
Code Flexibility and Program Efficiency by

Genericity: Improving Cgal’s Arrangements⋆

Efi Fogel, Ron Wein, and Dan Halperin

School of Computer Science
Tel Aviv University

{efif,wein,danha}@post.tau.ac.il

Abstract. Arrangements of planar curves are fundamental structures
in computational geometry. We describe the recent developments in the
arrangement package of Cgal, the Computational Geometry Algorithms
Library, making it easier to use, to extend and to adapt to a variety of
applications. This improved flexibility of the code does not come at the
expense of efficiency as we mainly use generic-programming techniques,
which make dexterous use of the compilation process. To the contrary,
we expedited key operations as we demonstrate by experiments.

1 Introduction

Given a set C of planar curves, the arrangement A(C) is the subdivision of the
plane induced by the curves in C into maximally connected cells. The cells can
be 0-dimensional (vertices), 1-dimensional (edges) or 2-dimensional (faces). The
planar map of A(C) is the embedding of the arrangement as a planar graph,
such that each arrangement vertex corresponds to a planar point, and each
edge corresponds to a planar subcurve of one of the curves in C. Arrangements
and planar maps are ubiquitous in computational geometry, and have numerous
applications (see, e.g., [8, 15] for some examples), so many potential users in
academia and in the industry may benefit from a generic implementation of a
software package that constructs and maintains planar arrangements.

Cgal [1], the Computational Geometry Algorithms Library, is a software
library, which is the product of a collaborative effort of several sites in Europe
and Israel, aiming to provide a generic and robust, yet efficient, implementation
of widely used geometric data structures and algorithms. The library consists of
a geometric kernel [11, 18], that in turn consists of constant-size non-modifiable
geometric primitive objects (such as points, line segments, triangles etc.) and
predicates and operations on these objects. On top of the kernel layer, the li-
brary consists of a collection of modules, which provide implementations of many
fundamental geometric data structures and algorithms. The arrangement pack-
age is a part of this layer.

In the classic computational geometry literature two assumptions are usually
made to simplify the design and analysis of geometric algorithms: First, inputs
are in “general position”. That is, there are no degenerate cases (e.g., three

⋆

This work has been supported in part by the IST Programs of the EU as Shared-cost RTD (FET Open) Projects
under Contract No IST-2000-26473 (ECG — Effective Computational Geometry for Curves and Surfaces) and No
IST-2001-39250 (MOVIE — Motion Planning in Virtual Environments), by The Israel Science Foundation founded
by the Israel Academy of Sciences and Humanities (Center for Geometric Computing and its Applications), and
by the Hermann Minkowski–Minerva Center for Geometry at Tel Aviv University.



curves intersecting at a common point) in the input. Secondly, operations on
real numbers yield accurate results (the “real Ram” model, which also assumes
that each basic operation takes constant time). Unfortunately, these assumptions
do not hold in practice. Thus, an algorithm implemented from a textbook may
yield incorrect results, get into an infinite loop or just crash while running on a
degenerate, or nearly degenerate, input (see [25] for examples).

The need for robust software implementation of computational-geometry al-
gorithms has driven many researches to develop variants of the classic algorithms
that are less susceptible to degenerate inputs over the last decade. At the same
time, advances in computer algebra enabled the development of efficient soft-
ware libraries that offer exact arithmetic manipulations on unbounded integers,
rational numbers (Gmp — Gnu’s multi-precision library [5]) and even algebraic
numbers (the Core [2] library and the numerical facilities of Leda [6]). These
exact number types serve as fundamental building-blocks in the robust imple-
mentation of many geometric algorithms.

Keyser et al. [21] implemented an arrangement-construction module for alge-
braic curves as part of the Mapc library. However, their implementation makes
some general position assumptions. The Leda library [6] includes geometric
facilities that allow the construction and maintenance of planar maps of line
segments. Leda-based implementations of arrangements of conic curves and of
cubic curves were developed under the Exacus project [3].

Cgal’s arrangement package was the first generic software implementation,
designed for constructing arrangements of arbitrary planar curves and support-
ing operations and queries on such arrangements. More details on the design
and implementation of this package can be found in [12, 17]. In this paper we
summarize the recent efforts that have been put into the arrangement package
and show the improvements achieved: A software design relying on the generic-
programming paradigm that is more modular and easy to use, and an imple-
mentation which is more extensible, adaptable, and efficient.

