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Abstract
We consider (profit maximizing) mechanism design in general settings that include, e.g.,

position auctions (for selling advertisements on Internet search engines) and single-minded com-
binatorial auctions. We analyze optimal envy-free pricing in these settings and give economic
justification for using optimal envy-free revenue as a benchmark for prior-free mechanism design
and analysis. In addition to its economic justification, the envy-free revenue has a very simple
structure and a strong connection to incentive compatibility constraints in mechanism design.

As a first example of the connection between envy-free pricing and incentive compatible
mechanism design, because the structures of optimal pricings and optimal mechanisms are sim-
ilar, we give a reduction from structurally rich environments including position auctions (and
environments with a matroid structure) to multi-unit auction environments (i.e., auctioning k
identical units to n unit-demand agents). For instance, via this reduction we are able to ex-
tend all prior-free digital good auctions to position auctions with a factor of two of loss in the
approximation factor.

As a second example we extend a variant of the random sampling auction to downward
closed settings. To prove that its revenue (as an incentive compatible mechanism) is a good
approximation to the envy-free bechmark, we consider its envy-free revenue instead. The envy-
free revenue of a mechanism is closely tied to its incentive compatible revenue, but is much easier
to analyze because it is defined pointwise on valuation profiles. Our analysis shows that the
envy-free revenue of the random sampling auction is a constant approximation to the optimal.
Also, we show that its IC revenue is at least half of its envy-free revenue. The random sampling
auction, therefore, is a prior-free constant approximation in downward-closed environments.
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1 Introduction

Envy freedom, the constraint that no agent would prefer the fate of another to his own, has seen
extensive consideration in the recent algorithmic pricing literature where it generalizes the economic
consideration that prevents the sale of the same good at different prices. Incentive compatibility,
the solution concept that predicts that selfish agents will truthfully report their preferences if
each agent’s utility is optimized by truthful report, on the other hand, is the de facto standard
one in the extensive classic and current literature on mechanism design. Envy-free pricings have
been of interest because of their connection to prior-free optimal mechanism design [16], at least
in unlimited supply settings such as digital goods [13]. This paper extends this connection to
more general settings and supports the informal thesis: the revenue of envy-free pricings can be
approximated by incentive-compatible mechanisms.

As an example setting, consider position auctions environments, a popular model for advertising
auctions on Internet search engines. Such an environment is specified by n non-increasing click-
through weights w = (w1, . . . , wn) ∈ [0, 1]n with wi corresponding to the probability that the
searcher will click on an advertisement shown in position i. A mechanism makes a partial assignment
of n advertisers to these n positions. In position auction environments, the literature and practice
have predominantly considered reserve pricing as a means to boost the auctioneer’s revenue (e.g.,
with the Vickrey-Clarke-Groves (VCG) [25, 5, 15] mechanism or generalized second price (GSP)
auction [24, 9]). This approach is justified by the optimality of reserve pricing in benign settings
where revenues satisfy a natural regularity assumption which implies that reserve pricing is optimal.
For settings where there are several distinct kinds of agents, e.g., advertisers for zoos and cars both
competing for the keyword “jaguar,” reserve pricing, however, is not optimal in general.

The classical economic approach to revenue maximization in mechanism design assumes that
the agents values, e.g., value for a click in the position auction example, are drawn from a known
distribution. In such a Bayesian setting, the optimal mechanism is the one that maximizes expected
revenue, among all mechanisms, for the known distribution. For many reasons, a recent branch of
literature has been exploring prior-free optimal mechanism design, i.e., where the agent values are
worst case. There is no single optimal prior-free mechanism, so prior-free mechanism design looks
to find a mechanism that approximates the revenue of a reasonable benchmark for any profile of
agent values.

The prior-free environment that has received the most attention is that of digital goods auctions.
This is equivalent to the position auction setting described above with wi = 1 for all i, i.e., all
agents can be served. In this structurally benevolent setting, a natural and economically well
justified benchmark, “the optimal revenue from a posted price (with at least two winners),” can
be approximated by a prior-free mechanism, e.g., [14]. Notice first that such a benchmark is envy-
free: any agent can choose to accept the price and receive the item or not, therefore no agent is
envious of any other agent. Furthermore, in the Bayesian setting where the distribution of values is
known, a posted price is optimal. Therefore, in approximating this benchmark, a prior-free auction
simultaneously approximates the Bayesian optimal mechanism for any distribution.

A centerpiece of this paper is a generalization of the posted price benchmark (which is envy-free)
to structurally rich environments. We obtain the general benchmark by writing down the envy-
freedom constraints and solving for the envy-free optimal pricing. In position auction environments
such an envy-free optimal pricing can be described as a grouping of positions into bins with a price
on each bin and an assignment of agents to bins, such that each agent prefers a uniform random
position from her assigned bin at its price to a uniform random position from another bin at the
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other bin’s price.
In many relevant environments the optimal envy-free pricing, which is prior-free, gives an upper

bound on the revenue of the Bayesian optimal mechanism for any distribution. Such an upper
bound holds for position auctions and more generally for environments with a matroid feasibility
constraint. (It does not hold, for example, in non-downward-closed environments such as public
projects, i.e., we serve either all agents or none.)

The first example we give to showcase the importance of envy-freedom in incentive compatible
mechanism design is in a reduction that reduces position auction environments (and environments
given by matroid feasibility constraints) to simple multi-unit auction environments, i.e., selling k
identical units to n unit-demand agents (k ≤ n). E.g., from any multi-unit auction that is a prior-
free β-approximation to the envy-free benchmark, we can derive a position auction that gives a
β-approximation. Furthermore, from any β-approximation auction for digital good environments,
a 2β-approximation auction for multi-unit environments can be derived. Therefore, from each of
the many digital goods auctions discussed in the literature, we can derive a position auction with
at most twice the approximation factor.

The second example we give considers general downward-closed environments such as single-
minded combinatorial auctions. In single-minded combinatorial auctions, e.g., [20], there is a set
of items available and each agent has a private value for a known bundle of items. Essentially, it is
a weighted set packing problem. We consider an intermediary between the Bayesian setting, where
the agents’ values are drawn i.i.d. from a distribution, and the prior-free setting, where the agents’
values are worst case, by assuming that the agents’ values are randomly permuted with respect to
the desired bundles of items. In such a prior-free setting we show that a random sampling auction
approximates the optimal envy-free pricing benchmark. This result is made possible by a close
connection between the revenue in an incentive compatible mechanism and the revenue from the
pricing for which the outcome of the mechanism is envy-free. (Note: the envy-free payments and
the incentive compatible payments may generally be distinct.) For implication of this result and
background on revenue benchmarks, we refer the readers to Section C.

Overview We formally present the setting we consider and review the classical theory of Bayesian
optimal mechanism design in Section 2. We develop a parallel theory of optimal envy-free pricing
in Section 3. In section 4 we give a reduction from position auctions and matroid environments
to multi-unit auctions (and digital good environments). In Section 5 we formally relate payments
in an incentive compatible mechanism to payments in an envy-free pricing. Finally, in Section 6
we adapt the random sampling auction to general downward closed environments. Conclusions are
given in Section 7.

Related work This paper follows from a line of work that studies prior-free revenue properties of
the random sampling auction of [13]. The tightest analysis of the random sampling auction for
digital good settings is given by Alaei et al. [1]. For the limited supply version of this problem
(i.e., k-unit auctions), Hartline and Roughgarden [18] proposed a benchmark for prior-free analysis
that is derived from Bayesian optimal auctions. With this benchmark, Devanur and Hartline [7]
extended the analysis from [1] to limited supply settings. In this context, the present paper further
extends the benchmark of [18] and the analysis of [7] to settings with general downward-closed
feasibility constraints.

