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ABSTRACT
We present an exact implementation of an efficient algorithm
that computes Minkowski sums of convex polyhedra in R

3.
Our implementation is complete in the sense that it does
not assume general position, namely, it can handle degen-
erate input, and produces exact results. Our software also
includes applications of the Minkowski-sum computation to
answer collision and proximity queries about the relative
placement of two convex polyhedra in R

3. The algorithms
use a dual representation of convex polyhedra, and their im-
plementation is mainly based on the Arrangement package
of Cgal, the Computational Geometry Algorithm Library.
We compare our Minkowski-sum construction with a näıve
approach that computes the convex hull of the pairwise sums
of vertices of two convex polyhedra. Our method is signifi-
cantly faster. The video demonstrates the techniques used
on simple cases as well as on degenerate cases. The relevant
programs, source code, data sets, and documentation are
available at http://www.cs.tau.ac.il/~efif/CD. In par-
ticular this site contains a detailed report [3] on our algo-
rithms and their implementation including the experimental
comparison with the convex-hull approach.
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1. INTRODUCTION
Let P andQ be two convex polyhedra in R

3. The Minkowski
sum of P and Q is the convex polyhedron M = P ⊕ Q =
{p + q | p ∈ P, q ∈ Q}. Minkowski sums are ubiquitous in
geometric computing and in particular they are useful for
answering collision and proximity queries; see, e.g., the re-
cent survey by Lin and Manocha [6].
We present an exact, complete, and robust implementa-

tion of an efficient algorithm to compute the Minkowski sum
of a set of convex polyhedra. We use the Minkowski sums
to detect collision, and compute the Euclidean separation
distance between, and the directional penetration-depth of,
two convex polyhedra in R

3; see the accompanying paper
[3] for more details. The algorithms use a dual representa-
tion of convex polyhedra, polytopes for short, named Cu-
bical Gaussian Map. They are implemented on top of the
Cgal library [1], and are mainly based on the Arrangement
package of the library [4], although other parts, such as the
Polyhedral-Surface package produced by L. Kettner [5], are
used as well. The results obtained by this implementation
are exact as long as the underlying number type supports
the arithmetic operations +, −, ∗, and / in unlimited pre-
cision over the rationals1, such as the rational number type
Gmpq provided by Gmp — Gnu’s Multi Precision library [2].
The implementation is complete and robust as it handles all
degenerate cases, and guarantees exact results.

2. THE CUBICAL GAUSSIAN MAP
The Gaussian Map G of a compact convex polyhedron

P in Euclidean three-dimensional space R
3 is a set-valued

function from P to the unit sphere S
2, which assigns to each

point p the set of outward unit normals to support planes to
P at p. Thus, the whole of a facet f of P is mapped under
G to a single point — the outward unit normal to f . An
edge e of P is mapped to a geodesic segment G(e) on S

2,
whose length is easily seen to be the exterior dihedral angle
at e. A vertex v of P is mapped by G to a spherical polygon
G(v), whose sides are the images under G of edges incident
to v and whose angles are the angles supplementary to the
planar angles of the facets incident to v; that is, G(e1) and
G(e2) meet at angle π−α whenever e1 and e2 meet at angle

1Commonly referred to as a field number type.
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α. In other words, G(P ) is combinatorially dual to P , and
metrically it is the unit sphere S

2.
An alternative and practical definition follows. A direc-

tion in R
3 can be represented by a point u ∈ S

2. Let P be
a polytope in R

3, and let V denote the set of its boundary
vertices. For a direction u, we define the extremal point in
direction u to be λV (u) = argmaxp∈V 〈u, p〉, where 〈·, ·〉 de-
notes the inner product. The decomposition of S

2 into max-
imal connected regions, so that the extremal point is the
same for all directions within any region forms the Gaussian
map of P .
Similarly, the Cubical Gaussian Map (CGM) C of a poly-

tope P in R
3 is a set-valued function from P to the six faces

of the unit cube whose edges are parallel to the major axes
and are of length two. The decomposition of the unit-cube
faces into maximal connected regions, so that the extremal
point is the same for all directions within any region forms
the CGM of P . Observe that, a single edge e of P is mapped
to a chain of at most three connected segments that lie in
three adjacent cube-faces respectively, and a vertex v of P
is mapped to at most five abutting convex polygons that lie
in five adjacent cube-faces respectively. Figure 1 shows the
CGM of a tetrahedron.

(a) (b) (c)

Figure 1: (a) A tetrahedron, (b) the CGM of the
tetrahedron, and (c) the CGM unfolded. Thick lines
indicate real edges.
Te CGM is unique up to the scaling of the polytope.

Therefore we extend each face of the CGM with the co-
ordinates of its dual (original) vertex.
While using the CGM increases the overhead of some op-

erations sixfold, and introduces degeneracies that are not
present in the case of alternative representations, it sim-
plifies the construction and manipulation of the represen-
tation, as the partition of each cube face is a planar map
of segments, a well known concept that has been intensively
experimented with in recent years. We use the Cgal planar-
map [4] data structure (which is part of the arrangement
package) to maintain the planar maps. The construction of
the six planar maps from the polytope features and their
incident relations amounts to the insertion of segments that
are pairwise disjoint in their interiors into the planar maps,
an operation that can be carried out efficiently, especially
when one or both endpoints are known, and we take ad-
vantage of it. Computing the Minkowski sum, which we
describe in the next section, amounts to the computation of
the overlay of six pairs of planar maps, an operation well
supported by the data structure as well.

3. EXACT MINKOWSKI SUMS OF
CONVEX POLYHEDRA

The overlay of two planar subdivisions S1 and S2 is a pla-
nar subdivision S such that there is a face f in S if and only
if there are faces f1 and f2 in S1 and S2 respectively such

that f is a maximal connected subset of f1∩f2. The overlay
of the Gaussian maps of two polytopes P and Q identifies
all the pairs of features of P and Q respectively that have
common supporting planes, as they occupy the same space
on the unit sphere, thus, identifying all the pairwise features
that contribute to the boundary of the Minkowski sum of P
and Q. A facet of the Minkowski sum is either a facet f of Q
translated by a vertex of P supported by a plane parallel to
f , or vice versa, or it is a facet parallel to two parallel planes
supporting an edge of P and an edge of Q respectively. A
vertex of the Minkowski sum is the sum of two vertices of P
and Q respectively supported by parallel planes. A similar
argument holds for the cubical Gaussian map with the unit
cube replacing the unit sphere. More precisely, a single map
that subdivides the unit sphere is replaced by six planar
maps, and the computation of a single overlay is replaced
by the computation of six overlays of corresponding pairs of
planar maps. A vertex is attached to each planar-map face,
which is the sum of two vertices attached to the two over-
lapping faces of the two CGMs of the two input polytopes
respectively.
The algorithm that we implemented is output-sensitive.

It runs in O((n+k) log n) time, where n is the total number
of faces of the input operands, and k is the number of faces
of the Minkowski sum. As we show in the accompanying pa-
per [3], the algorithm efficiently computes the sum of several
polytopes at once.
As mentioned above we use the Minkowski sum computa-

tion to answer a variety of collision detection and proximity
queries [3].
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