ECG
IST-2000-26473
Effective Computational Geometry for Curves and Surfaces

ECG Technical Report No. : ECG-TR-361200-01

An Empirical Comparison of Software for Constructing

Arrangements of Curved Arcs
(preliminary version)

Sylvain Pion, Monique Teillaud Efraim Fogel, Dan Halperin, Ron Wein
Ioannis Emiris, Eric Berberich, Arno Eigenwillig,

Athanasios Kakargias, Michael Hemmer, Lutz Kettner, Kurt Mehlhorn,
Elias Tsigaridas Elmar Schomer, Nicola Wolpert

Deliverable: 36 12 00 (new, item 01)
Sites: INRIA, MPI, TAU
Month: 36

Project funded by the European Community
under the “Information Society Technologies”
Programme (1998-2002)

sociaty
technologies

An Empirical Comparison of Software for Constructing
Arrangements of Curved Arcs
(preliminary version) *

Efi Fogel, Dan Halperin, Ron Wein Monique Teillaud, Sylvain Pion
Tel Aviv University INRIA Sophia-Antipolis

Eric Berberich, Arno Eigenwillig, Michael Hemmer, Lutz Kettner,
Kurt Mehlhorn, Elmar Schémer, Nicola Wolpert
Max-Planck Institut fiir Informatik, Saarbriicken

Ioannis Emiris, Athanasios Kakargias, Elias Tsigaridas
National Kapodistrian University of Athens

April, 2004

Abstract

Arrangements of planar curves are fundamental structures in computational geometry.
Algorithms for computing such arrangements consist of a topological part and a geometric
part. For both parts different algorithmic approaches and implementations are possible.
In ECG, we further developed and implemented these approaches. We followed modern
software design and encapsulated our solutions into modules with well-defined and tight
interfaces. In particular, we can combine different realizations of the topological part (we
have two) with different realizations of the geometric part (we have three, which in turn
are parametrized by different implementations of the underlying number types). The imple-
mentations of the geometric part follow quite different designs. In this report, we provide
first comparisons of our different designs. In a later version of the report, we also plan to
compare implementations outside the ECG-project.

The report is preliminary and rises more questions than it answers. We consider it as
proof that our modular architecture is valuable and allows us to experiment and compare
different approaches. We also consider it as proof for the close cooperation within the
project.

1 Introduction

Given a set C of planar curves, the arrangement A(C) is the subdivision of the plane induced
by the curves in C into maximally connected cells of dimension 0 (vertices), 1 (edges), and 2
(faces). The separation between the topological and geometric aspects of the planar arrangement
software-package is advantageous, as it allows users to employ the package with their own special
type of curves, without having any expertise in computational geometry on one hand, and it
enables easier development of each module on the other. We take advantage of this separation to
profile different models of the combinatorial module with a fixed geometric model, and different
models of the geometric module with a fixed combinatorial model.

*Partially supported by the IST Programme of the EU as a Shared-cost RTD (FET Open) Project under
Contract No IST-2000-26473 (ECG - Effective Computational Geometry for Curves and Surfaces)

The study we describe here is in its very early stages. While we believe that the software
components we use and describe here are the state-of-the-art in the field of our interest, this is
the first time that all these different implementations are combined and compared in practice.
In addition, not all the implementations have reached the same level of maturity. The test cases
chosen exploit a common denominator of features proved to work properly on all implementa-
tions. The results of the study point at soft spots that are candidate for optimization, and are
intended to be used as a base ground for future progress-monitoring.

Background

A planar arrangement can be constructed incrementally by inserting the curves one at a time
into the arrangement data structures (in random order, when we also construct an efficient
point-location structure, supported by the CGAL arrangement package [9]. For details on the
CGAL arrangement package see [1, 9, 12, 13]).

However, for a large number of densely intersecting curves that form a cluttered arrangement
it is more efficient to use an aggregate insertion-method, that sweeps the plane in a fixed
direction (for example, left to right), and inserts the curves at once, known as a sweep-line
algorithm (see for example [3]). In section 3 we present the results of experiments that compare
two different implementations of sweep-line algorithms.