The rest of this paper is organized as follows: Section 2 provides the required
background on Cgal’s arrangement package introducing its architecture key-
points, with a special attention to the traits concept. In Section 3 we demon-
strate the use of generic programming techniques to improve modularity and
flexibility or gain functionality that did not exist in the first place. In Section 4
we describe the principle of a meta-traits class and show how it considerably
simplifies the curve hierarchy of the arrangement (as introduced in [17]). We
present some experimental results in Section 5. Finally, concluding remarks and
future-research suggestions are given in Section 6.

2 Preliminaries

2.1 The Arrangement Module Architecture

The Planar map 2<Dcel,Traits>1 class-template represents the planar embed-
ding of a set of x-monotone planar curves that are pairwise disjoint in their inte-

1
Cgal prescribes the suffix 2 for all data structures of planar objects as a convention.



riors. It is derived from the Topological map class, which provides the necessary
combinatorial capabilities for maintaining the planar graph, while associating ge-
ometric data with the vertices, edges and faces of the graph. The planar map is
represented using a doubly-connected edge list (Dcel for short), a data structure
that enables efficient maintenance of two-dimensional subdivisions (see [8, 20]).

The Planar map 2 class-template should be instantiated with two parame-
ters. A Dcel class, which represents the underlying topological data structure,
and a traits class, which provides the geometric functionality, and is tailored to
handle a specific family of curves. It encapsulates implementation details, such
as the number type used, the coordinate representation and the geometric or
algebraic computation methods. The two template parameters enable the sepa-
ration between the topological and geometric aspects of the planar subdivision.
This separation is advantageous as it allows users to employ the package with
their own special type of curves, without having any expertise in computational
geometry. They should only be capable of supplying the traits methods, which
mainly involve algebraic computations. Indeed, several of the package users are
not familiar with computational-geometry techniques and algorithms.

The Planar map with intersections 2 class-template, should be instanti-
ated with a Planar map 2 class. It inherits from the planar-map class and ex-
tends its functionality by enabling insertion of intersecting and not necessarily
x-monotone curves. The main idea is to break each input curve into several
x-monotone subcurves, then treat each subcurve separately. Each subcurve is
in turn split at its intersection points with other curves. The result is a set of
x-monotone and pairwise disjoint subcurves that induce a planar subdivision,
equivalent to the arrangement of the original input curves [12]. An arrangement
of a set of curves can be constructed incrementally, inserting the curves one
by one, or aggregately, using a sweep-line algorithm (see, e.g., [8]). Once the
arrangement is constructed, point-location queries on it can be answered, using
different point-location strategies (see [12] for more details). Additional interface
functions that modify, traverse, and display the map are available as well.

The Arrangement 2 class-template allows the construction of a planar map
with intersections, while maintaining a hierarchy of curve history. At the top level
of the hierarchy stand the input curves. Each curve is subdivided into several
x-monotone subcurves, forming the second level of the hierarchy. As indicated
above, these x-monotone subcurves are further split such that there is no pair
of subcurves that intersect in their interior. These subcurves comprise the low
level of the curve hierarchy. See [17] for more details regarding the design of
the Arrangement 2 template. The curve hierarchy is essential in a variety of
applications that use arrangements. Robot motion planning is one example.

2.2 The Traits Class

As mentioned in the previous subsection, the Planar map 2 class template is pa-
rameterized with a traits class that defines the abstract interface between planar
maps and the geometric primitives they use. The name “traits” was given by



Myers [23] for a concept of a class that should support certain predefined meth-
ods, passed as a parameter to another class template. In our case, the geometric
traits-class defines the family of curves handled. Moreover, details such as the
number type used to represent coordinate values, the type of coordinate system
used (Cartesian, homogeneous, polar), the algebraic methods used and whether
extraneous data is stored with the geometric objects, are all determined by the
traits. A class that follows the geometric traits-class concept defines two types
of objects, namely X monotone curve 2 and Point 2. The former represents an
x-monotone curve, and the latter is the type of the endpoints of the curves,
representing a point in the plane. In addition, the concept lists a minimal set
of predicates on objects of these two types, sufficient to enable the operations
provided by the Planar map 2 class:

1. Compare two points by their x-coordinates only or lexicographically (by
their x and then by their y-coordinates).

2. Given an x-monotone curve C and a point p = (x0, y0) such that x0 is in the
x-range of C (namely x0 lies between the x-coordinates of C’s endpoints),
determine if p is above, below or lies on C.

