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Abstract: Most microprocessors have resources that may become
bottlenecks for scheduling. If such a resource is explicitly referenced in
the instruction set architecture, anti-dependences between producer-
consumer instruction sequences in the data dependence graph (DDG)
derived from the original program order may result in unnecessary and

costly constraints on scheduling.

We describe a transformation of the data dependence graph which reorders
these producer-consumer instruction sequences in the DDG, shortening
the critical path, and therefore improving the potential schedule length, by

replacing the original anti-dependence arcs by less constraining ones.

This technique has been implemented as part of a compiler for a C-like
programming language for the GE11, and used to generate production
microcode for a special-purpose VLIW SIMD graphics processor used in
the geometry processing units of the Silicon Graphics IMPACT™ and
RealityEngine™ graphics subsystems®. It produced improvement in most

cases, ranging up to 2x speedups.
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1 Introduction

1.1 Motivation

It is common for a microprocessor architecture to include unique resources, even when
the architecture supports extensive instruction-level parallelism (/LP). When such

resources are referenced explicitly in the instruction set, written by one instruction and
read by a subsequent instruction, they can become a serious scheduling constraint. For

example, consider the C code fragment:

int i,j,k,1,m,n; i = (i+j)*k; 1 = m*n;

On the MIPS architecture, which writes multiply/divide results to dedicated registers

named hi/lo, straightforward compilation would produce the following code:

1) add <rt = ri+rj

2) mul hi,lo = rt*rk # implicit hi/lo results
3) mflo ri = lo # implicit lo operand

4) mul hi,lo = rm*rn # implicit hi/lo results
5) mflo rl = lo # implicit lo operand

Normal data dependence analysis will identify true input dependences in the instruction
sequences (1)->(2)->(3) and (4)->(5). In addition, since (3) reads 1o and (4) writes it
again, it will identify an anti-dependence (3)->(4), fully sequentializing the code. This is
not, however, an optimal dependence graph. Since the second multiply doesn’t depend
on an earlier add, a better DDG on a machine with ILP has arcs (4)->(5)->(2)->(3) and
(1)->(2). This is similar to the artificial scheduling constraints introduced by allocating
registers before scheduling, but the use of a unique dedicated resource prevents the use of
methods like later allocation or register renaming typically applied to that problem. We

will call such unique dedicated resources bottleneck resources.

The Silicon Graphics GE11 graphics processor has several such bottleneck resources,

making their effective scheduling both more difficult and more important. For instance,



memory loads and stores (to each of several banks of memory) all require staging the
data through specific staging registers. That is, storing a datum requires first writing it to
a staging register and then moving it to memory with a second instruction which provides

the address.
1.2 The GE11 Compiler

The work described in this paper is implemented in a compiler produced for the Silicon
Graphics GE11 graphics processor. As a custom-designed embedded processor, its
architecture is significantly different from any other processor designed before or since at
Silicon Graphics. Nevertheless, the compiler is intended to be very retargetable, based on
tables describing the target architecture. It was derived from a compiler for an earlier
Silicon Graphics microprocessor, and has now been retargeted to the GE11’s successor
graphics engine. The approach used is to provide a high-level substitute for assembly
language, which allows close control of machine features, while relieving the user of
responsibility for the complexities of code scheduling and register allocation. To this
end, it implements a C-like language with built-in names for the special architectural
registers, optional explicit allocation of variables to registers, and special control
constructs for handling the SIMD execute-under-mask capabilities. It does not perform
sophisticated global optimization. Effort is focused on a high-quality instruction
scheduler similar to that in the Cydrome compiler [DeTo093], and a global register

allocator.

The instruction scheduler works on an intermediate representation of the program which
consists of a flowgraph of basic blocks (BBs), each containing a sequence of operations,
i.e. an assembly-level operator with some number of operands and results. The operands
and results are Temporary Names (TNs), i.e. pseudo-registers. In cases where a particular
physical register must be used, a dedicated TN (DTN) associated with that register is
used. DTN usage may result from explicit references in the source code, or from
translating higher-level constructs to operation sequences which must use specific DTNs.

These DTN are the bottleneck resources with which we are concerned here.



Prior to scheduling, the compiler performs renaming of non-dedicated TNs and a variety
of local optimizations like copy propagation and dead code removal. It then builds a data
dependence graph (DDG, see [Towle76] and [KKPLWS81]) for each BB. This is the
structure manipulated by the algorithm described in this paper, and then processed by the
instruction scheduler. Although there are cross-BB interactions, we will assume in this

paper that a single basic block is being scheduled.

