 object instantiated with the polyline-traits class and a DCEL, whose faces are
extended with an unsigned integer, which represents the counter N(f ):
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typedef Arr_segment_traits_2<Kernel> Segment_traits_2;
typedef Arr_polyline_traits_2<Segment_traits_2> Polyline_traits_2;
typedef Arr_face_extended_dcel<unsigned int> Extended_dcel;

Arrangement_with_history_2<Polyline_traits_2,
Extended_dcel> arr;

Recall that each polygon is represented by a single curve, so each time we insert a polygon boundary into the
arrangement, we receive a curve handle that serves as a polygon identifier. When we wish to remove a polygon P̂ , we
simply call arr.remove_curve(ch), where ch is the curve handle for this polygon. However, in order to keep
the face counters up-to-date, we perform a simple preprocessing stage prior to the removal of the curve. Given the
curve handle of the polygon, it is possible to traverse all arrangement edges induced by P̂ . We keep track of the set
Fout of faces lying to the right of these edges, and a face fin that lies to the left of one of the edges (contained in P̂ ). In
an analogous manner to the insertion operation described in Section 4.3, we perform a filtered breadth-first traversal
starting from fin, with the faces of Fout serving as our traversal filters, and decrement the counter N(f ) of every face
f we encounter. Notice that the following curve-removal operation causes faces to merge, however the counters of
two merged faces are always equal due to the performed preprocessing.

Using similar ideas it is not difficult to compute cumulative set operations of entities, which are more complicated,
such as sets of polygons that may have polygonal holes. In this case the vertices of each polygonal hole are ordered in
a clockwise direction around the polygon. Moreover, using a different arrangement-traits class, we can handle general
polygons, whose edges are realized as non-linear arcs. In Section 7 we report on experimental results we obtained on
general polygons, whose boundaries comprise of line segments and circular arcs.

7. Experimental results

In this section we show that in addition to the improved design of the new arrangement package and its more
flexible and extensible interface, it is also more efficient and achieves significantly faster running time in comparison
to previous versions.

We compared the performance of the arrangement module in the previous version of CGAL (3.1) and the module
distributed with the new version (3.2). We tested the segment-traits class, the polyline-traits class, and the traits class
for conic arcs (Section 2.2), all bundled in the public release of CGAL. For each traits class we used at least one
structured data set that contains many degeneracies, and at least one data set that contains random curves in general
position.

• The onebig_n input files contain n line segments forming four “fan-line” grids, each induced by n
4 segments,

as depicted in Fig. 7(a). The rnd_segs_n files contain n segments, whose endpoints were randomly selected
from a [0,10000] × [0,10000] integer grid.

Fig. 7. Structured inputs used in the benchmarks: (a) the onebig_100 segment input, (b) the sines_10 polyline input, (c) the packed_41
circle input.
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Table 1
Comparing Version 3.1 with Version 3.2; V, E, and F indicate the number of vertices, edges, and faces respectively; times are measured in seconds

Input file Arrangement size Version 3.1 Version 3.2

V E F inc. agg. inc. agg.

onebig_100 1504 2704 1202 3.416 0.122 0.292 0.043
onebig_250 8056 15376 7322 44.468 0.797 2.872 0.234
rnd_segs_500 33589 65678 32091 9.276 3.440 2.796 1.085
rnd_segs_1000 114376 225752 111380 30.257 13.010 9.678 3.872

sines_10 40 210 172 0.223 0.013 0.031 0.014
rnd_plns_20 4136 8109 3975 1.375 0.504 0.518 0.245

packed_41 507 1042 537 2.056 1.120 0.478 0.376
rnd_elps_30 677 1303 628 102.854 44.142 7.733 7.238
rnd_elps_50 1877 3663 1788 299.007 121.394 21.353 20.588

• The sines_10 input file contains 10 sine-shaped polylines, each one comprises 20 line segments, as depicted in
Fig. 7(b). The rnd_plns_20 file contain 20 polylines, each comprises 10 line segments, whose endpoints were
randomly selected from a [0,10000] × [0,10000] integer grid.

• The packed_41 input file contains two layers of 5 × 5 and 4 × 4 circles, whose centers are located on a grid,
resulting in a highly degenerate structure; see Fig. 7(c). The rnd_elps_n files contain random ellipses with
integer radii, whose centers are randomly selected from a [0,30] × [0,30] integer grid.