3. Compare the y-values of two x-monotone curves C1, C2 at a given x-value
in the x-range of both curves.

4. Given two x-monotone curves C1, C2 and one of their intersection points p,
determine the relative positions of the two curves immediately to the right
of p, or immediately to the left of p.2

In order to support the construction of an arrangement of curves (more pre-
cisely, a Planar map with intersections 2) one should work with a refined
traits class. In addition to the requirements of the planar map traits concept,
it defines a third type that represents a general (not necessarily x-monotone)
curve in the plane, named Curve 2. An intersection point of the curves is of type
Point 2. It also lists a few more predicates and geometric constructions on the
three types as follows:

1. Given a curve C, subdivide it into simple x-monotone subcurves C1, . . . Ck.
2. Given two x-monotone curves C1, C2 and a point p, find the next intersection

point of the two curves that is lexicographically larger, or lexicographically
smaller, than p. In degenerate situations, determine the overlap between the
two curves.

We include several traits classes with the public distribution of Cgal: A
traits class for line segments; a traits class that operates on polylines, namely
continuous piecewise linear curves [16]; and a traits class that handles conic arcs
— segments of planar algebraic curves of degree 2 such as ellipses, hyperbolas
or parabolas [26]. There are other traits classes that were developed in other
sites [13] and are not part of the public distribution. Many users (see, e.g., [7,
10, 14, 19, 24]) have employed the arrangement package to develop a variety of
applications.

2 Notice that when we deal with curved objects the intersection point may also be a
tangency point, so the relative position of the curves to the right of p may be the
same as it was to its left.



3 Genericity — The Name of the Game

In this section we describe how we exploited several generic-programming tech-
niques to make our arrangement package more modular, extensible, adaptable,
and efficient. We have tightened the requirements from the traits concept, and
allowed for an alternative subset of requirements to be fulfilled using a tag-
dispatching mechanism, enabling easier development of external traits classes.
At the same time, we have also improved the performance of the built-in traits
classes and extended their usability through deeper template nesting.

3.1 Flexibility by Genericity

When constructing an arrangement using the sweep-line algorithm, we sweep
the input set of planar curves from left to right, so it is sufficient to find just the
next intersection point of a pair of curves to the right of a given reference point,
and to compare two curves to the right (and not to the left) of their intersection
point.3 It is therefore sufficient for our arrangement traits-class to provide just
a subset of the requirements listed in Section 2.2. However, even if one uses the
incremental construction algorithm, one may wish to implement a reduced set
of traits class methods in order to avoid code duplication.

We use a tag-dispatching mechanism (see [4] for more details) to select the
appropriate implementation that enables users to implement their traits class
with an alternative or even reduced set of member functions. The traits class
is in fact injected as a template parameter into a traits-class wrapper, which
also inherits from it. The wrapper serves as a mediator between the planar-map
general operations and the traits-class primitive operations. It uses the basic
set of methods provided by the base traits-class to implement a wider set of
methods, using tags to identify the missing or rather the existing basic methods.

The tag Has left category, for example, indicates whether the requirements
for the two methods below are satisfied:

1. Given two x-monotone curves C1, C2 and one of their intersection points p,
determine the relative positions of the two curves immediately to the left of
p.

2. Given two x-monotone curves C1, C2 and a point p, find the next intersection
point of the two curves that is lexicographically smaller than p.

The tag Has reflect category indicates whether an alternative requirement
is satisfied. That is, whether functions that reflect a point or a curve about the
major axes are provided. When the has-left tag is false and the reflect tag is
true, the next intersection point, or a comparison to the left of a reference point,
is computed with the aid of the alternative methods by reflecting the relevant

3 At first glance, it may seem that implementing the next intersection to the left
computation is a negligible effort once we implement the next intersection to the
right computation. However, for some sophisticated traits classes, such as the one
described in [9], it is a major endeavor.



objects, performing the desired operation to the right, and then reflecting the re-
sults back. This way the user is exempt from providing an implementation of the
“left” methods. If none of these methods are provided, we resort to (somewhat
less efficient) algorithms based just on the reduced set of provided methods: We
locate a new reference point to the left of the original point, and check what
happens to its right.