Our derivation of optimal envy-free pricings closely mirrors Myerson’s theory of Bayesian op-
timal auctions [22]. Connections between envy-free pricings and prior-free mechanism design have
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been made before, e.g., in [16, 3].
The paper most related to ours is Dhangwatnotai et al. [8], which shows that in Bayesian settings

when agents’ values are drawn i.i.d. from an unknown distribution, a mechanism based on a “single-
sample approach” gives an 8-approximation for downward-closed set systems and distributions that
satisfy a standard monotone hazard rate condition, and a 2-approximation for structurally nicer
matroid set systems and all distributions that satisfy a standard regularity condition. However, as
we show, a single-sample cannot give better than a logarithmic approximation for the fully general
distributional setting. In this context, we give a constant approximation for matroid settings and
general i.i.d. distributions on agent values. This is important as many distributions, e.g., bimodal,
do not satisfy the regularity condition required by [8].

2 Bayesian Optimal Mechanism Design (Briefly)

In this section we review Bayesian optimal mechanism design in a general downward-closed single-
dimensional environments. The agents’ preferences are drawn from a known distribution and the
designer’s goal is the mechanism with maximum expected profit (in equilibrium). The derivation
here is based on Myerson [22] and refinements by Bulow and Roberts [4].

There are n ≥ 2 agents. Each agent i has a valuation vi for receiving an abstract service.
The valuation profile is v = (v1, . . . , vn). The values are drawn independently and identically from
distribution F (assume the distribution is continuous with distribution function F (z) and density
function f(z)). An agent i who is served with probability xi and charged price pi obtains utility
ui = vixi − pi.

An allocation is the vector x = (x1, . . . , xn) ∈ [0, 1]n where xi is the probability that agent i
is served. The set of feasible allocations contains the origin, is convex, and is downward closed in
the sense that if x is feasible and x′ ≤ x (i.e., x′

i ≤ xi for all i), then x′ is feasible. Downward
closure implies, for instance, that the service provided to any agent can always be degraded without
affecting any other agents. These general environments include digital good auctions, multi-unit
auctions, position auctions, matroid environments, and single-minded combinatorial auctions.

A mechanism is specified by an allocation rule and a payment rule. The allocation rule
x(v) = (x1(v), . . . , xn(v)) maps a valuation profile to a feasible allocation. A payment rule
p(v) = (p1(v), . . . , pn(v)) maps a valuation profile to a non-negative payment for each agent.

An allocation and payment rule pair is (ex post) incentive compatible if no agent prefers the
outcome when misreporting her value to the outcome when reporting the truth. Formally,

∀i, z,v, vixi(v) − pi(v) ≥ vixi(z,v−i) − pi(z,v−i),

where (z,v−i) represents the valuation profile v with vi replaced with z. A payment rule is indi-
vidually rational if each agent’s utility is non-negative.

An allocation rule is value monotone if the probability that an agent is served is monotone
non-decreasing in her value, i.e., for all agents i, xi(z,v−i) is non-decreasing in z. The following
well-known theorem characterizes ex post IC mechanisms.

Theorem 2.1 [22] An allocation rule x admits a non-negative and individually rational payment
rule p such that (x,p) is incentive compatible if and only if x is value monotone, and the uniquely
determined payment rule is:

pi(v) = vixi(v) −

∫ vi

0
xi(z,v−i)dz =

∫ vi

0
zx′

i(z,v−i),

where x′
i(z,v−i) is the derivatives of xi(z,v−i) with respect to z.
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Revenue curves and virtual values are important and related constructs in optimal mechanism
design. Revenue curves correspond the revenue a seller can obtain from selling to a single agent as
a function of the probability of sale. The revenue curve for a single agent with value distributed
according to distribution function F is RF (q) = q ·F−1(1− q) which is explicitly a product between
the offer price, F−1(1 − q), and the probability of sale at that price, q. The ironed revenue curve

R̄
F
(q) is defined as the minimum concave function that upper-bounds RF (q). Intuitively, when

R̄(q) 6= R(q), the best way of selling with probability q is to offer a lottery pricing instead of
price F−1(1 − q). Virtual values and ironed virtual values are the derivative of the respective

revenue curves, but are specified in value space but not probability space, i.e., ΦF (v) = d RF (q)
dq

and

Φ̄F (v) = dR̄
F

(q)
dq

with q = 1 − F (v).1 Importantly, the concavity of ironed revenue curves implies
that ironed virtual valuation functions are monotone non-decreasing.

The importance of revenue curves and virtual values is summarized by the following theorem.

Theorem 2.2 [22] The non-negative and individually rational payment rule p for monotone allo-
cation rule x satisfies,

E[pi(z,v−i)] = E
[
ΦF (z)xi(z,v−i)

]
= E

[
RF (z)x′

i(z,v−i)
]
,

where the expectation is over a random draw of z from F , and x′
i(z,v−i) is the derivative of xi with

respect to z.

Thus, the search for the Bayesian optimal auction can be rephrased as a search for the allocation
rule that maximizes virtual surplus subject to monotonicity. Importantly, in the case that the
virtual valuation function is monotone non-decreasing, pointwise optimization of virtual surplus
results in a monotone allocation rule; therefore the optimal mechanism is simply the virtual surplus
maximizer. In the general case, the ironed virtual valuation function, by the concavity of the ironed
revenue curve, is monotone, therefore maximizing ironed virtual surplus always gives a monotone
allocation rule and furthermore, though we omit the details, this gives the optimal mechanism.

Definition 2.1 (ironed virtual surplus optimizer) For any feasibility constraint and ironed
virtual valuation function Φ̄(·), the ironed virtual surplus optimizer xΦ̄ chooses the allocation x that
maximizes total ironed virtual surplus,

∑
i Φ̄(vi)xi, subject to feasibility, with ties broken uniformly

at random.

Theorem 2.3 [22] When values are drawn from distribution F the optimal mechanism, ICOF , is
the ironed virtual surplus optimizer for Φ̄F with the appropriate payment rule.

3 Optimal Envy-free Pricing

In this section we derive a theory of optimal envy-free pricings in single-dimensional settings which
mirrors that of Bayesian optimal (incentive-compatible) mechanisms. Proofs of the theorems herein
are so similar to those in the optimal mechanism design literature that we defer them to Appendix A.
Whereas incentive compatibility constrains the mechanism so that no agent would want to misreport
her value, envy freedom constrains the outcome so that no agent would want to swap outcomes
with another agent.

This swapping of outcomes only makes sense in settings where the agents are a priori symmetric.
For general sets of feasible outcomes that are convex, downward-closed, and contain the origin, a

1Plug in the formula q = 1 − F (v) to derive the familiar ΦF (v) = v −

1−F (v)
f(v)

where f is the density function
corresponding to distribution F .
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natural way to symmetrize is by subjecting the agents’ roles in the set system to a uniform random
permutation. (This is a common intermediary between i.i.d. Bayesian settings and worst-case
settings, e.g., the secretary problem [2]) Of course, the resulting feasibility constraint is symmetric,
convex, downward-closed, and contains the origin.

An allocation x with payments p is envy free for valuation profile v if no agent prefers the
outcome of another agent to her own. Formally,

∀i, j, vixi − pi ≥ vixj − pj.

Importantly, envy constraints bind point-wise for x, p, and v. This contrasts sharply to IC con-
straints which constrain the functional form of the allocation rule, i.e., to be monotone.