The geometric objects and the operations on these objects used by the (combinatorial)
sweep-line algorithms (and perhaps by other operations supported by the relevant arrangement
data-structure) is provided through a separate class referred to as traits, tailored to handle
a specific family of curves. It defines the abstract interface between arrangements and the
geometric primitives they use. In section 2 we present the results of experiments that compare
the efficiency of three different traits-classes, and some derivatives, designed to handle conic
arcs.

The comparative experiments reported in Section 2 and 3 are enabled by a continuing effort
along a period of over a year and a half during the ECG project to streamline the interface
of CGAL’s arrangement package between the topological and geometric parts, and minimize
the requirements of the traits class. In addition to intensive electronic discussions, we had two
meetings in INRIA in December 2002 and in Dagstuhl in March 2003 where we studied these
issues and developed the tight interface which is used here [10].

2 Comparison of Conic Traits by Experiments

We have conducted experiments to measure the performance of the construction of CGAL ar-
rangements of conic arcs with three different approaches to handle conic arcs. Each approach,
while implemented in its own context, provides a model of the traits concept of the CGAL ar-
rangement data-structure that serves as a traits class. Some of these traits classes are driven
by large software systems developed during the life cycle of the ECG project and beyond. The
three traits-classes are:

e CGAL conic traits
e Curved-kernel conic traits

e EXACUS conic traits

2.1 CgAL Conic Traits

The traits class provided with the CGAL distribution can handle any type of bounded conic arcs,
including full circles and ellipses and line segments, as lines can be viewed as degenerate conic
curves, see [18]. The most advanced version of the traits class relies heavily on the CORE library
for its algebraic infrastructure, see [14, 16]. It uses two number types: The CORE: :BigInt type
is used to represent the coefficients of the conic curves, and the CORE: :Expr type is used to
represent the coordinates of the arrangement vertices (which are roots of polynomials with
integer coefficients). The traits class also stores additional combinatorial information with its
geometric objects in order to filter out unnecessary expensive computations — a technique
named high-level filtering [18].

2.2 Curved-Kernel Conic Traits

Our ultimate goal is to provide a kernel with curved objects for CGAL [17, 6], following a design
similar to the current kernel which provides functionalities only for linear objects. One of the
first target applications of this work is the CGAL arrangement package, applied to circle and
conic arcs. In order to achieve this, we have written a thin layer between our kernel and the
CcAL arrangements, which provides the traits class requirements.

In our kernel, circles and circle arcs have specific types (they do not share the representation
of conic and conic arcs), which allows to benefit from a more memory efficient representation and
improved primitives requiring lower degree computations. Therefore, we actually provide two
traits classes for the CGAL arrangements : one for circle arcs, Circular _arc_traits, and one
for conic arcs, Conic_arc_traits (note however that the current preliminary implementation
of Conic_arc_traits only allows arcs of ellipses).

Concerning the representation, circles and conics are simply re-used from the current CGAL
kernel, they store the coefficients of their equations. For both cases, an arc is essentially stor-
ing its two endpoints, and endpoints are represented as two supporting curves, plus algebraic
numbers specifying their coordinates.

Algebraic numbers have a different type depending on their degrees (2 for circle arc end-
points, and up to 4 for conic arc endpoints). Let us describe more precisely how geometry
interacts with algebra in the two different cases of circular arcs and conic arcs.

Circular_arc_traits. The geometric primitives implemented in the curved kernel for circular
arcs rely on specialized methods for manipulations of algebraic numbers of degree 2 [4] (variants
would be possible [15]). The implementation is generic, so, it allows us to benefit from some
filtering at the arithmetic level when using a number type such as CGAL: :Lazy exact nt. But
it should be noticed that there is no filtering at the level of predicates and constructions in our
current implementation.