We use the most efficient configurations in Version 3.1. Namely, the segment-traits class is instantiated with a
kernel that uses the GMP exact rational number-type (Cartesian<Gmpq>), and such a segment-traits class is used
to instantiate the polyline-traits class. The conic-traits class uses the number types supplied by the CORE library, which
are capable of carrying out certified computations with algebraic numbers. In each case, we construct the arrangement
incrementally, using the walk-along-a-line point-location strategy (Section 4.2), or aggregately, using a sweep-line
process that inserts all input curves simultaneously.

The running times we obtained in our experiments are summarized in Table 1. The running times reported in this
section where obtained on a 3 GHz Pentium IV machine with 2 Gb of RAM, running a Linux operating system. The
software was compiled using the Gnu C++ compiler (g++ Version 3.3.2).

As mentioned throughout this paper, we minimized the number of geometric predicates and constructions (calls to
traits-class functors) invoked by the various algorithms in the new version of the arrangement package. This minimiza-
tion is the main reason for the considerable speedups achieved in Version 3.2. Table 2 lists the number of calls to the
various traits-class operations for three selected data-sets, as obtained in Version 3.1 and in Version 3.2. We mention
that the set of traits-class operations in Version 3.1 was slightly different than it is in the new version: an x-monotone
curve used to have a source and a target point, instead of minimal and maximal endpoints; we used to compare the
intersections one by one, instead of a single call that computes all intersections; and finally, some operations that are
now computed by the traits-class adapter used to be part of the traits class (e.g., comparing two x-monotone curves
over a given point—see Section 2.2.1 for more details).

Recall that in Version 3.2 the main algorithmic frameworks, namely the sweep-line framework and the zone-
computation framework, are implemented as two centralized classes (see Section 5). This code centralization enabled
us to improve the core algorithms, so they better utilize combinatorial and topological information and invoke fewer
geometric operations.

Minimizing the number of calls to traits-class functions has also paved the way to use faster geometric ker-
nels. CGAL includes a predefined filtered kernel [27], named Exact_predicates_exact_constructions_
kernel, which applies arithmetic filters based on interval arithmetic [10], in order to filter out computations with the
exact Gmpq type. Only when a filter fails, in case of a degenerate (or near degenerate) situation, does the kernel resort
to exact computing, in order to arrive at a correct result. In Version 3.2 of the arrangement package major efforts were
made to exploit combinatorial information to avoid redundant geometric predicates. Redundant tests, such as compar-
ing two points, which are in fact equal, cause filter failures; therefore, they render the filtered kernel inefficient. On the
other hand, the new version successfully benefits from using filtered computations in case of non-degenerate input, as
our experiments show.
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Table 2
The number of calls to traits-class operations in Version 3.1 and in Version 3.2

Operation name onebig_250 random_500 packed_41

inc. agg. inc. agg. inc. agg.

Version 3.1

compare x 2,553,663 171,871 1,349,760 762,873 21,500 13,157
compare xy 3,136,876 228,904 905,196 924,150 9,312 13,092
get source 11,420,454 50,964 1,497,407 219,733 20,091 3,834
get target 9,278,696 43,154 1,002,356 185,587 12,892 3,300
in x-range 20,218,305 29,533 707,079 148,241 5,560 2,778
is vertical 171,791 132,994 658,521 612,800 11,932 9,731
point status 196,529 246 72,768 3,213 1,378 128
compare at x 14,595 115,169 92,017 506,437 1,738 9,573
compare to left 17,019 0 90,048 0 2,115 0
compare to right 28,061 40,948 137,614 182,519 2,348 3,789
next intersection 2,102,007 22,695 241,247 99,149 2,970 1,598
do overlap 22,696 18,794 130,642 80,076 2,254 1,454

Version 3.2

compare x 2,937,242 0 718,021 0 8,497 0
compare xy 8,608,206 75,856 573,217 301,419 5,858 4,788
min vertex 2,750,792 248 558,780 500 6,518 82
max vertex 2,735,012 248 466,876 500 5,293 82
is vertical 1,163 0 52,265 0 1,515 0
point status 24,529 1,749 84,440 3,593 1,619 44
compare to left 62 0 7,684 0 760 0
compare to right 7,590 1 5,892 0 625 164
intersect 47,843 7,811 90,632 33,864 1,586 602

Table 3
Comparing different kernels in Version 3.2; times are measured in seconds

Input file Using Gmpq Filtered kernel Lazy kernel Using double

inc. agg. inc. agg. inc. agg. inc. agg.