We first characterize envy-free pricings. Notice that the maximum payment characterization
are very similar in form to the payment characterization of incentive-compatible mechanisms.

An allocation is swap monotone if the allocation probabilities have the same order as the valu-
ations of the agents.2 I.e., for all i, j, xi ≥ xj whenever vi ≥ vj . For convenience, our discussion of
envy-free pricing will assume the agents are in descending order, i.e., vi ≥ vi+1, and let vn+1 = 0.

Lemma 3.1 In symmetric settings, an allocation x admits a non-negative and individual rational
payment rule p such that (x,p) is envy-free if and only if x is swap monotone. If x is swap
monotone, then the maximum payments for x satisfy, for all i,

pi = vixi −
∑n

k=i+1
xk · (vk−1 − vk) =

∑n

k=i
(vk − vk+1) · (xi − xk+1).

Given a valuation profile v we denote the (empirical) revenue curve by Rv(i) = i · vi for i =
{1, . . . , n} (recall vi’s are indexed in decreasing order). For convenience we also let Rv(0) = Rv(n+
1) = 0. The ironed revenue curve, denoted R̄

v

(i), is the minimum concave function that upper-
bounds R. Likewise, define the (empirical) virtual valuation function Φv(v) = Rv(i)−Rv(i−1) and
the (empirical) ironed virtual valuation function Φ̄v(v) = R̄

v

(i)−R̄
v

(i−1), where i ∈ {1, . . . , n+1}
is such that v ∈ [vi, vi−1). (We set v0 = ∞ for notational convenience.) See Figure 1.

We now characterize the revenue of an envy-free pricing in terms of virtual values. Notice
that the revenue characterization is very close in spirit to Myerson’s characterization of revenue for
Bayesian incentive compatible mechanisms. One difference is that our characterization is on the
sum of all agent payments, whereas Myerson’s characterization is per-agent.

Lemma 3.2 The (maximum) envy-free revenue of a swap monotone allocation x satisfies:

EFx(v) =
∑n

i=1
Φv(vi)xi =

∑n

i=1
Rv(i)(xi − xi+1).

An implication of the characterization of maximum envy-free revenue as the (empirical) virtual
surplus suggests that to optimize revenue, the allocation rule should optimize virtual surplus subject
to swap monotonicity. In symmetric environments with monotone virtual valuation functions,
the maximization of virtual surplus results in a swap monotone allocation. In general symmstric
environments, the allocation that maximizes ironed virtual surplus is both swap monotone and
revenue optimal among all swap monotone allocations.

Allocation rules of focus for this paper are ironed virtual surplus optimizers. We will abuse
notation to let Φ̄v denote xΦ̄v

, the ironed virtual surplus optimizer with ironed virtual valuation
function defined according to v. For an allocation rule x(·), we let EFx(v) to denote EFx(v)(v).

Hence EFΦ̄v

(·) is the envy-free revenue from using ironed virtual surplus optimizer Φ̄v, etc.

2This is the single-dimensional special case of the “local efficiency” condition of Mu’alem [21].
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Figure 1: A depiction of the relationship between valuation profiles, revenue curves, and ironed
revenue curves. In particular, vi is equal to the slope of the line connecting (i,Rv(i)) with the
origin. Φ(i) is equal to the “left slope” of Rv(i) at i, i.e., the slope of the line segment connecting
(i − 1,Rv(i − 1)) with (i,Rv(i)). Similarly Φ̄(i) is the left slope R̄ at i, where R̄

v

is the minimum
concave function that upper-bounds of Rv.

Theorem 3.3 For all valuation profiles v, the ironed virtual surplus optimizer Φ̄v computes an al-
location that maximizes envy-free revenue among all swap-monotone allocations x. I.e., EFO(v) =

EFΦ̄v

(v) ≥ EFx(v) for all x.

This theorem is proved by a useful lemma that relates revenue to ironed virtual surplus.

Lemma 3.4 For any swap-monotone x on valuation profile v,

EFx(v) =
∑n

i=1
Rv(i) · (xi − xi+1) ≤

∑n

i=1
R̄(i) · (xi − xi+1) =

∑n

i=1
Φ̄(i) · xi,

with equality holding if and only if xi = xi+1 whenever R̄(i) > R(i).

4 Matroids, Position Auctions, and Multi-unit Auctions

In this section we consider matroid permutation environments, position auctions, and multi-unit
auctions. We show that for both incentive compatible mechanism design and envy-free pricing,
these environments are closely related. In fact, for both IC and EF, the optimal mechanisms are
the same and approximation mechanisms give the same approximation factor. In the interest of
brevity, we will focus on approximating the optimal EF revenue with a prior free mechanism. Our
solution to this will be by way of a two step reduction: we reduce matroid permutation environments
to position auctions, which we reduce to multi-unit auctions.

Briefly, matroid permutation environments are ones with a feasibility constraint derived from
the independent sets of a matroid set system. This matroid constraint is then randomly permuted
with respect to the roles the agents play. For the purpose of our discussion, a matroid is a set
system for which the greedy algorithm always selects the maximum feasible set of maximum value.
Position auctions are given by non-negative and non-increasing probabilities w1, . . . , wn normalized
with w1 = 1. The auction assigns the agents to positions. Multi-unit auctions assign k identical
items to n unit-demand agents. Multi-unit auctions are a special case of matroid environments, the
k-uniform matroid, and a special case of position auctions with wi = 1 for i ≤ k and zero otherwise.

The property of these three settings that enables this reduction is that (ironed virtual) surplus
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maximization is solved by the greedy algorithm (with ties broken randomly). Therefore the only
information needed to perform the surplus maximization is a partial order on the agents.

A position auction with weights w is related to matroid permutation settings with characteristic
weights w, which we define as the following:

Definition 4.1 In a matroid setting, choose any valuation profile v with all distinct values, assign
the agents to elements in the matroid via a random permutation, and then run the greedy algorithm
w.r.t. v. Then for each i, wi is the probability that agent i is serviced in this random process.

Note that the characteristic weights are well-defined because the outcome of the greedy algorithm
is fully determined by the relative ordering of the values.

4.1 Reductions

Here we show that the optimal IC mechanism and EF pricings in the three environments are
essentially the same. Then we give a reduction that can be applied to an approximately optimal
multi-unit auction to get an approximately optimal position auction, and then to the approximately
optimal position auction to get an approximately optimal matroid permutation mechanism. The
main challenge is in correctly reducing to approximation mechanisms that are not ironed virtual
surplus optimizers.

Lemma 4.1 Any ironed virtual surplus optimizer Φ̄ has the same allocation rule in the following
three settings:

1. a matroid permutation setting with characteristic weights w,
2. a position auction setting with weights w,
3. a convex combination of k-unit auction settings where we run a k-unit auction with probability

wk − wk+1 for k = 1, . . . , n.

Proof: Fix a tie-breaking rule, which induces an ordering on the agents. Then Φ̄ essentially
runs greedy on the agents with non-negative Φ̄ values according to this ordering. The j-th agent
with non-negative Φ̄ value in this ordering (1) gets allocated with probability wj in the matroid
permutation setting by definition of characteristic weights, (2) gets assigned to position j in the
position auction and hence gets allocated with probability wj , and, (3) gets allocated in k-unit
auction for each k ≥ j, and hence has probability

∑
k≥j(wk − wk+1) = wj of being serviced in the

convex combination setting. Taking expectation over all tie-breaking orders, agent i has the same
probability of being serviced in the three settings. 2

In particular, by plugging in Φ̄v into Lemma 4.1, the empirical ironed virtual surplus optimizer,
as a corollary, the optimal envy-free revenue for the three settings are equal.