3.2 Efficiency by Genericity

In geometric computing there is a major difference between algorithms that eval-
uate predicates only, and algorithms that in addition construct new geometric
objects. A predicate typically computes the sign of an expression used by the
program control, while a constructor produces a new geometric object such as
the intersection point of two segments. If we use an exact number type to ensure
robustness, the newly constructed objects often have a more complex represen-
tation in comparison with the input objects (i.e. the bit-length needed for their
representation is often larger). Unless the overall algorithm is carefully designed
to deal with these new objects, constructions will have a severe impact on the
algorithm performance.

The Arr segment traits 2 class is templated with a geometric kernel object,
that conforms to the Cgal kernel-concept [18], and supplies all the data types,
predicates and constructions on linear objects. A natural candidate is Cgal’s
Cartesian kernel, which represents each segment using its two endpoints, while
each point is represented using two rational coordinates. This simple representa-
tion is very natural, yet it may lead to a cascaded representation of intersection
points with exponentially long bit-length (see Figure 1 for an illustration).4

To avoid this cascading problem, we introduced the Arr cached segment traits 2

class. This traits class is also templated by a geometric kernel, but uses its own
internal representation of a segment: In addition to the two endpoints it also
stores the coefficients of the underlying line. When a segment is split, the un-
derlying line of the two resulting sub-segments remains the same and only their
endpoints are updated. When we compute an intersection point of two segments,
we use the coefficients of the corresponding underlying lines and thus overcome
the undesired effect of cascading.

The cached segment traits-class achieves faster running times than the ker-
nel segment traits, when arrangements with relatively many intersection points
are constructed. It also allows for working with less accurate, yet computation-
ally efficient number types, such as Quotient<MP Float>5 (see Cgal’s manual
at [1]). On the other hand, it uses more space and stores extra data with each
segment, so constructing sparse arrangements could be more efficient with the

4 A straightforward solution would be to normalize all computations. However, our
experience shows that indiscriminate normalization considerably slows down the
arrangement construction.

5 MP Float represents floating-point numbers with an unbounded mantissa, but with
a bounded exponent. In some cases (see, e.g, Figure 1) the exponent may overflow.



kernel (non-cached) traits-class implementation. As our software is generic, users
can easily switch between the two traits classes and check which one is more suit-
able for their application by changing just a few lines of code. An experimental
comparison of the two types of segment traits-classes is presented in Section 5.

3.3 Succinctness by Genericity

0

1

1 2 3 4

4

3

2

[2]

[3]

[4]

[1]

(16
16
, 16

16
)

(6442450944
3221225472

, 6442450944

3221225472
)

(8.63692·10
67

2.87894·1067
, 8.63692·10

67

2.87894·1067
)

Fig. 1. Cascaded computation of the coordinates of
the intersection points in an arrangement of four seg-
ments. The order of insertion of the segments is indi-
cated in brackets. Notice the exponential growth of
the bitlengths of the intersection-point coordinates.

Polylines are of particular in-
terest, as they can be used
to approximate higher-degree
algebraic curves, and at the
same time they are easier to
deal with in comparison with
conics for example.6

Previous releases of Cgal

included a stand-alone poly-
line traits class. This class
represented a polyline as a list
of points and performed all
geometric operations on this
list (see [16] for more details).
We have recently rewritten
the polyline traits-class, mak-
ing it a class template named
Arr polyline traits 2, that
is parametrized with a
Segment traits, a traits class
appropriate for handling seg-
ments. The polyline is im-
plemented as a vector of
Segment traits::Curve 2 objects (namely of segments). The new polyline
traits-class does not perform any geometric operation directly. Instead, it re-
lies solely on the functionality of the segment traits. For example, when we wish
to determine the position of a point with respect to an x-monotone polyline, we
use binary search to locate the relevant segment that contains the point in its
x-range, then we compare the point to this segment. Operations on polylines of
size m therefore take O(logm) time.

Users are free to choose the underlying segment traits, giving them the abil-
ity to use the kernel (non-cached) segment traits or the cached segment traits,
depending on the number of expected intersection points. Moreover, it is possible
to instantiate the polyline traits template with a data traits-class that handles
segments with some additional data (see the next section). This makes it pos-
sible to associate some data with the entire polyline and possibly different data
with each of the segments of the set that comprises it.