Bottleneck resources are a problem because they introduce anti-dependences into the
DDG which force suboptimal ordering of references to them during scheduling. Those
anti-dependence arcs in the DDG also make it easy to recognize potential problems, so
our solution is implemented after construction of the DDG. Ceritical path analysis of the
DDG also provides a means of evaluating the benefit of a transformation without full
scheduling: if a transformation decreases the length of the critical path through the block,
it is likely beneficial. We chose not to implement a solution in the scheduler proper,

preferring to keep it independent of program transformations and therefore simpler.
1.3 Previous Work

We are unaware of any published approach to this specific problem. The related problem
for non-dedicated registers has been widely approached by renaming live ranges prior to

scheduling to remove the problematic anti-dependences, e.g. in [DeTo093].

2 The Inversion Transformations

2.1 Preparation

The data dependence graph in the GE11 compiler consists of a node for each operation in
the BB, plus dummy START and STOP nodes. Each dependence between operations is
represented by an arc between the corresponding nodes, decorated with the latency
required to satisfy the dependence, and the kind of dependence. We will sometimes write

an arc as op;->op, where the tail of the arc, op;, must precede the head of the arc, op,, by



at least the latency decorating the arc. In addition to normal data dependences, other

constraints, such as the requirement that an operation be executed before or after a call or
other branch, are also represented by arcs in the DDG. Finally, the START node is made
a predecessor of all nodes with no other predecessors, and the STOP node a successor of

all nodes with no other successors.

References to bottleneck resource DTNs are identified, and divided into live ranges of the
DTN, i.e. all operations which either define the value of the DTN or use the value later.
Although this set normally contains one definition and one or more uses, the SIMD
features of the GE11 processor sometimes result in multiple definitions for a single live
range. We call this set of operations for a particular live range a cluster. An operation op
and a DTN n determine the associated cluster, which we denote cluster(op,tn). Further,
we denote the subsets of operations defining and using the DTN in a cluster C by
defSet(C,tn) and useSet(C,tn) respectively, or, if op is one of the operations in C, by
defSet(op,tn) and useSet(op,tn) respectively.

A cluster with definitions in predecessor BBs (i.e. the resource is live into the BB) must
be scheduled first, and a cluster with references in successor BBs (i.e. the resource is live
out of the BB) must be scheduled last. Clusters associated with volatile DTN (e.g.
output ports to the next processing stage in the GE11) are also excluded from reordering.

The other clusters may be reordered by our algorithm.

Critical path analysis is performed on the DDG by a straightforward algorithm. The
earliest start cycle (estart) for all nodes is initialized to zero. We repeatedly choose a
node N for which all predecessors in the DDG have been processed (starting with the
START node), and set the estart of each successor M to the maximum of
estart(N)+latency(N,M) and the previous value of estart(M). Once we have calculated
estart(STOP), we initialize the latest start cycle (/start) of all nodes to estart(STOP).
Finally, we repeatedly choose a node N for which all successors in the DDG have been
processed (starting with the STOP node), and set the Istart of each predecessor M to the
minimum of Istart(IN)-latency(M, N) and the previous value of Istart(M). This

calculation gives us a best-case estimate of the length of the BB’s schedule (i.e.



estart(STOP)), and identifies critical path operations as those for which estart(N) =
Istart(N).

In addition to the normal critical path analysis, we do a modified analysis to identify
candidates for transformation. All output and anti-dependence arcs associated with
bottleneck DTNs are identified, and those between clusters that might be reordered (i.e.
not live-in or live-out clusters) are ignored. Based on this modified DDG, new estart and

Istart functions are calculated, which we call ecycle and Icycle.
2.2 The potential Function

This modified DDG reflects scheduling constraints ignoring the artificial ones imposed
by the DTN anti-dependences. Intuitively, we expect the best schedule to result from an
ordering of the clusters which matches their order in this DDG. That is, if the defSet
operations of cluster, have later ecycles than those of cluster,;, and the useSet operations
of cluster, have later Icycles than those of cluster;, then we would expect the best
schedules to result from an anti-dependence arc from cluster, to cluster, rather than the
opposite. Therefore, we define a potential function which reflects this objective, and our

algorithm attempts to maximize its value on the DDG by reordering clusters.