Lemma 4.2 (1) Given allocation rules xk’s for k-unit auctions, for k = 1 . . . n, we can construct
an allocation rule for position auction with weights w such that xP (v) =

∑n
k=1(wk −wk+1) · x

k(v)
for all v.

(2) Given an allocation rule xP for position auctions with weights w, we can construct an
allocation rule xM for any matroid permutation setting with characteristic weights w such that
xP (v) = xM (v) for all v.

Proof: To prove (1), we simulate a j-unit auction using xk on the input v for each j and let

x
(j)
i be the probability that agent i is allocated in simulation j. Let xi =

∑
j x

(j)
i (wj − wj+1) be

the expected allocation to j in the convex combination setting. Reindex x in non-increasing order.
Then w majorizes x in the sense that

∑k
i wi ≥

∑k
i xi, with equality holds for k = m. Therefore by

a theorem of Rado [23] we can write x = S ·w where S is a doubly stochastic matrix. Any doubly
stochastic matrix is a convex combination of permutation matrices, so we can write S = sumtrtPt
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where
∑

t rt = 1 and each Pt is a permutation matrix (Birkhoff–von Neumann Theorem). Finally,
we pick a t with probability rt and assign the agents to positions in the permutation specified by
Pt. The resulting allocation is exactly the desired xP .

To prove (2), first, we run xP and let j be the assignment where ji is the position assigned
to agent i, or ji = ⊥ if i is not assigned a slot. Reject all agents i with ji = ⊥. Now run the
greedy matroid algorithm in the matroid permutation setting on an arbitrary valuation profile with
distinct values and output its outcome. 2

There are two important caveats that we will address when instantiating this reduction. First, as
we are discussing incentive compatibility in the matroid permutation environments, it is important
that the agents do not know their assignment to roles in the set system. If an agent does know their
role in the set system, the generic reduction is not generally incentive compatible. It is however
incentive compatible in the special case where the mechanism is an ironed virtual surplus optimizer.
Second, we have assumed that in going from matroid permutation environments to position auctions
that the characteristic weights were known. These may be challenging to compute exactly, making
it difficulty to apply the reduction. However, in the case of ironed virtual surplus optimizers, the
weights do not need to be computed as the partial ordering by the ironed virtual valuation functions
specifies the order in which to consider agents in the matroid permutation environment.

4.2 Applying the Reduction

The above reduction allows us to extend all of the mechanisms for multi-unit auction, e.g., the digital
goods literature, to position auctions and matroid permutation settings. We give two examples.

The optimal envy-free revenue upper-bounds the IC revenue of any ironed virtual surplus opti-
mizer (see Lemma 5.2 in the Section 5). As these are precisely the mechanisms that are optimal in
Bayesian settings, a prior-free mechanism that approximates the optimal envy-free revenue on all
valuation profiles simultaneously approximates the Bayesian optimal revenue in the case the values
are drawn from a distribution. This suggests that EFO(v) would be a good benchmark for prior-
free approximation mechanisms, for more discussion, see [18]. For technical reasons we attempt to
approximate EFO(2)(v) = EFO(v(2)) with v(2) = (v2, v2, v3, . . . , vn) (see [14] for discussion).

For k-unit settings, the prior-free digital good auction literature gives approximations to the
benchmark F (2)(v) = max2≤i≤k ivi. This benchmark is a 2-approximation to EFO(v(2)) [7]; there-
fore a β-approximation to F (2) implies a 2β-approximation to EFO(2). A mechanism of McGrew
and Hartline [17] is a 3.25-approximation to F (2), and hence a 6.5-approximation to EFO(2). By
the above reduction this mechanism can be used to give the same approximation to EFO(2).

Theorem 4.3 There is an IC mechanism M for position auctions such that ICM(v) ≥ 1
6.5 ·

EFO(v(2)) for all v. There is an IC mechanism M for matroid permutation settings such that
ICM(v) ≥ 1

6.5 · EFO(v(2)) for all v.

The Hartline-McGrew mechanism is not an ironed virtual surplus optimizer and as suggested
by the discussion above (a) the induced matroid permutation mechanism is only IC if the agents
do not know their roles in the set system, and (b) the characteristic weights may be difficult to
compute. To address these deficiencies, consider the following mechanism.

Definition 4.2 (RSEM) The Random Sampling Empirical Myerson (RSEM) mechanism ran-
domly partitions the population of agents N into a market M and a sample S, i.e., each agent is
in S independently with probability 0.5. It then uses the ironed virtual surplus optimizer for the
sample, Φ̄vS or simply denoted by Φ̄S, to choose a set W ⊆ M of agents from the market that
maximizes the total Φ̄S value, and then allocate to this set W .

8



For k-unit auction settings, the IC revenue of RSEM is a 50-approximation to EFO(v(2)), for
all v (this is a corollary of the main theorem from [7]). Condition on a partitioning (S,M) of the
agents, RSEM can be seen as applying the ironed virtual surplus optimizer Φ̄S to the valuation
profile (vM ,0S) where agents in S are set to have zero value. By Lemma 4.1, the resulting allocation
of RSEM for matroid is equivalent to a convex combination of the allocations in the k-unit auction
settings, with multiplicative weights (wk − wk+1)’s. As a result, by summing over all random
partitioning, the IC revenue of RSEM for matroids is a convex combination of the IC revenue of
RSEM for k-unit auctions. On the other hand, the EFO revenue on v(2) of the matroid setting is
also equal to the convex combination of the EFO revenue on v(2) in the k-unit auctions with the
same multiplicative weights. It follows that the revenue guarantee of RSEM for k-unit auctions
extend to matroid permutation settings as well.

Theorem 4.4 For matroid permutation settings, ICRSEM(v) ≥ 1
50 · EFO(v(2)) for all v.

5 Incentive Compatibility versus Envy Freedom

In this section we compare envy-free revenue to incentive-compatible revenue for ironed virtual
surplus optimizers in the permutation setting, where agents are assigned to roles in the set system
via a random permutation. Here we assume that agents’ values are ordered, i.e., vi ≥ vi+1. For a
mechanism M, we let ICM(v) denote the IC revenue from running M over v.

First we lower bound IC revenue by half of the maximum envy-free revenue under a technical
condition. In the following we use ICΦ̄

i (v) and EFΦ̄
i (v) to denote the IC and EF revenue from agent

i by applying the ironed virtual surplus maximizer Φ̄, respectively.

Figure 2: Depiction of EF allocation and IC allocation rule from which the payments for agent i are
computed. The EF allocation curve maps each value in [vj+1, vj) to xj+1(v), and the IC allocation
curve maps each z to xi(z,v−i).

Lemma 5.1 For downward-closed permutation settings, all valuations v, and all piece-wise con-
stant ironed virtual valuation functions Φ̄, if for every maximal interval [l, r) such that Φ̄(t) is

constant for t ∈ [l, r), there is an agent i such that vi = l, then for all i, ICΦ̄
i (v) ≥ 1

2 EFΦ̄
i (v).

Proof: Let x(·) denote the allocation rule of the ironed virtual surplus optimizer Φ̄. By the
assumption of the lemma, for all j, Φ̄(z) is constant for all z ∈ [vj+1, vj), and hence the IC
allocation rule in fact maps each z ∈ [vj+1, vj) to xi(vj+1,v−i).