Conic_arc_traits. The underlying curved kernel for conic arcs is based on an algebraic kernel
that is responsible for providing algebraic primitives like polynomials (univariate and bivariate),
solve functions and comparisons of algebraic numbers of degree up to 4. This improves the
modularity of the code. Since the code is in a very preliminary stage, the interaction between
the geometric and the algebraic kernels is not optimal. Also, some caching techniques are
implemented at the algebraic level but not at the geometric level, which could improve the
performance.

At this point we have to say that the only existing model of algebraic kernel is based on the
SYNAPS library, and our current implementation of the algebraic numbers in SYNAPS 2.1 (using
methods described in [8, 7]) is not mature yet. In particular, it currently does not allow the

use of any arithmetic filtering technique but requires an exact multiprecision integral number
type. So, we observe a lack of efficiency. Last, but not least, we have to mention that is the first
attempt of interfacing CGAL with SYNAPS hence there are several implementation problems still
open. All of the above are first priorities for improvements in the near future.

2.3 Exacus Conic Traits

The EXACUS conic traits class is maintained by the Max-Planck-Institut fiir Informatik and pro-
vides the interface between curves in ExAcus! and their computation in CGAL
Planar map with intersections. EXACUS is a collection of Libraries for Efficient and Ex-
act Algorithms for Curves and Surfaces. It started in 2002 as contribution of the Algorithms
and Complexity Group (AG1) of the Max-Planck-Institute to the ECG project (Effective Com-
putational Geometry).

One important layer of software in Exacus is GAPS, which stands for Generic Algebraic
Points and Segments. It is used to represent points on and segments of general algebraic curves.
The implementation is complete, which means that we can handle all kind of degeneracies:
isolated points, vertical segments and/or overlapping segments, high-degree intersections or
several curves running through the same point. Furthermore, it is not restricted to the bounded
case. Endpoints of unbounded curves (for example of the hyperbola xy — 1 = 0) are handled
symbolically. To use GAPS one has to deliver the analysis of a pair of curves.

For conics this analysis is implemented in the module CONIX of EXAcus. It is based on the
SUPPORT and the mathematical NUMERIX library of EXACUS. As exact number types we can
choose at the moment between the LEDA and the GMP /CORE package.

The newest implementation of CONIX uses some ideas we developed for CUBIX [5] which
replaces our first implementation described in [2]. Compared to this former implementation we
gained an improvement on the running times of factor at least 10. And there are still ways
to improve these times, because filters are currently used rarely: All arithmetic computations
rely on the exact number types. Of course, we benefit from the internal filters of leda: :real
respectively CORE: :Expr. Furthermore, we use modular arithmetic to filter gcd-computations.
But in ConiX, there is no active floating point filter at all.

As input we allow complete conics: hyperbolas, ellipses, parabolas, (complex) line pairs and
also single lines as degenerate conics. Besides complete conics, we deliver an exact way to input
segments of conics, which do not need to be z-monotone and we also support the approximative
input format for conic arcs of the CGAL conic traits. Before sweeping, we have to split the input
into sweepable segments, which are either vertical or z-monotone, and always free of singular
points in its interior.

The actual traits class CGAL Pmwx_2 for GAPS traits used for the benchmarks simply calls
or recombines already existing functions and functors of GAPS. With that traits class ar-
rangements of curves in EXACUS (currently conics, cubics and projected intersection curves
of quadrics) can be computed with the help of CGAL Planar map with_intersections. Com-
pared to the EXACUS sweep_curves function of the module SWEEPX, the CGAL method enables
additionally point location and incremental construction.

2.4 Empirical Results

The results listed below were produced by experiments conducted on a Pentium PC clocked
at 1.8 GHz running Linux Fedora. The executables were compiled with GNU’s g++ compiler
version 3.3.2 to maximum performance. For the exact number types we used either number

Mttp://www.mpi-sb.mpg.de/projects/EXACUS/

types provided by LEDA 4.4.1, CORE 1.6x, or internal number types provided by CGAL 3.0.1.
We have restricted ourself to use only circles, ellipses, and combinations of these, as the curved-
kernel conic traits was unable to handle general conics at the time the experiments took place.

