ECG
IST-2000-26473
Effective Computational Geometry for Curves and Surfaces

EGE

ECG Technical Report No. : ECG-TR-361215-01

Testbed implementations of exact and approximate algorithms

Efraim Fogel Astrid Sturm

Deliverable: 36 12 15 (item 01)
Sites: TAU, FUB
Month: 36

Project funded by the European Community
under the “Information Society Technologies”
Programme (1998-2002)

Testbed implementations of exact and approximate algorithms*

Efraim Fogel! Astrid Sturm?

April , 2004

1 Introduction

This document describes a practical toolkit to evaluate the status of code. It can be used to create
programs that measure performance, known as benchmarks, and other various tests, execute them, and
analyze their results. With little efort a user of this toolkit can detect inefciencies, bottlenecks, and
loss of functionality or performance degradation, compare various techniques, algorithms, and diferent
implementations, and measure progress. A user, can then, present the results in a comprehensible way.
The information produced also includes the precise description of the execution environment to allow
the reproduction of the results.

The toolkit consists of three parts that corresponds to the three phases required to evaluate code; (1)
The creation of a hierarchy of test or benchmark programs, (2) the selective and controlled execution
of the programs with various input test cases, and (3) the analysis and proling of their results and the
conversion of the data into more meaningful and comprehensible presentations. The following Sections
describe the three parts in details.

It must be noted that our goal here is not to replace existing tools that already provide useful function-
ality for computational experiments (e.g., gnuplot, make, perl, python). Rather, the goal is to augment
this set with new tools that build on the functionality already available to provide a comfortable testin-
genvironment.

It’s worth mentioning the ExpLab tool set for Computational Experiments by Susan Hert, Lutz Kettner,
Tobias Polzin, and Guido Schéafer from the Max-Planck-Institut fiir Informatik. There seems to be little
overlap between ExpLab and our toolkit, but for most they emphasize diferent aspects.

The code is available from the web page
http://www.inf.fu-berlin.de/"rote/Software/Software-for-approximation-of-curves.html

*Partially supported by the IST Programme of the EU as a Shared-cost RTD (FET Open) Project under Contract No
IST-2000-26473 (ECG - Effective Computational Geometry for Curves and Surfaces)

tTel Aviv University,School of Computer Science, Schreiber building, Tel Aviv 69978, Israel. efif@post.tau.ac.il

Freie Universitit Berlin, Institut fiir Informatik, TakustraBe 9, D-14195 Berlin, Germany. sturm@inf.fu-berlin.de

2 Creation

The toolkit was developed as a package in CGAL, the Computational Geometry Algorithms and Data
Structures library. As a CGAL module on its own, it obliges to the Generic Programming Paradigm.
EF1 sAvs: (Add space after CGAL.) The first part consists of a couple of generic C++ classes, and the
interface between them and the user code to be evaluated.

The Bench_parse_args class is used to parse command line options, interpret them, and configure the
bench accordingly. The bench itself is performed through the () operator of the Bench class described
next.

The Bench class is parameterized with a model of the Benchable concept. This concept serves as the
interface between the measuring device and the operation you wish to measure, refereed as the target
operation here after. A model of this concept must satisfy a few requirements as follows. It must have
a default constructor, and it must provide four methods. The init () method can be used to initialize
some data members before the target operation is carried out. The clean() method is used to clean
those data members and residual data of the operation after the measure is completed. The sync()
method can be used to synchronize between the target operation and the time-sampling operations.
While these three methods must be provided, they can be empty. The op() method performs the
target operation. This operation is executed in a controlled loop according to various criteria explained
in the next paragraph.

If the estimated time-duration it takes to complete a single execution of the target operation is large
compared to the granularity of the timing device, it is suficient to execute the target operation a small
number of times between sampling the timing device, perhaps even once. You can set the number
of times the target operation is executed through the set_samples() interface method of the Bench
class. On the other hand, if the estimated time-duration of a single execution is of the same order as
the granularity of the timing device, increasing the number of executions increases the accuracy of the
measure. With the set_seconds() method of the Bench class, you can set the time slot in seconds
allocated for the measure. In this case the target operation is executed in a loop while the number
of executions is counted. When the time expires, the counter is sampled. Then, the target operation
is executed again for as many times as counted, while measuring the time it takes to complete the
sequence.