By Lemma 2.1, ICΦ̄
i (v) is equal to

∑n
j=i(vj − vj+1) · (xi(v) − xi(vj+1,v−i)) which, referring

to Figure 2, equals the area above the IC curve and below the horizontal dotted line. On the
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other hand, EFΦ̄
i (v) is equal to

∑n
j=i(vj − vj+1) · (xi(v) − xj+1(v)), which similarly corresponds

to the area above the EF curve and below the horizontal dotted line. It suffices to prove that:
xi(v) − xi(vj+1,v−i) ≥

1
2 · (xi(v) − xj+1(v)), or equivalently, xi(v) + xj+1(v) ≥ 2 · xi(vj+1,v−i) =

2 · xi(vj+1,v−j+1). This says that the total winning probability of agent i and j + 1 can only
decrease if agent i lowers her bid to vj+1, which can be easily verified for ironed virtual surplus
optimizers. 2

In matroid permutation settings, envy-free revenue upper-bounds incentive-compatible revenue.

Lemma 5.2 For matroid permutation settings, all valuations v, and all ironed virtual valuation
functions Φ̄, for all agent i, EFΦ̄

i (v) ≥ ICΦ̄
i (v).

Proof: Recall that EFΦ̄
i (v) is equal to

∑n
j=i(vj − vj+1) · (xi(v) − xj+1(v)), and ICΦ̄

i (v) is equal

to
∫ vi

0 (xi(v) − xi(z,v−i))dz. By the monotonicity of xi(z,v−i) in z, ICΦ̄
i (v) is upper-bounded by∑n

j=i(vj − vj+1) · (xi(v) − xi(vj+1,v−i)). Also note that xi(vj+1,v−i) = xj+1(vj+1,v−i) because
agent i and agent j + 1 have the same value. It suffices to prove xj+1(v) ≤ xj+1(vj+1,v−i). This
says that agent j + 1 is more likely to win if agent i decreases her bid to vj+1, which is true for the
greedy-based ironed virtual surplus optimizers in matroids. 2

6 Downward-closed Permutation Settings

For downward-closed permutation settings, the maximum envy-free revenue may not upper-bound
the incentive-compatible revenue, in certain bizarre cases, which means that approximating the EFO
benchmark does not necessarily imply prior-free approximation in i.i.d. distributional settings.

Lemma 6.1 There exists a downward-closed set system, and valuation profile v, such that if Φ̄ is
the ironed virtual valuation function of v, then ICΦ̄(v) > EFΦ̄(v).

These cases seem pathological, and even in these cases the envy-free revenue seems to be not
too far below the IC revenue of the any an ironed virtual surplus optimizer. Therefore we believe
it remains an interesting benchmark for approximation in downward closed settings.

In this section, we will show that a variant of RSEM approximates this maximum envy-free
revenue benchmark by a constant factor. This variant of RSEM, called RSEM′, is similar to RSEM
except that after partitioning into sample set S and the market set M , we choose a subset W of
all agents that maximize total Φ̄S values, and then allocate only the agents in the intersection of
W and M . Our main results for downward-closed settings is the following:

Theorem 6.2 For downward-closed permutation settings, ICRSEM′

(v) ≥ 1
2560 EFO(v(2)) for all v.

The readers are referred to Section D for the detailed proof of Theorem 6.2. Here we only
mention several important ingredients of the analysis. First of all, by our “IC vs EF” lemma
(Lemma 5.1), the problem reduces to purely studying envy-free revenue. Second, a desirable prop-
erty of envy-free revenue is that they can be related to revenue curves by Lemma 3.4, such that
the problem of studying envy-free revenue, loosely speaking, reduces to studying revenue curves,
and revenue curves have many nice combinatorial properties. Third, in the RSEM′ mechanism,
we apply the ironed virtual surplus maximizer tailored for the sample set to the whole population,
which is in some sense “ironing in the wrong way”. To capture the effect of such sub-optimal
ironing, we carefully construct “effective” revenue curves, and relate the envy-free revenue to such
effective revenue curves. Finally, we invoke a double-sided version of the balanced sampling lemma
of Feige et al. [10], and show that certain revenue curves are within a constant factor of each other,
which imply the guarantee we need.
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7 Conclusions

We have drawn a strong connection between what is possible via envy-free pricing and what is
possible via prior-free incentive compatible mechanisms. Probably the most important open ques-
tion motivated by this connection is whether the recent logarithmic approximation to envy-free
makespan by Cohen et al. [6] implies that there is an incentive compatible mechanism that also
achieves a logarithmic approximation, modulo, for instance, technical assumptions like one machine
not being too important.

Another interesting direction is related to our general reduction from matroid permutation
environments to multi-unit auctions, a.k.a., k-uniform matroids. In the matroid secretary problem
of Babaioff et al. [2] (an online permutation environment) a constant approximation is possible for
uniform matroids where as for general rank k matroids, the best algorithm only gives a logarithmic
approximation (in the rank of the matroid). Perhaps our viewpoint of matroids in permutation
settings as a convex combination of uniform matroids will help resolve questions in this area.

Finally, for downward closed settings the IC revenue of a virtual surplus maximizer may exceed
that of the optimal envy-free pricing. This does not imply that the envy-free benchmark is not
strong enough for downward closed settings. For instance, if we take expectations over valuation
profiles drawn i.i.d. from any distribution, it may be that the optimal envy-free pricing is always at
least the Bayesian optimal revenue. If this were true, then prior-free approximation of the envy-free
benchmark implies simultaneous approximation of any Bayesian optimal mechanism.

References

[1] Saeed Alaei, Azarakhsh Malekian, and Aravind Srinivasan. On random sampling auctions for
digital goods. In Proc. 11th ACM Conf. on Electronic Commerce (EC), pages 187–196, 2009.

[2] Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary problems, and
online mechanisms. In SODA07, pages 434–443, 2007.

[3] M.-F. Balcan, A. Blum, J. Hartline, and Y. Mansour. Mechanism Design via Machine Learning.
In Proc. of the 46th IEEE Symp. on Foundations of Computer Science, pages 605–614, 2005.

[4] J. Bulow and J. Roberts. The simple economics of optimal auctions. The Journal of Political
Economy, 97:1060–90, 1989.

[5] E. H. Clarke. Multipart pricing of public goods. Public Choice, 11:17–33, 1971.

[6] E. Cohen, M. Feldman, A. Fiat, H. Kaplan, and S. Olonetsky. Envy-free makespan approx-
imation: extended abstract. In ACM Conference on Electronic Commerce, pages 159–166,
2010.

[7] N. Devanur and J. D. Hartline. Limited and online supply and the bayesian foundations of
prior-free mechanism design. In Proc. 11th ACM Conf. on Electronic Commerce (EC), 2009.

[8] Peerapong Dhangwatnotai, Tim Roughgarden, and Qiqi Yan. Revenue maximization with a
single sample. In Proc. 12th ACM Conf. on Electronic Commerce (EC), 2010.

[9] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertising and the generalized second-
price auction: Selling billions of dollars worth of keywords. The American Economic Review,
97(1):242–259, 2007.

11



[10] U. Feige, A. Flaxman, J. Hartline, and R. Kleinberg. On the Competitive Ratio of the Random
Sampling Auction. In Proc. 1st Workshop on Internet and Network Economics, pages 878–886,
2005.

[11] A. Fiat, A. Goldberg, J. Hartline, and A. Karlin. Generalized competitive auctions. In Proc.
34th ACM Symp. on Theory of Computing (STOC), pages 72–81. ACM Press, 2002.

[12] A. V. Goldberg, J. D. Hartline, A. Karlin, M. Saks, and A. Wright. Competitive auctions.
Games and Economic Behavior, 55(2):242–269, 2006.

[13] A. V. Goldberg, J. D. Hartline, and A. Wright. Competitive auctions and digital goods. In
Proc. 12th ACM Symp. on Discrete Algorithms, pages 735–744. ACM/SIAM, 2001.