6 With polylines it is sufficient to use an exact rational number type.



4 The Data Meta-Traits

Additional information can be maintained either by extending the vertex, half-
edge, or face types provided by the topological map through inheritance, or
alternatively by extending their geometric mappings — that is, the point and
curve types. The former option should be used to retain additional information
related to the planar-map topology, and is done by instantiating an appropriate
Dcel, which can be conveniently derived from the one provided with the Cgal

distribution. The latter option can be carried out by extending the geometric
types of the kernel, as the kernel is fully adaptable and extensible [18], but this
indiscriminating extension could lead to an undue space consumption. Extending
the curve type of the planar-map only is easy with the meta traits which we
describe next.

We define a simple yet powerful meta-traits class template called data traits.
The data traits-class is used to extend planar-map curve types with additional
data. It should be instantiated with a regular traits-class, referred to as the base
traits-class, and a class that contains all extraneous data associated with a curve.

template <class Base_traits, class Data>

class Arr_curve_data_traits_2 : public Base_traits {

public:

// (1) Type definitions.

// (2) Overridden functions.

};

The base traits-class must meet all the requirements detailed in Section 2.2
including the definition of the types Point 2, Curve 2, and X monotone curve 2.
The data traits-class redefines its Curve 2 and X monotone curve 2 types as de-
rived classes from the respective types in the base traits-class, with an additional
data field.
// (1) Type definitions:

typedef Base_traits::Curve_2 Base_curve_2;

typedef Base_traits::X_monotone_curve_2 Base_x_mon_curve_2;

typedef Base_traits::Point_2 Point_2;

class Curve_2 : public Base_curve_2 {

Data m_data; // Additional data.

public:

Curve_2 (const Base_curve_2& cv, const Data& dat);

const Data& get_data () const;

void set_data (const Data& data);

};

class X_monotone_curve_2 : public Base_x_mon_curve_2 {

Data m_data; // Additional data.

public:

X_monotone_curve_2 (const Base_x_mon_curve_2& cv, const Data& dat);

const Data& get_data () const;

void set_data (const Data& data);

};



The base traits-class must support all necessary predicates and geometric
constructions on curves of the specific family it handles. The data traits-class
inherits from the base traits-class all the geometric predicates and some of the
geometric constructions of point objects. It only has to override the two functions
that deal with constructions of x-monotone curves:

• It uses the Base traits::curve make x monotone() function to subdivide
the basic curve into basic x-monotone subcurves. It then constructs the
output subcurves by copying the data from the original curve to each of the
output x-monotone subcurves.

• Similarly, the Base traits::curve split() function is used to split an x-
monotone curve, then its data is copied to each of the two resulting sub-
curves.

// (2) Overridden functions:

template <class Output_iterator>

void curve_make_x_monotone (const Curve_2& cv,

Output_iterator& x_cvs) const;

void curve_split (const X_monotone_curve_2& cv, const Point_2& p,

X_monotone_curve_2& c1, X_monotone_curve_2& c2) const;

4.1 Constructing the Arrangement Hierarchy

Using the data traits-class with the appropriate parameters, it is simple to im-
plement the arrangement hierarchy (see Section 2.1) without any additional data
structures. Given a set of input curves, we construct a planar map that represents
their planar arrangement. Since we want to be able to identify the originating
input curve of each half-edge in the map, each subcurve we create is extended
with a pointer to the input curve it originated from, using the data-traits mech-
anism as follows: Suppose that we have a base traits-class that supplies all the
geometric methods needed to construct a planar arrangement of curves of some
specific kind (e.g., segments or conic arcs). We define a data traits-class in the
following form:
Arr_curve_data_traits_2<Base_traits, Base_traits::Curve_2 *> traits;

When constructing the arrangement, we keep all our base input-curves in
a container. Each curve we insert to the arrangement is then formed of a base
curve and a pointer to this base curve. Each time a subcurve is created, the
pointer to the base input-curve is copied, and can be easily retrieved later.

4.2 An Additional Example

Suppose that we are given a few sets of data for some country: A geographical
map of the country divided into regions, the national road and railroad network,
and the water routes. Roads, railroads, and rivers are represented as polylines
and have attributes (e.g., a name). We wish to obtain all crossroads and all
bridges in some region of this country.