2.1 A simple Benchmark Program

The basic structure of a useful benchmark program can be very simple; Its tasks are to measure the
time it takes to complete a sequence of executions of the target operation, and present the results in
some useful manner.

Figure 2 contains a listing of a program that produces the results shown in figure 1

The () operator of the Bench class counts the number of times the function sqrt() can be executed
within the allocated time slot. Then, it executes the sqrt() function for as many times as counted,
while measuring the time it takes to complete the sequence.

Bench Bench Ops Total Single Num Ops
Name Time Num Ops Time Op Time Per Sec

Square root 1 14690512 1.0000 0.0000 14690512.0000

Figure 1: Square-root benchmark results.

By default the allocated time slot is 1 second. The program overrides the default with the number of
seconds returned by the get_seconds() method of the Bench_parse_args class. The default of the
later is 1 second as well, and can be overridden with the “-t seconds” command-line option.

3 Execution

This section lists the various command-line options a benchmark program may accepts, and it explains
how to create a hierarchy of programs and execute the programs in the hierarchy selectively using an
agent implemented in Perl.

Some pieces of the toolkits are dedicated to the development and maintenance of the CGAL planar map
modules. For example, some of the command-line options listed below directly control the behavior of
the planar-map benchmarks, other users may ignore them for the time being.

3.1 Command-Line Options

A program written with the aid of the Bench_parse_args class accepts the command-line options listed
below. The command-line options must be provided after the executable name and before an optional
name of an input file. A brief description is displayed on the console as a response to the “ -h” option.

-b options set bench options
type_-name=type
tn=type set bench type to type (default all).
type is one of:
i[ncrement] 0x1
a[ggregate] 0x2
d[isplay] 0x4
type_mask=mask
tm=mask set bench type mask to mask
strategy_name=strategy
sn=strategy set bench strategy to strategy (default all).
strategy is one of:
t[rapezoidal] 0x1
nfaive] 0x2
w(alk] 0x4
d[ummy] 0x8

#include <math.h>

#include <CGAL/Bench.h>

#include <CGAL/Bench.C>

#include <CGAL/Bench_parse_args.h>
#include <CGAL/Bench_parse_args.C>

class Bench_sqgrt {

private:
double n;

public:
Bench_sqrt() : n(M_PI) {}
int init(void) { return 0; }
void clean(void) {}
void sync(void) {}
void op(void) { sqrt(m); }

}s

int main(int argc, char * argv[])
{
CGAL: :Bench_parse_args parseArgs(argc, argv);
int rc = parseArgs.parse();
if (rc > 0) return O;
if (rc < 0) return rc;
CGAL: :Bench<Bench_sqrt> bench (, parseArgs.get_seconds());
bench();
return O;

Figure 2: Square-root benchmark

strategy_mask—=—mask

sm=mask set bench strategy mask to mask
h[eader]=bool print header (default true)
name_length=Ilength

nl=length set the length of the name field to length
-d dir add directory dir to list of search directories
-h print this help message
-i iters set number of iterations to iters (default 0)
-I options set input options

flormat]=format set format to format (default rat).
format is one of:

i[nt] integer
f[1t] floating point
r[at] rational
-r root set the $ROOT to root (default is the environment variable $R00T)
-s samples set number of samples to samples (default 10)
-t seconds set number of seconds to seconds (default 1)
-V toggle verbosity (default false)

3.1.1 Input

The sole input file, if provided, must appear after the last command-line option in the command line.
This file is searched for in a directory search-list. The initial list consists of the current directory followed
by $RO0T/data/Segments_2, $RO0T/data/Conics 2, and $RO0T/data/Polylines 2 in this order, where
$RO0T is initialized with the value of the environment variable $R00T, and possibly overridden using the
command line “-r root”

The “-d dir” command-line option inserts the directory dir at the end of the search list.