[14] Andrew Goldberg, Jason Hartline, Anna Karlin, Mike Saks, and Andrew Wright. Competitive
auctions. Games and Economic Behavior, 2006.

[15] T. Groves. Incentives in teams. Econometrica, 41:617–631, 1973.

[16] V. Guruswami, J. Hartline, A. Karlin, D. Kempe, C. Kenyon, and F. McSherry. On profit-
maximizing envy-free pricing. In Proc. 16th ACM Symp. on Discrete Algorithms, 2005.

[17] J. Hartline and R. McGrew. From optimal limited to unlimited supply auctions. In Proceedings
of the 7th ACM Conference on Electronic Commerce, pages 175–182, 2005.

[18] J. D. Hartline and T. Roughgarden. Optimal mechanism design and money burning. In Proc.
39th ACM Symp. on Theory of Computing (STOC), pages 75–84, 2008.

[19] J. D. Hartline and T. Roughgarden. Simple versus optimal mechanisms. In Proc. 11th ACM
Conf. on Electronic Commerce (EC), 2009.

[20] D. Lehmann, L. I. O’Callaghan, and Y. Shoham. Truth revelation in approximately efficient
combinatorial auctions. In Proc. 1st ACM Conf. on Electronic Commerce (EC), pages 96–102.
ACM Press, 1999.

[21] Ahuva Mu’alem. On multi-dimensional envy-free mechanisms. In Conference on Algorithmic
Decision Theory, pages 120–131, 2009.

[22] R. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58–73, 1981.

[23] Rado R. An equality. J. London Math. Soc., 27:1–6, 1952.

[24] Hal Varian. Position auctions. In Working Paper, UC Berkeley, 2006.

[25] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. J. of Finance,
16:8–37, 1961.

12



A Envy-Free Pricing

A.1 Proof of Lemma 3.1

Proof: Suppose x admits p such that (x,p) is envy-free. By definition, vixi − pi ≥ vixj − pj and
vjxj − pj ≥ vjxi − pi. By summing these two inequalities and rearranging, (xi − xj) · (vi − vj) ≥ 0,
and hence x is swap monotone.

Suppose x is swap monotone. Let p be given as in the lemma. We verify that (x,p) is envy-free.
There are two cases: if i ≤ j, we have:

pi − pj =

j−1∑

k=i

vk · (xk − xk+1)

≤

j−1∑

k=i

vi · (xk − xk+1)

= vi ·

j−1∑

k=i

(xk − xk+1)

= vi · (xi − xj),

and if i ≥ j, we have:

pi − pj = −

i−1∑

k=j

vk · (xk − xk+1)

≤ −

i−1∑

k=j

vi · (xk − xk+1)

= −vi ·

i−1∑

k=j

(xk − xk+1)

= vi · (xi − xj).

In particular, pi = pi − pn+1 ≤ vi · (xi − xn+1) ≤ vi, and hence pi ≤ vi.
To show that pi is maximum, note that for any other envy-free pricing pi, pi−pj ≤ vi ·xi−vi ·xj ,

and hence:

pi =
n∑

j=i

(pj − pj+1) + pn+1

≤

n∑

j=i

vj · (xj − xj+1) + vn+1

= pi.

2
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A.2 Proof of Lemma 3.2

Proof: The proof is by the following equalities:

EFx(v) =

n∑

i=1

n∑

j=i

vj · (xj − xj+1)

=
n∑

i=1

ivi · (xi − xi+1)

=

n∑

i=1

R(i) · (xi − xi+1)

=

n∑

i=1

(R(i) − R(i − 1)) · xi

=
n∑

i=1

Φv(vi) · xi

2

A.3 Proof of Theorem 3.3

Proof: Note that whenever R̄(i) > R(i), we have Φ̄v(vi) = Φ̄v(vi+1). Since Φ̄v does not distinguish
between the i-th largest valuation and the i + 1-th largest valuation, we have xi(v) = xi+1(v). By
Lemma 3.4, we have that EFO(v) =

∑
i Φ̄

v(vi) · xi(v).
Also by Lemma 3.4, EFx(v) ≤

∑
i Φ̄(vi) · xi(v). Since xv maximizes

∑
i xi(v) · Φ̄v(vi) over all

xi(v), EFx(v) ≤ EFO(v).
2

A.4 Proof of Lemma 3.4

Proof: To show the inequality, we have:

EFx(v) =

n∑

i=1

R(i) · (xi − xi+1)

=

n∑

i=1

R̄(i) · (xi − xi+1)

−
n∑

i=1

(R̄(i) − R(i)) · (xi − xi+1)

≤

n∑

i=1

R̄(i) · (xi − xi+1)

=

n∑

i=1

(R̄(i) − R̄(i − 1)) · xi

=
n∑

i=1

Φ̄v(vi) · xi,
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where we use the fact that R̄(i) ≥ R(i) and xi ≥ xi+1.
Clearly the equality holds if and only if xi = xi+1 whenever R̄(i) > R(i). 2

B Proof of Lemma 6.1

Proof: Let there be n + 1 agents. The “1 vs n” set system has two maximum feasible sets,
one is a singleton set and the other one has size n. These two sets are disjoint. We define the
valuation profile by specifying the virtual valuations. There are n “small” agents with virtual
values v + ǫ, v +2ǫ, . . . , v +nǫ respectively, and one “big” agent with virtual value nv + n(n+1)

2 ǫ− ǫ2

for some small positive ǫ. The choice of the ǫ terms is such that for the sum of the virtual valuations
of the first n agents to beat the big agent, no small agent can lower her virtual value to some other
agent’s virtual value. We will ignore ǫ terms from now on. Correspondingly, one can calculate the
revenue curve, and then derive the valuations of the agents: the valuation of the big agent is nv,
and the small agents have values n+1

2 v, n+2
3 v,. . . , 2n

n+1v, ignoring ǫ terms. The allocation rule is

the ironed virtual surplus optimizer w.r.t. this valuation profile. Note that a reserve of 2n
n+1v is set

because any value lower than this corresponds to a negative ironed virtual value.
Observe that every agent wins if and only if she is assigned to the size n set, which happens

with probability n/(n+1). Therefore the EF revenue is 2n
n+1v · n

n+1 ·(n+1) = 2n2

n+1v. To calculate the
IC revenue, with probability n/(n + 1), the big agent is assigned to the size n set, and every of the
n winning agents pays the reserve 2n

n+1v. Also with probability 1/(n + 1), the big agent is assigned
to the singleton set, and every agent has to pay her own value, which sums up to Θ(nv log(n)).
Therefore the IC revenue is 2n

n+1v · n
n+1 · n + 1

n+1Θ(nv log(n)), which is larger than EF revenue for
sufficiently large n. 2

C Benchmarks for Prior-free Mechanism Design

Prior-free mechanism design looks for the mechanism that minimizes, over valuation profiles, its
worst case ratio to a given performance benchmark. For k-unit auctions, two benchmarks have
been considered in the literature. Fiat et al. [11] proposed “F (2)” as “the optimal revenue from
single price sale to between 2 and k agents” which has revenue max2≤i≤k Rv(i). Hartline and
Roughgarden [18] proposed “G(2)” as “the supremum of Bayesian optimal mechanisms (with at
least 2 winners)” which has revenue supF ICOF (v(2)). Lemma 5.2 allows us to bound this below
max2≤i≤k R̄

v

(i). Devanur and Hartline [7] shows that in fact these two benchmarks are within a
factor of two of each other, for k unit auctions.