The first set consists of six test cases featuring circles and ellipses, but not combinations of
them, mostly in regular shapes and degenerate configurations, see Figure 1. Table 1 shows the
number of input curves, the number of vertices, halfedges and faces of the resulting arrange-
ment, and the running time in seconds it took to construct the arrangements by the various
executables.

Series Input Vert- | Half- Faces CGAL CK ExAcus
Name | Curves ices | edges LEDA | CoORE | Circle | Conic | LEDA | CORE
Box 41 507 | 2084 537 || 3.155 | 2.354 | 2.082 | 10.140 | 2.302 | 3.550
Circles 21 87 340 85 || 0.812 | 0.308 | 0.342 | 1.350 | 0.321 | 0.499
Rose 14 59 212 53 || 0.525 | 0.189 | 0.220 | 0.883 | 0.200 | 0.319
Random 30 424 | 1576 367 || 4.466 | 1.915 | 1.981 | 7.300 | 1.266 | 2.356
Circles
Tangent 9 44 184 50 || 0.799 | 0.278 - | 1.199 | 0.137 | 0.283
Ellipses
Random 20 221 808 185 || 1.318 | 18.510 -1 10.200 | 0.590 | 0.855
Ellipses

Table 1: Time consumption of the construction of arrangements induced by full circles and
ellipses.

The CGAL conic traits-class and the EXACUS conic traits-class come in two flavors. One is
based on the leda real number type offered by LEDA, and the other is based on the CORE: : Expr
number type offered by CORE. The CGAL conic traits-class based on CORE is a recent addition,
and the figures above reveal that there is still plenty of room for optimization when many ellipses
are present in the input.

The curved-kernel conic traits also comes in two flavors as specified above. One is dedicated
to circular arcs only and the other is designed to handle general conic arcs. The latter has not
been optimized yet to its full potential. In particular, the predicates and constructions are not
filtered at all. Recall that at the time the experiments took place it supported only circular and
ellipsoidal arcs.

The second set consists of three test cases featuring different numbers of full circles and
random full ellipses. Table 2 shows the same type of information as the previous table shows
for these test cases. The execution with the CGAL CORE-based traits was suppressed, as it did
not support this feature at the time these experiments took place.

We conclude with the running times of a carefully hand-constructed instance that consists
of circular arcs in degenerate positions. Table 3 lists the results and Figure 2 shows a screenshot
of the arrangement produced.

2.5 Conclusion and Remarks

While there are a few fluctuations that will have to be investigated, it seems that most of the
results can be reasoned. The EXACUS implementation is the most advanced, as it supports all
types of conic curves and conic arcs, and exhibits better stability, but the figures extracted from
executables produced from optimized code do lie in the same neighborhood, even though only the

Circles

Random circles

Tangent ellipses

Random ellipses

Figure 1: Snapshots of arrangements constructed by full circles and ellipses.

Series Input Vert- | Half- Faces CGAL CK Exacus
Name | Curves ices | edges LEDA Conic | LEDA | CORE
Rand 1 32 783 | 3078 758 || 8.300 | 57.630 | 2.770 | 5.390
Rand 2 48 | 1656 | 6516 | 1604 || 27.810 | 118.960 | 6.400 | 12.740
Rand 3 64 || 2866 | 11330 | 2801 || 46.820 | 211.530 | 12.210 | 23.180

Table 2: Time consumption of the construction of arrangements induced by combination of
circles and ellipses.

Series | Input Vert- | Half- F CaaL CK Exacus

Name | Curves ices | edges 4% "CEDA | CoRE | Circle | Conic | LEDA | CORE
Circular 40 211 808 195 || 2.146 | 1.157 | 0.959 | 5.220 | 1.083 | 1.518
Arcs

Table 3: Time consumption of the construction of arrangements induced by circular arcs.