The get_input_format() method of the Bench_parse_args class returns the format provided by the
user through the “-I format=format”’ command line option, or “-I f=format” in short.

3.1.2 Ouwutput

The output produced by a single benchmark program exemplified in figure 1 is a text-based table easily
readable by humans. It consists of an optional header record and a data record. The production of the
header can be suppressed by the ”-b header=false” command-line option, or ”-b h=false” in short.
Occasionally a sequence of benchmarks are performed in a raw and the display of the header is desired
only once (or once per page). The print_results() function, which produces the output is virtual. The
user can start with the original function and change/add whatever he wants.

A original data record consists of the following fields:

Bench Name the name of the benchmark.

“-t seconds* option).

Bench Time the allocated time-slot for the entire benchmark in seconds (see
Ops Num the number of target operations performed within the time slot.

Total Ops Time the time required to perform the loop of operations consisting of Ops Num opera-
tions in seconds.

Single Op Time the average time required to perform a single operation in seconds.

Num Ops Per Second the number of operations completed per second.
For the approximation algorithms the data record got extended by:

Output Num the number of output elements produced by the target operation. For the polygonal
approximation this is the number of vertices of the approximating polygonal curve.

The Bench Name field identifies the benchmark for all purposes, its length is 32 characters by de-
fault. The length can overridden by the “-b name_length=Ilength” command-line option, or “-b
nl=length” in short.

Independent tools listed in section 4 parse log files that contain benchmark results, manipulate them,
analyze them, and perhaps convert them to other formats for artful presentations.

3.2 Execution of multiple benchmarks

The Perl script cgal_bench selectively executes multiple benchmarks ordered in a hierarchy. It executes
them in a sequence one at a time passing the appropriate command-line options and input data file
for each execution. It accepts a few command-line options on its own listed below, and reads an input
file that contains the hierarchy of the benchmarks along with necessary data required to execute them.
This information is represented in a simple language derived from the Extensible Markup Language
(XML).

3.2.1 Command-line options

-args args EF1 says: (Remove space before -args.) set additional arguments passed to the
benchmark programs.

-help print this help message.

-verbose level set verbose level to level (default 0).

-database file set database xml file to file (default $R00T/bench/data/benchDb.xml).

-filter name select bench name, and sub benches (default all).

A unique prefix is sufficient to indicate the desired option. For example, when the “-help” option is
specified, a brief description is displayed on the console, and the script quits immediately after. The
same behavior is achieved through the abbreviated “-hel”, “-he”, and “-h” options.

By default the script reads the file $R0O0T/bench/data/benchDb.xml. This can be overridden through
the “-database file” command-line option.

3.2.2 Documenting the Environment

The scripts automatically documents the environment in which it performs the benchmarks, so the
benchmark can be easily rerun (provided the same environment is still available) and the results can be
more accurately compared to the results of other benchmarks.

The scripts extract most of the information directly from the environment. Additional configuration
data that cannot be extracted directly from the environment is extracted from the database input file.
The script prints out its finding, and only then it starts performing the benchmarks. Here is an excerpt
from a sample run of cgal bench, showing the type of information extracted and printed out.

Mon Mar 31 20:29:02 2003

COMPILER NAME: gcc

COMPILER INFO: gcc (GCC) 3.2

Copyright (C) 2002 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

0S NAME: linux
0S INFO: Linux cgal 2.4.20-netl #1 SMP Wed Feb 5 13:05:52 IST 2003 i686 unknown

PROCESSOR: 0

CPU SPEED: 999.783 MHz

CPU TYPE: Pentium III (Coppermine)
PRIMARY DATA CACHE: 256 KB
SECONDARY DATA CACHE: O
INSTRUCTION CACHE: O

PROCESSOR: 1

CPU SPEED: 999.783 MHz

CPU TYPE: Pentium III (Coppermine)
PRIMARY DATA CACHE: 256 KB
SECONDARY DATA CACHE: O
INSTRUCTION CACHE: O

MEM SIZE: 2020 MBytes

GFX BOARD: unknown

CGAL VERSION: 2.5-I-81

LEDA VERSION: 441

QT VERSION: unknown

3.2.3 Input File Format

The representation of the input file is derived from XML. Its element tag-set consists of 4 predefined
element tags listed below. All other element tags that appear in an input file without exception are
names of executables that perform benchmarks.