For more general settings Hartline and Roughgarden [19] showed that the Vickrey-Clarke-Groves
(VCG) mechanism with a single reserve price can approximate the Bayesian optimal mechanism.
This holds for downward closed set systems and i.i.d. distributions satisfying a standard “monotone
hazard rate” condition and for matroid set systems and i.i.d. distributions satisfying a less restrictive
“regularity” condition.3 This motivates considering as a benchmark for prior-free mechanism design
in general set systems “the revenue of VCG with optimal single reserve price”, a generalization of
F (2). For instance, if a mechanism approximates this benchmark then for all monotone hazard rate
distributions, the mechanism’s expected revenue approximates the optimal mechanism’s revenue.
For matroid settings there is such a mechanism [19].

Unfortunately, for irregular distributions and matroid set systems VCG with a single reserve
price may be very far from optimal. This is formalized by Lemma C.1, below. If our goal is a bench-

3A distribution is regular if RF (·) is concave.
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mark to which approximation by a mechanism implies that for all distributions, the mechanism
approximates the Bayesian optimal mechanism, then this benchmark is not good enough.

Lemma C.1 For every sufficiently large n, there exists a distribution F and a matroid set sys-
tem of n elements such that the expected revenue of VCG with any single reserve price is an
Ω(log n/ log log n)-approximation to the expected revenue of ICOF .

Lemma 5.2 shows that the revenue of the optimal envy-free pricing, EFO, is a benchmark for
which prior-free approximation implies Bayesian approximation. This is summarized formally by
the following theorem.

Theorem C.2 For a symmetric matroid setting, if M is a β-approximation to EFO(v) for all v,
then for all F ,

Ev∼F [M(v)] ≥ 1
β
Ev∼F

[
ICOF (v)

]
.

Unfortunately, for reasons discussed in [12], we can not approximate EFO(v) when the highest
valuation is very large. Similar to the case of digital goods auctions [13], here we shall use the
slightly weaker benchmark EFO(v(2)) instead.

C.1 Proof of Lemma C.1

Proof: Fix some number m.
We first define the matroid in question. For each k ∈ {1, . . . ,m}, a type k graph contains two

nodes, and m3k−1 parallel edges connecting these two nodes. The matroid is a graphic matroid
where the graph contains m2m−2k disjoint copies of type k graphs for each k ∈ {1, . . . ,m}. So total
number of agents n is at most mO(m). Hence m is at least of order log n

log log n
.

Next we define the “sydney opera house distribution”. The distribution F is such that the value
is distributed according to uniform distribution [m2k+1− ǫ,m2k+1 + ǫ] with probability 1

m3k − 1
m3k+3

for k ∈ {0, . . . ,m − 1}, and with probability 1
m3k for k = m. Here we take ǫ to be some sufficiently

negligible positive amount, and we will often omit ǫ related terms. So for each k the revenue function
R at 1

m3k+3 has left limit R( 1
m3k+3−) = m2k+3

m3k+3 = 1
mk , and right limit R( 1

m3k+3 +) = m2k+1

m3k+3 = 1
mk+2 .

Hence the ironed virtual valuation between quantile 1
m3k+3 to quantile 1

m3k is
1

mk−1 −
1

mk

1

m3k
− 1

m3k+3

≈ m2k+1.

Note that the ironed virtual valuation is equal to valuation, ignoring minor terms.
To calculate the revenue of Myerson’s auction, for a type k graph, there are m3k−1 agents. With

probability at least 1 − (1 − 1
m3k )m

3k−1
≈ 1

m
, the highest agent is in quantile range (0, 1

m3k ), with

ironed virtual valuation at least m2k+1. So the expected ironed virtual valuation from a type k
graph is at least m2k. Multiplied by the number of type k graphs, the total ironed virtual valuation,
and hence expected revenue is at least

∑
k m2k · m2m−2k = m · m2m.

To calculate the revenue of V CG with some reserve r, suppose w.l.o.g. r ≈ m2k′+1 for some
k′. For a type k graphs with m3k−1 agents, the dominant amount of revenue is obtained from the
following two cases:

1. When there are at least two agents with value at least m2k+1 − ǫ (i.e. in quantile 1
m3k ), the

lower of which has value at most m2k+1 + ǫ. This happens with probability roughly 1
m2 , and

gives revenue m2k+1. Therefore the expected revenue we get from this case is 1
m2 · m2k+1,

which multiplied by the number of type k graphs, is O(m2m−1).

2. When k = k′, and there is at least one agent who beats the reserve m2k+1. This happens with
probability at most 1

m
. Therefore the expected revenue from this case is m2k+1 · 1

m
, which

multiplied by the number of type k graphs is O(m2m).
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Summing over all k, the total expected revenue of V CG with reserve r is at most O(m2m) +
m · O(m2m−1) = O(m2m), which is less than that of Myerson’s auction by a factor of Ω(m) =
Ω(log n/ log log n). 2

D Analysis of RSEM’

D.1 Effective Ironing

The RSEM’ mechanism applies the ironed virtual surplus optimizer for the sample to the market,
which is sub-optimal for the market. To capture the effect of applying a sub-optimal ironed virtual
surplus optimizer, we introduce the notion of effective revenue curve.

Definition D.1 (effective revenue curve) Let v be a valuation profile and Φ̄ be an ironed vir-
tual valuation function. Group the agents with equal nonnegative Φ̄ values together into consecutive
“equal priority” classes {1, . . . , n1}, {n1+1, . . . , n2}, . . . , {nt−1+1, . . . , nt}. Let the effective revenue
curve R̃ be obtained from Rv by connecting the points of Rv at nj’s linearly (a.k.a. ironing) and ex-

tending horizontally beyond nt, i.e., R̃(i) = Rv(nj−1) ·
nj−i

nj−nj−1
+Rv(nj) ·

i−nj−1

nj−nj−1
for nj−1 ≤ i ≤ nj

and 1 ≤ j ≤ t (let n0 = 0), and R̃(i) = R̃(nt) for all i ∈ {nt + 1, . . . , n}.

Figure 3: Effective revenue curve

Figure 3 depicts an example of the effective revenue curve. The three rays divide the first
orthant into four regions. For every region, every point (i, y) in the region (which corresponds to
value y/i) has the same Φ̄ value, i.e., Φ̄(y/i) is the same. In particular, the points on the revenue
curve Rv in each region correspond to the same Φ̄ value, get “ironed”. Our definition of effective
revenue curve ensures the following:

Lemma D.1 For all valuation profile v, EFΦ̄(v) =
∑n

i=1 R̃(i) · (xΦ̄
i (v) − xΦ̄

i+1(v)).

Proof:

EFΦ̄(v) =
∑n

i=1
Rv(i) · (xΦ̄

i (v) − xΦ̄
i+1(v))

=
∑n

i=1
Rv

Φ̄
(i) · (xΦ̄

i (v) − xΦ̄
i+1(v))

Here the first equality is by Lemma 3.4. To justify the second equality, note that whenever

Rv
Φ̄
(i) 6= Rv(i), there are two cases: (1) i is in {nj−1 + 1, . . . , nj − 1} for some j, and so vi and
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vi+1 have the same Φ̄ value, and hence xΦ̄
i (v) = xΦ̄

i+1(v). (2) i is bigger than nt, and so vi and vi+1

both have negative Φ̄ value, and hence xΦ̄
i (v) = xΦ̄

i+1(v) = 0.
2

D.2 Balanced Sampling and Revenue Curves

For an agent set S, we abuse notation to let vS denote (vS ,0N−S), i.e., the valuation profile (of n
agents) obtained from v by decreasing the values of agents outside S to 0. A useful property that
holds for envy-free revenue is “subadditivity”, in the following sense.