CGAL conic trait-class was developed at the same site the arrangement framework was developed
at. This establishes the validity of each one of the approaches above, and provides certain
assurance regarding its worthwhileness. As our approaches rest on quite different algebraic
methods and hence are partially orthogonal to each other, we feel that substantial further
improvements should be possible by using several methods. This will be the subject of further
research. We remark that it is too early for combining the implementations as we do not know
yet which appraoch works best in which situation. More experimentation is needed to answer
this question.

In the course of these experiments we also realized that the different traits classes not
only differ in the algebraic techniques but also in the caching strategies deployed. Caching
is typically used to store the analysis of a single curve or of pairs of curves to avoid costly
recomputations, for example, when indeed all four intersection points of a pair of ellipses show
up in the arrangement. We propose to revise the benchmarks to compare the algebraic methods
without caching sideeffects. This can be done with the interface that the GAPS part of EXacus
provides, namely the analysis of pairs of curves, or some similar caching strategy integrated in
the CGAL arrangement software. An alternative can be to augment the current implementations
in their predicate levels and print a trace of all the predicate calls with their parameters.
Running conic arrangement bechmarks would then lead to application benchmark data for
the algebraic layer, and the different implementations can be compared on that layer ignoring
caching.

We are aware of the limitations and small number of test data sets used in the comparison so
far. We have test data for larger random data sets and for degenerate arrangements of ellipse,
i.e., several ellipses intersect in the same point or intersect tangentially. We also generated
a family of test data for arrangements of ellipses with increasing bitsize of the coefficients.
However, only EXACUS was able to handle these test instances. The other implementations
need further improvements before we can move to these interesting cases.

The experiments described above were generated, executed, and presented using a testing
and profiling toolkit described in details in [11]. The toolkit was employed to produce a handful
of results, out of which only the highlights are presented in this report in Tables 1, 2, and 3.
The complete sets of results along with some other data related to the experiments can be found
at http://www.cs.tau.ac.il/~efif/ECG/empirical _cmp.

Figure 2: Circular arcs in degenaret positions

3 Experimental Comparison of the Exacus and CGAL Sweep
Line Algorithms

We report on a few first experiments comparing the relative efficiency of the sweep line algo-
rithms for arrangement computation of CGAL’s publicly available
Planar map with_intersections (Pmwx) class (CGAL-3.0.1, member function
.insert (begin, end)) with the SoX: :sweep_curves() function of EXACUS (to be released in-
ternally with ECG-TR-361200-02) based on Exacus’ CubiX predicates for cubic curves (ECG-
TRs 182202-01 and 242107-01). This means we compare two different implementations of the
high-level (combinatorial) algorithm based on the same set of geometric predicates and opera-
tions. Unlike the rest of this report, our test instances in this section are sets of cubic curves,
not conics.

The experiments have been conducted on a Pentium IIIM clocked at 1.2 GHz running Linux
2.4 using executables that have been compiled with GNU’s g++ compiler (version 3.3.3, with
the flags -02 -DNDEBUG). We use LEDA 4.4.1 for the exact number types (mostly integer and
rational). The arrangement computations have been run from within CubiX’ graphical demo
program xcubi. To avoid potentially unfair influences of the slightly different interfaces, we
have avoided input data with overlapping segments, and we made SoX: :sweep_curves() call
Intersect_right_of 2 to compute intersections of segments one at a time (and not all at once,
as Intersect_2 would have done). One difference with respect to reordering segments persists
(see below).

The first series of benchmarks consists of random sets of n cubic curves. Each curve f is
defined by interpolation through 9 points chosen uniformly at random from a set of 9n random
points on the {—128,...,127}? integer grid. Every interpolation point results in a homogeneous
linear condition on the 10 unknown coefficients of f, so that generically 9 conditions determine
the equation of a curve uniquely, up to a constant factor. Before sweeping, each curve has to
be broken into sweepable segments, which are in particular xz-monotone.