onebig_100 0.292 0.043 0.209 0.083 0.131 0.099 0.049 0.010
onebig_250 2.872 0.234 2.055 0.459 1.152 0.531 0.597 0.064
rnd_segs_500 2.796 1.085 1.428 0.480 0.657 0.374 0.373 0.266
rnd_segs_1000 9.678 3.872 4.953 1.787 2.348 1.425 1.318 0.991

sines_10 0.031 0.014 0.013 0.005 0.007 0.003 0.004 0.002
rnd_plns_20 0.518 0.245 0.389 0.075 0.215 0.059 N/A 0.037

Table 3 summarizes the benchmarks we conducted using different CGAL kernels for instantiating the segment-
traits and the polyline-traits classes. The first two columns correspond to the Cartesian<Gmpq> kernel and are
copied from Table 1. The next two columns correspond to the predefined filtered kernel described above. We also
give results for the lazy geometric kernel [38], an emerging CGAL kernel that uses novel filtering techniques; this ker-
nel is currently available only in the internal CGAL releases, but will probably replace the predefined filtered kernel
in the forthcoming CGAL release (Version 3.3). Finally, we give results obtained using machine-precision floating-
point arithmetic, as exercised by the Simple_cartesian<double> kernel. The minimized number of traits-class
invocations makes it possible to use floating-point arithmetic in many input scenarios and obtain topologically cor-
rect results. This was not feasible in previous versions. We also note that with non-degenerate inputs, using certified
computation incurs a running-time overhead of only 40% compared to the machine-precision arithmetic when using
aggregated construction, and an overhead of 75% when using incremental construction. Users can easily experiment
and select the best kernel suited for their applications, as switching between different kernels boils down to instantiat-
ing the Arr_segment_traits_2<Kernel> class-template with a different Kernel type.
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Fig. 8. Input files representing PCBs that contain generalized polygons: (a) the VLSI_1 input and (b) the VLSI_2 input. (Files in courtesy of
Maniabarco Inc.)

Table 4
Computing the union of generalized polygons and circles taken from VLSI models; V, E,
and F indicate the number of vertices, edges, and faces respectively

Input
file

Num. of
polygons

Num. of
circles

Union size Time
(sec).V E F

VLSI_1 2593 645 13130 13130 614 3.50
VLSI_2 22406 294 14698 14698 357 24.70

We finally give some results that demonstrate the industrial strength of the new arrangement package. Here we
use two VLSI models that represent printed circuit boards (PCBs), the components of which have been dilated by
a small radius; see Fig. 8 for an illustration. The models therefore contain a large number of generalized polygons
(representing dilated segments or dilated polygons) and circles (representing dilated points or dilated circles), where
the boundary of a general polygon comprises line segments and circular arcs. We have to compute the union of the
dilated components, and it is possible to do so in an aggregated manner, following the algorithm described in Section 3.
In this case we also perform a cleanup phase during which we remove each arrangement edge whose incident faces
are both contained in the union, in order to simplify the representation of the union. The result can be expressed as
a set of disjoint generalized polygons that contain holes. We use the Arr_circle_segment_2 traits class that is
capable of handling line segments and circular arcs in an exact manner; its operations are optimized and use arithmetic
filtering schemes, so it achieves very fast running times. The input size, the size of the union, and the running time for
the two VLSI models are given in Table 4.

8. Conclusions and future work

We have shown how careful software design, combined with a careful handling of the geometric and the topological
data-structures, yield a software package that is robust and complete, and at the same time efficient and easy to extend.
We have conducted a large set of benchmarks, some of them summarized in this paper, which prove the efficiency
of our package. The ability to extend and customize the arrangement package for the usage of various applications is
also demonstrated throughout the paper.

We continue the development of the arrangement package so that it also supports arrangements of unbounded
curves, which may induce planar subdivisions that contain several unbounded faces. This extended functionality will
be available in the forthcoming public release of CGAL (Version 3.3). In this release we also introduce new traits
classes that use certified computations for handling new families of curves—e.g., a traits class for planar Bézier
curves.

Another direction we intend to pursue is the representation of 3-dimensional structures using planar arrangement.
A significant progress has already been made in developing a CGAL package that computes the lower envelope of
a set of bounded surfaces using a divide-and-conquer approach. This package makes extensive use of most of the
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new features introduced in the two-dimensional arrangement package described in this paper in order to achieve an
efficient implementation of the algorithm [35].
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