Lemma D.2 For a valuation profile v and two disjoint sets A and B of agents, EFO(vA) +
EFO(vB) ≥ EFO(vA∪B).

Proof: Recall that EFO(vA∪B) is the maximum revenue we can get from A ∪ B subject to the
envy free constraints. Let agents in B contribute total revenue R to EFO(vA∪B). By setting the
agents in A to have zero valuations to obtain valuation profile vB , we basically removed envy-free
constraints between agents in A and agents in B. With less envy free constraints, the maximum
envy-free revenue we can get from B, i.e., EFO(vB), can only be larger. Similarly, the total revenue
that A contributes to EFO(vA∪B) is at most EFO(vA), and our lemma follows. 2

Let vS
N be a short-hand for (vN )Φ̄

S

, which is the effective valuation profile obtained from ironing
v using the ironed virtual valuation function Φ̄S for vS . The following lemma says that if we apply
the ironed virtual valuation function Φ̄S for vS to both the whole set N and samples S, then the
effective revenue curve we get in the former case vertically dominates what we get in the latter
case.

Lemma D.3 For all 1 ≤ i ≤ n, Rv
S
N (i) ≥ Rv

S
S (i).

Figure 4: Rv
S
N (i) dominates Rv

S
S (i)

Proof: The readers are referred to Figure 4 for an intuitive view of the relationship between
the revenue curves, where revenue curves are piece-wise linearly interpolated between the integer
points. Observe that revenue curve RvN dominates RvS in the sense that for every slope t, the
intersection of the ray y = tx with RvN is farther away from the origin than its intersection with
RvS . Transforming RvN and RvS to the effective revenue curves using the same ironed virtual
valuation function Φ̄S do not change such dominance relationship, and moreover, because Rv

S
S is

non-decreasing and concave, it follows that vertical dominance also holds, i.e., Rv
S
N (i) ≥ Rv

S
S (i) for
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all i. 2

Definition D.2 We say that the partitioning (S,M) of N = {1, . . . , n} is balanced if for all i ∈
{1, . . . , n}, Yi ≤ 3i/4 where Yi = |{1, 2, . . . , i} ∩ S|.

We will focus on the case that agent 1 is in M , and agent 2 is in S. Recall that vS denote
(vS ,0N−S).

Lemma D.4 Conditioning on that 1 ∈ M, 2 ∈ S, a random partitioning (S,M) of N is balanced
with probability at least 0.8.

Proof: Feige et al. [10] proved that conditioning on that 1 ∈ M , (S,M) is balanced with
probability at least 0.9. Let B denote the event that (S,M) is balanced. Clearly 0.9 ≤ Pr[B | 1 ∈
M ] = 0.5 ·Pr[B | 1 ∈ M, 2 ∈ S] + 0.5 ·Pr[B | 1 ∈ M, 2 /∈ S]. It follows that Pr[B | 1 ∈ M, 2 ∈ S] ≥
0.8. 2

The following consequence of balanced partitioning is useful, and easy to check.

Lemma D.5 Given a balanced partitioning (S,M), for every non-increasing sequence a1, a2, . . . , an

of nonnegative reals, for all i ∈ {1, . . . , n}, we have
∑

j∈M∩{1,...,i} aj ≥
1
4

∑
j∈{1,...,i} aj.

Definition D.3 We say that the partitioning (S,M) of N is double-side balanced if for all i ∈
{3, . . . , n}, i/4 ≤ Yi ≤ 3i/4 where Yi = |{1, 2, . . . , i} ∩ S|.

Lemma D.6 Conditioning on that 1 ∈ M, 2 ∈ S, a random partitioning (S,M) of N is double-side
balanced with probability at least 0.6.

Proof: Lemma D.4 implies that with probability at least 0.8, for all i ∈ {3, . . . , n}, Yi ≤ 3i/4.
Symmetrically, with probability at least 0.8, for all i ∈ {3, . . . , n}, i/4 ≤ Yi. The probability that
both of these happen is at least 1 − (1 − 0.8) − (1 − 0.8) = 0.6. 2

Let φi = Φ̄S(vi) for i ∈ {1, . . . , n} be the ironed virtual valuation values w.r.t. S of agents in N .
For i ∈ {1, . . . , n}, define R̂(i) as

∑i
j=1 φj , and let v̂ be the valuation profile corresponding to R̂,

i.e. v̂i = R̂(i)/i. Compare running xS on vN with running xbv on v̂, the ironed virtual valuation
of agent i in either case is equal to φi. Therefore these two ironed virtual surplus optimizers will
choose the same allocation, and hence xS

i (vN ) = xbv
i (v̂).

Lemma D.7 Given a double-side balanced partitioning (S,M). We have Rv
S
S (i) ≥ 1

4 Rbv(i) ≥
1
4 Rv

S
S (i) for all 1 ≤ i ≤ n.

Proof: For each i, Rbv(i) =
∑i

j=1 φj and Rv
S
S (i) is the sum of the i largest φj values with j ∈ S.

Clearly Rbv(i) ≥ Rv
S
S (i). Since (S,M) is double-side balanced, applying Lemma D.5, we also have

that for all i, Rv
S
S (i) ≥ 1

4 Rbv(i). 2

D.3 Analysis of RSEM’

Lemma D.8 For any downward-closed permutation setting, any valuation profile v, and double-
side balanced partitioning (S,M), EFΦ̄S

(vN ) ≥ 1
4 EFΦ̄S

(vS).

Proof: Let xS and xbv be short-hands for xΦ̄S
and xΦ̄bv

, respectively. I.e., they are the ironed
virtual surplus optimizers with ironed virtual valuation functions defined for vS and v̂, respectively.
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The proof is by the following inequalities:

EFΦ̄S

(vN ) =
∑

i
Rv

S
N (i) · (xS

i (vN ) − xS
i+1(vN )) =

∑
i
Rv

S
N (i) · (xbv

i (v̂) − xbv
i+1(v̂))

≥ 1
4 ·

∑
i
Rbv(i) · (xbv

i (v̂) − xbv
i+1(v̂)) ≥ 1

4 ·
∑

i
Rbv(i) · (xS

i (vS) − xS
i+1(vS))

≥ 1
4 ·

∑
i
Rv

S
S (i) · (xS

i (vS) − xS
i+1(vS)).

Here the first equality is by effective ironing (Lemma D.1), and the second equality is by that
xS

i (vN ) = xbv
i (v̂). The first inequality is by Lemma D.3 and Lemma D.7, the second inequality is

by the optimality of xbv for v̂, and the third inequality is by Lemma D.7 again. 2

Now we can establish the performance guarantee for RSEM’ in the downward-closed case.
Proof: (of Theorem 6.2) With probability 1/4, agent 1 is in M , and agent 2 is in S. Conditioning
on this, by Lemma D.4, the partitioning (S,M) is double-side balanced with probability 0.6, and
by Lemma D.2 and symmetry, EFO(vS) ≥ 1

2 EFO(vN ) with probability 0.5. Both of these events
happen with probability at least 1 − (1 − 0.6) − (1 − 0.5) = 0.1. Assume both events happen. As

in the matroid case, we have
∑

i∈M ICΦ̄S

i (vN ) ≥ 1
8 EFx

S

(vN ). Together with that EFΦ̄S

(vN ) ≥
1
4 EFΦ̄S

(vS) ≥ 1
8 EFO(v(2)), we have

∑
i∈M ICΦ̄S

i (vN ) ≥ 1
64 EFO(vN ), and our theorem follows by

multiplying the ratio with the probabilities. 2
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