Table 5 shows the size of the input data (number of sweepable segments), size of the resulting
arrangement (number of nodes and half-edges), and the running time in seconds (excluding
splitting, averaged over three runs). The average bit length of a curve’s longest coefficient is
about 100 bits for all instances.

Series Name Input Segments | Vertices | Halfedges || SoX | Pmwx
Curves

random 30 266 2933 11038 6.7 8.0

random 60 454 11417 44440 || 27.7 34.6

random 90 680 26579 104474 || 67.5 81.2

Table 4: Time consumption of sweeping random sets of cubic curves.

Profiling the executions on the “random 30”7 instance exhibits three clear differences in
the number of predicate invocations: First, Pmwx invokes compare right _of common point ()
~ 200 times as often as SoX. The dominant reason for this is certainly reordering by comparison
(Pmwx) as opposed to reordering by intersection multiplicities (SoX, see below). Furthermore,
Pmwx invokes the lexicographic comparison of points ~ 5 times as often (including indirect
calls through comparison operators) and y_order () ~ 10 times as often. The reason for this is
not evident at this point.

Secondly, we offer a benchmark to look at the effects of high-degree vertices with intersec-
tions of multiplicity higher than 1. Its data sets are obtained in a similar fashion, except that

1) There are only 32 interpolation points.

2) For each interpolation point p, we pick random values for slope m,, and curvature x,. When-
ever a curve f is interpolated through p, we make its slope equal to m,, (yielding one additional
linear condition) and, with probability 1/0.5, we also make its curvature equal to kp (yielding
another condition).

Now the intersections at interpolation points will have multiplicity 2 or 3 (due to prescribing
slope and maybe curvature) and involve many curves (due to the small number of interpola-
tion points). In principle, this setting favors the SoX::sweep_curves() function, because it
can reorder segments passing through a high-degree vertex in linear time based only on their
previous order and the intersection multiplicities of adjacent curves. However, as seen from the
numbers of nodes given below, most intersections still occur outside interpolation points and
will almost certainly involve only 2 curves and have multiplicity 1. So the relation of running
times is similar to the “rand” instances above. The overall slowdown in the “hdeg” instances is
due to the more costly curve pair analysis in degenerate cases, see Table 5.

Series Name Input Segments | Vertices | Halfedges || SoX | Pmwx
Curves

hdeg 30 254 2356 8816 | 12.9 14.9

hdeg 60 496 8068 31140 || 52.9 59.8

Table 5: Time consumption of sweeping sets of cubic curves that produce high degree intersec-
tion vertices of multiplicity higher than 1.

We conclude with the running time of a hand-constructed instance: a pencil of 18 curves
intersecting in five distinct points, in four of them with multiplicity 2, and nowhere else. A
screenshot of this instance is shown in Figure 3. Here SoX::sweep_curves() can exhibit the
full benefit of linear-time reordering. The timings are (in seconds): 1.7 for SoX, 4.3 for Pmwx.

Figure 3: A pencil of 18 curves intersecting with multiplicities 1 or 2, respectively, in 5 distinct
points.

Conclusion and Further Questions

What can we learn from these experiments? We can manufacture an example where the linear
time reordering really matters. The “hdeg” examples originally intended for this purpose show
instead that a small fraction of high degree nodes compared to the overall number of nodes,
1.4% and 0.4% respectively, does not matter much. Actually, just to the contrary, here the
Pmwx sweep is 13-16% slower, while for the “rand” instances it is 19-25% slower.

All experiments show an advantage for the SoX implementation, but then, this is the native
combination developed to work together. We took care not to use examples that would penalize
the Pmwx implementation with the interface mapping to the CubiX implementation (see dis-
cussion above), but it has to be said that this interface is still experimental, so that the figures
above do not allow a definitive judgment on the relative merits of the two implementations.