Using the data traits we can give a straightforward solution to this problem.
Suppose that the class Polyline traits 2 supplies all the necessary geometric
type definition and methods for polylines, fulfilling the requirements of the traits
concept. We define the following classes:



struct My_data {

enum {ROAD, RAILROAD, RIVER} type;

std::string name;

};

Arr_curve_data_traits_2<Polyline_traits_2, My_data> traits;

Each curve consists of a base polyline-curve (e.g., a road, a river) and a name.
We construct the arrangement of all curves in our datasets overlayed on top of
the regional map. Then, we can simply go over all arrangement vertices located
in the desired region, and examine the half-edges around each vertex. If we find
only ROAD or RAILROAD half-edges around a vertex, we can conclude it represents
a crossroad. A vertex where half-edges of types ROAD (or RAILROAD) and RIVER

meet represents a bridge. In any case, we can easily retrieve the names of the
intersecting roads or rivers and present them as part of the output.

5 Experimental Results

As mentioned above, there are many ways to represent line segments in the plane.
In the first set of experiments we compared the performance of some represen-
tations. When the Cgal Cartesian kernel is used as the template parameter
of the traits class (Arr segment traits 2 for example), the user is still free
to choose among different number types. We conducted our experiments with
(i) Quotient<MP Float>, (ii) Quotient<Gmpz>, representing the numerator and
denominator as two unbounded integers, (iii) Gmpq, Gmp’s rational class, and
(iv) Leda rational, an efficient implementation of exact rationals. In addition,
we used an external geometric kernel, called Leda rational kernel [22], that uses
floating-point filtering to speed up computations.

We have tested each representation on ten input sets, containing 100–1000
random input segments, having a quadratic number of intersection points. The
results are summarized in Figure 2. The cached traits-class achieves better per-
formance for all tested configurations. Moreover, it is not possible to construct
an arrangement using the Quotient<MP Float> number type with the kernel
traits (see Section 3.2). For lack of space, we do not show experiments with
sparse arrangements.

It is worth mentioning that switching from one configuration to another
requires a change of just a few lines of code. In fact, we used a benchmarking
toolkit that automatically generates all the required configurations and measures
the performance of each configuration on a set of inputs.

Figure 3 shows the output of the algorithm presented in Section 4.2. The in-
put set, consisting of more than 900 polylines, represents major roads, railroads,
rivers and water-canals in the Netherlands. The arrangement construction takes
just a few milliseconds.

6 Conclusions and Future Work

We show how our arrangement package can be used with various components
and different underlying algorithms that can be plugged in using the appropriate
traits class. Users may select the configuration that is most suitable for their



Cartesian kernel with
leda_rational

200 300 400 600 700 800 900 1000100

100

150

200

250

50

500
Input segments

C
on

st
ru

ct
io

n 
ti

m
e 

(s
ec

.)

300

Cartesian kernel with

LEDA rational kernel

Gmpq

Cartesian kernel with
Quotient<Gmpz>

Cartesian kernel with
Quotient<MP_Float>

Cartesian kernel with
Quotient<Gmpz>

200 300 400 700 800 900 1000100

100

150

200

250

50

300

C
on

st
ru

ct
io

n 
ti

m
e 

(s
ec

.)

Input segments

Cartesian kernel with

Cartesian kernel with
leda_rational

LEDA rational kernel.

Gmpq

600500

(a) (b)

Fig. 2. Construction times for arrangements of random line segments: (a) Using the
kernel (non-cached) segment traits, (b) using the cached segment traits.

Fig. 3. Roads, railroads, rivers and wa-
ter canals on the map of the Netherlands.
Bridges are marked by circles.

application from the variety offered
in Cgal or in its accompanying soft-
ware libraries, or implement their own
traits class. Switching between differ-
ent traits classes typically involves just
a minor change of a few lines of code.

We have shown how careful soft-
ware design based on the generic-
programming paradigmmakes it easier
to adapt existing traits classes or even
to develop new ones. We believe that
similar techniques can be employed in
other software packages from other dis-
ciplines as well.

In the future we plan to augment
the polyline traits-class into a traits
class that handles piecewise general
curves that are not necessarily lin-
ear, and provide means to extend the
planar-map point geometric type in
similar ways the curve data-traits ex-
tends the curve type.