The following is a list of the 4 elements with the 4 predefined tags respectively:

file specifies a file.
bench specifies a hierarchy of benchmarks.
clo specifies a command-line option.

class specifies a style-sheet class.

A file element specifies a data file provided as input to a benchmark. It may have the following
attributes:

name - the file name.

format - the number type.

curves - the number of curves.
vertices - the number of vertices.
halfedges - the number of halfedges.

faces - the number of faces.

The name attribute is mandatory, as it identifies the file for all purposes. The other attributes are
optional (as a matter of fact, the last 4 attributes are specific to the planar-map benchmarks.)

A clo element specifies a command-line option. It has the following two mandatory attributes:

name - the option name.

string - the option string.

The option name identifies the option for all purposes. The option string is the exact argument that
must appear in the command line for that option to take effect.

A bench element specifies a hierarchy of benchmarks. It can contain multiple file, clo, or class
elements, multiple elements that represent executables, and multiple nested bench elements. The file
attribute of a bench element, if present, specifies an input data file. The value of the file attribute is the
name of the input file (and the value of the name attributes of a file element). Each attribute of a bench
element that is neither file nor enable specifies a command-line option. The value of such an attribute
is the option variable-value or parameter. Command-line options are passed through inheritance in the
benchmark hierarchy, where an option parameter specified in a bench element overrides the parameter
specified higher in the hierarchy. The boolean attribute enable simply indicates whether the bench
element is enabled or disabled. Disabling a bench elemnt disables all it descendants and essentially
prunes the hierarchy tree. EFI sAys: (Changed the wordings of the last sentence.)

The tag of a benchmark element is the name of an executable that performs a benchmark. A benchmark
element, just like a bench element, may contain a file attribute to indicate an input data file, an EFI1
SAYS: (Changed a to an) enable attribute to enable or disable the benchmark, and multiple attributes,
each indicating the parameter of a command-line option.

A class element is used only while generating files for browsing (e.g., html, php, etc.).

Figure 3 lists a simple bench input-file that consists of three benchmarks, three corresponding input files,
and some command-line options that are used to execute the benchmarks. When this file is provided
as input to the cgal_bench script, the later parses the file, interprets its contents, and executes the
commands below in turn:

benchl -s 10 -bh=true -bnl=64 filel
bench2 -s 10 -bh=flase -bnl=64 file2
bench3 -s 10 -bh=flase -bnl=64 file3

<7xml version="1.0" encoding="IS0-8859-1"7>
<bench name_length="64" header="false">
<clo name="samples" string="-s"/>
<clo name="name_length" string="-bnl="/>
<clo name="header" string="-bh="/>
<clo name="format" string="-If="/>

<file name="filel" format="rat"/>
<file name="file2" format="rat'"/>
<file name="file3" format="rat"/>

<bench samples="10" enable="true'">
<benchl file="filel" header="true"/>
<bench2 file="file2"/>
<bench2 file="file3"/>
</bench>
</bench>

Figure 3: A simple database

4 Analysis

The scripts in this category are intended to analyse and profile results of benchmarks and convert
the resulting data into more meaningful and comprehensible presentations. They parse log files that
contain benchmark results, interpret the data, manipulate it, analyze it, and perhaps convert it into
other formats for artful presentations.