Specifically, given an anti-dependence arc op,->op, associated with DTN 1, we define
potential(op,->op,) as follows. Let earlyDiff be the maximum over all dop, in
defSet(op,,tn) of ecycle(op,)-ecycle(dop,). Similarly, let lateDiff be the maximum over all
uop, in useSet(op,,tn) of lcycle(uop,)-lcycle(op;). Then we define the potential of the arc
by potential(op,->op,) = earlyDiff+lateDiff.

Given the potential function on arcs, we define the potential function on the full DDG G
as follows. Let arcSet be the set of all anti-dependence arcs associated with bottleneck
DTNs with head and tail in different clusters. Then potential(G) is the sum of

potential(arc) over all arc € arcSet.
2.3 Local Inversion

The primitive transformation of our algorithm, which we call local inversion, inverts the

order of two clusters in the DDG. More precisely, suppose we have a DTN #n, and an
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anti-dependence arc op;->op; associated with tn connecting operations op; in cluster C;
and op; in C,, where neither C; nor C; is required to be first or last in the BB. Then local
inversion of the arc op;->op, removes all anti-dependence arcs associated with ¢
between the clusters, and replaces them with arcs in the opposite direction, i.e. with anti-
dependence arcs from ops in useSet(C,,tn) to ops in defSet(Cy,tn). (As explained later,

we ignore output dependence arcs between clusters at this point.)

In accordance with the intuition described above, we expect a local inversion to be
beneficial if the new arcs have higher potential than the old arcs they replace, i.e. if

potential(G) is increased by the inversion.
2.4  Global Inversion

Unfortunately, the legality and benefit of a local inversion cannot always be evaluated in
isolation. The main problem is that an individual local inversion may introduce a cycle in
the DDG, because other dependences in the graph require the original ordering. Nor is it
simply a matter of performing the local inversions in the right order. It is possible to
have pairs of clusters for different DTNs which must be scheduled together (e.g. because
they share an operation), where two such pairs may be inverted but inverting just the

clusters for either of the DTNs yields a cyclic (and therefore unschedulable) DDG.

To solve this problem, we embed local inversion steps in a more comprehensive heuristic
called global inversion. After inverting a candidate arc op;->op,, global inversion checks
for introduced circularity by checking for a path from defSet(C),tn) back to useSet(C,,tn).
If such a path is found, it identifies the lowest-potential between-cluster anti-dependence
arc on the path that is not already the result of the current transformation, and inverts it.

This procedure is repeated until one of three things occurs:

e No circularity remains in the DDG, and the total change in potential of the local

inversions is positive. In this case, the transformation is applied.

e No further arcs remain as candidates for inversion, but circularity has not been

eliminated. In this case, the entire sequence of local inversions is abandoned.



e At some intermediate step, the total change in potential of the local inversions falls
below a threshold. We currently set the threshold to 0, but it could be negative to
allow trial sequences with unbeneficial intermediate steps. In this case too, the global

inversion is abandoned.
2.5 Optimization

We can now describe the full optimization process in terms of the above components. It
operates on an input DDG and a set of DTNs. A preparation phase removes output
dependence arcs between the DTNs (because they are not useful at this stage and can be
easily regenerated later), and adds new anti-dependence arcs between the DTN, filling

out the transitive closure of the initial set.

The optimization phase identifies the anti-dependence arcs which are candidates for
inversion, performs the modified critical path analysis ignoring them which is described
above, and calculates the potential of each of the candidate anti-dependence arcs. It then
repeatedly attempts global inversion on the lowest-potential candidate arc using a priority
queue, removing arcs attempted or removed by successful inversions, and adding new

arcs created by successful inversions, until the queue is empty.

Finally, the restoration phase inserts output dependence arcs between the clusters (based
on the new ordering), and removes the redundant anti-dependence arcs inserted during

preparation.

3 Conclusions

The optimization technique described in this paper is applicable to most architectures,
and is not target-specific except in the identification of the bottleneck resources to be
treated. It will be most useful for architectures with frequent use of such resources, and
for application areas where complex algebraic expressions provide extensive opportunity
for instruction level parallelism through instruction scheduling. Media processors and

their applications often match this profile quite well.

Our target application, geometry processing for a graphics subsystem, was an excellent

match, particularly because bottleneck resources were used for all memory references. In



this environment, we achieved at least a twofold speedup in most cases, and sometimes

much more, with a reasonable cost in compilation time.
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