References

1. The Cgal project homepage. http://www.cgal.org/.
2. The Core library homepage. http://www.cs.nyu.edu/exact/core/.
3. The Exacus homepage. http://www.mpi-sb.mpg.de/projects/EXACUS/.
4. Generic programming techniques.

http://www.boost.org/more/generic programming.html.
5. The GNU MP bignum library. http://www.swox.com/gmp/.
6. The Leda homepage. http://www.algorithmic-solutions.com/enleda.htm.



7. D. Cohen-Or, S. Lev-Yehudi, A. Karol, and A. Tal. Inner-cover of non-convex
shapes. International Journal on Shape Modeling, 9(2):223–238, Dec 2003.

8. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany, 2nd
edition, 2000.

9. O. Devillers, A. Fronville, B. Mourrain, and M. Teillaud. Algebraic methods and
arithmetic filtering for exact predicates on circle arcs. Comput. Geom. Theory
Appl., 22(1–3):119–142, 2002.

10. D. A. Duc, N. D. Ha, and L. T. Hang. Proposing a model to store and a method
to edit spatial data in topological maps. Technical report, Ho Chi Minh University
of Natural Sciences, Ho Chi Minh City, Vietnam, 2001.

11. A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the design
of Cgal, the Computational Geometry Algorithms Library. Software — Practice
and Experience, 30:1167–1202, 2000.

12. E. Flato, D. Halperin, I. Hanniel, O. Nechushtan, and E. Ezra. The design and
implementation of planar maps in Cgal. The ACM Journal of Experimental Al-
gorithmics, 5, 2000. Also in LNCS Vol. 1668 (WAE ’99), pages 154–168.

13. E. Fogel et al. An empirical comparison of software for constructing arrangements
of curved arcs. Technical Report ECG-TR-361200-01, Tel-Aviv Univ., 2004.

14. B. Gerkey. Visibility-based pursuit-evasion for searchers with limited field of view.
Presented in the 2nd Cgal User Workshop (2004).

15. D. Halperin. Arrangements. In J. E. Goodman and J. O’Rourke, editors, Handbook
of Discrete and Computational Geometry, chapter 24, pages 529–562. Chapman &
Hall/CRC, 2nd edition, 2004.

16. I. Hanniel. The design and implementation of planar arrangements of curves in
Cgal. M.Sc. thesis, School of Computer Science, Tel Aviv University, 2000.

17. I. Hanniel and D. Halperin. Two-dimensional arrangements in Cgal and adaptive
point location for parametric curves. In LNCS Vol. 1982 (Proc. WAE ’00), pages
171–182. Springer-Verlag, 2000.

18. S. Hert, M. Hoffmann, L. Kettner, S. Pion, and M. Seel. An adaptable and ex-
tensible geometry kernel. In LNCS Vol. 2141 (Proc. WAE ’01), pages 79–90.
Springer-Verlag, 2001.

19. S. Hirsch and D. Halperin. Hybrid motion planning: Coordinating two discs moving
among polygonal obstacles in the plane. In J.-D. Boissonnat, J. Burdick, K. Gold-
berg, and S. Hutchinson, editors, Algorithmic Foundations of Robotics V, pages
239–255. Springer, 2003.

20. L. Kettner. Using generic programming for designing a data structure for polyhe-
dral surfaces. Comput. Geom. Theory Appl., 13:65–90, 1999.

21. J. Keyser, T. Culver, D. Manocha, and S. Krishnan. Mapc: a library for efficient
manipulation of algebraic points and curves. In Proc. 15th Annu. ACM Sympos.
Comput. Geom., pages 360–369, 1999. http://www.cs.unc.edu/∼geom/MAPC/.

22. K. Mehlhorn and S. Näher. Leda: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge, UK, 2000.

23. N. Myers. Traits: A new and useful template technique. C++ Gems, 17, 1995.
24. V. Rogol. Maximizing the area of an axially-symmetric polygon inscribed by a

simple polygon. Master’s thesis, Technion, Haifa, Israel, 2003.
25. S. Schirra. Robustness and precision issues in geometric computation. In J.-R.

Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 597–
632. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 1999.

26. R. Wein. High-level filtering for arrangements of conic arcs. In Proc. ESA 2002,
pages 884–895. Springer-Verlag, 2002.