The slowdown in running time is smaller than the ratio of predicate invocations. For the
given set of predicates, this is not surprising in the light of caching: The refinement of isolating
intervals of z-coordinates means that redundant comparisons are decided at once from the
boundaries alone (and identity can be cached by merging equal representations). The caching
of curve pair analysis means that repeated evaluations of the same geometric predicate do not
cause repeated execution of costly symbolic computations. Then, the question why does the
Pmwx implementation make redundant calls in the first place remains.

References

[1] The CGAL project homepage. http://www.cgal.org/.

[2] E. Berberich, A. Eigenwillig, M. Hemmer, K. M. S. Hert, and E. Schémer. A computational
basis for conic arcs and boolean operations on conic polygons. In Proc. European Symp.
on Algorithms, pages 174-186. Springer, 2002. LNCS 2461, Berlin.

[3] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, Berlin, Germany, 2nd edition, 2000.

[4] O. Devillers, A. Fronville, B. Mourrain, and M. Teillaud. Algebraic methods and arithmetic
filtering for exact predicates on circle arcs. Comput. Geom. Theory Appl., 22:119-142, 2002.

[5] A. Eigenwillig, L. Kettner, E. Schomer, and N. Wolpert. Complete, exact and efficient
computations with cubic curves. In Proc. 20th Annu. ACM Sympos. Comput. Geom, 2004.

[6] 1. Z. Emiris, A. V. Kakargias, S. Pion, M. Teillaud, and E. P. Tsigaridas. Towards an open
curved kernel. In Proc. 20th Annu. ACM Sympos. Comput. Geom., 2004. to appear.

[7] I. Z. Emiris and E. P. Tsigaridas. Comparison of fourth-degree algebraic numbers and
applications to geometric predicates. Technical Report ECG-TR-302206-03, INRIA Sophia-
Antipolis, 2003.

[8] I. Z. Emiris and E. P. Tsigaridas. Methods to compare real roots of polynomials of small
degree. Technical Report ECG-TR-242200-01, INRIA Sophia-Antipolis, 2003.

[9] E. Flato, D. Halperin, I. Hanniel, O. Nechushtan, and E. Ezra. The design and imple-
mentation of planar maps in CGAL. ACM Journal of Experimental Algorithmics, 5, 2000.
Special Issue, selected papers of the Workshop on Algorithm Engineering (WAE).

10

[10]

E. Fogel, D. Halperin, R. Wein, M. Teillaud, E. Berberich, A. Eigenwillig, S. Hert, and
L. Kettner. Specification of the traits classes for cgal arrangements of curves. Technical
Report ECG-TR-241200-01, INRIA Sophia-Antipolis, 2003.

E. Fogel and A. Sturm. Testbed implementations of exact and approximate algorithm.
Technical Report ECG-TR-36121501-01, Freie Universitat Berlin, 2003.

E. Fogel, R. Wein, and D. Halperin. Code flexibility and program efficiency by genericity:
Improving CGAL’s arrangements. Menuscript, Tel-Aviv univ., 2004.

I. Hanniel and D. Halperin. Two-dimensional arrangements in CGAL and adaptive point
location for parametric curves. In Proc. of the 4th Workshop of Algorithm Engineering,
volume 1982 of Lecture Notes Comput. Sci., pages 171-182, Saarbriicken, 2000. Springer-
Verlag.

V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A core library for robust numeric and
geometric computation. In 15th ACM Symp. on Computational Geometry, 1999, pages
351-359, 1999.

M. I. Karavelas and I. Z. Emiris. Root comparison techniques applied to computing the ad-
ditively weighted Voronoi diagram. In Proc. 14th ACM-SIAM Sympos. Discrete Algorithms
(SODA), pages 320-329, 2003.

C. Li and C. Yap. A new constructive root bound for algebraic expressions. In 12th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 496-505, 2001.

S. Pion and M. Teillaud. Towards a cgal-like kernel for curves. Technical Report ECG-
TR-302206-01, MPI Saarbriicken, INRIA Sophia-Antipolis, 2003.

R. Wein. High-level filtering for arrangements of conic arcs. In Proc. ESA 2002, pages
884-895. Springer-Verlag, 2002.

11