In principle they should be able to 1. add new fields to the predefined fields of a benchmark data-record.
This can be useful to perform mathematical operations on the data values, or to reformat the output

for pretty printing, 2. merge records, 3. sort the records, 4. filter out records, and 5. convert the data
into other formats.

As different applications have varying requirements for the result data presentation, converting the
textual results into other formats that support artful presentations, pretty printing, and browsing ca-
pabilities is left to the user. The bash command-line below can be used to record benchmark results
in separate log files in the ~/logs directory:

cgal_bench <flags> 2>&1 | tee ~“/logs/bcgal_‘date +/ykmAd%%LHAMAS . log

When these log files are sorted by name, which is typically the default, it is fairly easy to point at the
most recent log file.

10

5 Reference Guide

Concept Benchanble

Creation

Benchanble benchable;

Operations

v0id

A default constructor.

benchable.init(void)

this function is invoked once before the function that
tests the target operation is invoked. It is used to initial-
ize all the data members that are operands consumed by
the target operation. This allows for accurate measure
of the target-operation performance, through timing of
the function that performs the target operation.

EF1 sAvs: (Added 'the’ before target operation....)

v0id

v0id

benchable.clean(void)

benchable.op(void)

this function is invoked once after the function that tests
the target operation returns. It is used to clean up the
data members in general and the results in particular
produced by the target operation.

this function performs the target operation repeatedly
in loop constrained, either by a maximum number of
repetitions, or by by a limit on the time period alloted
for the target operation, depending on the bench con-
figuration.

11

void benchable.sync(void) this function synchronizes between the target operation
and the measure of its time consumption. It is called
once after initialization (before the starting time is sam-
pled), and once again after the target operation is per-
formed in a loop and before the ending time is sampled.
In many cases the sync function is empty, as there is no
need to synchronize anything. On the other hand, sup-
pose that the performance of a sequence of commands
in pipeline architecture is to be measured. In this case
the sync function can be used to flush the pipeline and
force all pending commands to complete before the end-
ing time is sampled. This situation manifests itself when
the performance of some openGl (see cite) commands is
to be measured. The sync function can be implemented
to call glFlush to cause all issued commands trapped
in intermediate buffers of the pipeline to be executed
as quickly as they are accepted by the actual rendering
engine before they are assumed to complete.

EF1 sAYS: Removed 'and’ and added parentheses.)

Class Bench

Definition

Bench is a utility class that performs the bench. The benchmark is configured during construction of
the Bench class or through some modifiers.

#include <CGAL/Bench.h>

Creation

»»

Bench bench(std::string name = 77, int seconds = 1, bool printHeader = true);

constructs an instance of the Bench class.

Modifiers
void bench.set_iterations(int iterations)
void bench.set_seconds(int seconds)

12

void bench.set_samples(int samples)

Query Functions

int bench.get_iterations()
int bench.get_seconds()
int bench.get_samples()
Benchable& bench.get_bench_user()
virtual void bench.print_results()
void bench ()

Class Bench_parse_args

Definition

#include <CGAL/Bench_parse_args.h>

Enumerations
Format_id
Type_id

Strategy_id

Creation

Bench_parse_args bench_parse_args(int arge, char * argv[]);

constructs an instance of the Bench_parse_args class.

Query Functions

unsigned int bench_parse_args.get_Type_mask()

13

unsigned int

bool

Format_id

nt

int

int

bool

int

const char*

const char*

const char*

const char*

EF1 says: Added Enumerations and changed Formatld, Typeld, and Strategyld to Format_id, Type_id, and <+—

Strategy_id

bench_parse_args.get_Strategy_mask()
bench_parse_args.get_verbose()
bench_parse_args.get_input_format()
bench_parse_args.get_samples()
bench_parse_args.get_iterations()
bench_parse_args.get_seconds()
bench_parse_args.get_print_header()
bench_parse_args.get_name_length()
bench_parse_args.get_filename()
bench_parse_args.get_fullname()
bench_parse_args.get_type_name(Type_id id)

bench_parse_args.get_strategy_name(Strategy_id id)

14

