Schedule
1) (Mar 15) An introductory lecture
2) (Mar 22) C. 2 - Parameterized
Algorithms, Fedor V. Fomin,
Daniel Lokshtanov, Saket Saurabh, Meirav Zehavi, Roni Zehavi
3) (Mar 29) C. 3 - From
Adaptive Analysis to Instance Optimality, Jérémy Barbay, Moria Nachmany
4) (April 19) C. 4 - Resource
Augmentation, Tim Roughgarden, Amit
Sandler
5) (May 5) C. 8 - Distributional
Analysis, Tim Roughgarden, Yuval Shem-Tov
6) (May 17) C. 11 - Random-Order
Models, Anupam Gupta, Sahil
Singla, Alon Alexander
7) (June 14) C. 12 - Self-Improving
Algorithms, C. Seshadhri, Inbal
Hadad
8) (June 21) C. 15 -
Smoothed
Analysis of Pareto Curves in Multiobjective
Optimization, Heiko Röglin,
Tommy
Winewtraub
9) (June 28 and Friday June 30) Correlation clustering and robust online correlation clustering, Omer Azoulay, Imri Efrat
10) (July 5) Online Steiner tree and generalized
steiner tree (classical worst case model), Dean Oren
11) (Friday July 7) Online scheduling via learned weights, Nir Shalmon
12) (July 12) Learning
from a sample in online algorithms (note the supplementary material), Ori Petel