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NP as a Non-interactive Proofs

Definition 1 (VP)

L € NP iff 3 and poly-time algorithm V such that:
@ Vx € L there exists w € {0,1}* s.t. V(x,w) =1
@ V(x,w)=0forevery x ¢ £Land w € {0,1}*

Only | x| counts for the running time of V.
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Definition 1 (VP)
L € NP iff 3 and poly-time algorithm V such that:

@ Vx € L there exists w € {0,1}* s.t. V(x,w) =1
@ V(x,w)=0forevery x ¢ £ and w € {0,1}*

Only | x| counts for the running time of V.

A proof system

@ Efficient verifier, efficient prover (given the witness)

@ Soundness holds unconditionally
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Interactive proofs
Protocols between efficient verifier and unbounded provers.
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Interactive proofs
Protocols between efficient verifier and unbounded provers.

Definition 2 (Interactive proof)
A protocol (P, V) is an interactive proof for £, if V is PPT and:

Completeness Vx € L, Pr[((P,V)(x))y, = 1] > 2/3.2

Soundness Vx ¢ £, and any algorithm P*
Pri((P*,V)(x))y = 1] < 1/3.

IP is the class of languages that have interactive proofs.

#((A(a),B(b))(c))g denote B’s view in random execution of (A(a), B(b))(c).
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Interactive proofs
Protocols between efficient verifier and unbounded provers.

Definition 2 (Interactive proof)
A protocol (P, V) is an interactive proof for £, if V is PPT and:
Completeness Vx € L, Pr[((P,V)(x))y, = 1] > 2/3.2
Soundness Vx ¢ £, and any algorithm P*

Pri{(P*,V)(x)), = 1] < 1/3.

IP is the class of languages that have interactive proofs.

#((A(a),B(b))(c))g denote B’s view in random execution of (A(a), B(b))(c).

@ |P = PSPACE!

@ We typically consider (and achieve) perfect completeness.
@ Negligible “soundness error" achieved via repetition.

@ Sometime we have efficient provers via “auxiliary input”.

@ Relaxation: Computationally sound proofs [also known as, interactive
arguments]: soundness only guaranteed against efficient (PPT) provers.
Iftach Haitner (TAU) Foundation of Cryptography April 23, 2014 4/37



Section 1

Interactive Proof for Graph Non-lsomorphism
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Graph isomorphism

My — the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs Go = ([m], Eo) and Gy = ([m], E1) are isomorphic, denoted Gy = Gy,
if 37 € M, such that
(u,v) € Eyiff (w(u), m(v)) € E.
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Graph isomorphism

My — the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs Go = ([m], Eo) and Gy = ([m], E1) are isomorphic, denoted Gy = Gy,
if 37 € M, such that
(u,v) € Eyiff (w(u), m(v)) € E.

® GT = {(Go,G1): Go =Gy} € NP
@ Does GNZ = {(Go,G1): Go £ G1} € NP?

@ We will show a simple interactive proof for GN'Z
Idea: Beer tasting...
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Interactive proof for GN'Z

Protocol 4 ((P, V))
Common input Go = ([m], E), Gy = ([m], E+)

@ V chooses b + {0,1} and 7 « MM, and sends 7(Ep) to P.2
© Psend b toV (tries to set b’ = b).
© V accepts iff b’ = b.

aw(E) = {(n(u), m(v): (u,v) € E}.
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Interactive proof for GN'Z

Protocol 4 ((P, V))
Common input Go = ([m], E), Gy = ([m], E+)

@ V chooses b + {0,1} and 7 « MM, and sends 7(Ep) to P.2
© Psend b toV (tries to set b’ = b).
© V accepts iff b’ = b.

aw(E) = {(n(u), m(v): (u,v) € E}.

Claim 5

The above protocol is IP for GN'Z, with perfect completeness and soundness
1
error 5.

Iftach Haitner (TAU) Foundation of Cryptography April 23, 2014 7137



Proving Claim 5

@ Graph isomorphism is an equivalence relation (separates the set of all
graph pairs into separate subsets)
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Proving Claim 5

@ Graph isomorphism is an equivalence relation (separates the set of all
graph pairs into separate subsets)

@ ([m],n(E;)) is a random element in [G;] — the equivalence class of G;
Hence,

Go =Gi: Prip’ =b] < 3.
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Proving Claim 5

@ Graph isomorphism is an equivalence relation (separates the set of all
graph pairs into separate subsets)

@ ([m],n(E;)) is a random element in [G;] — the equivalence class of G;
Hence,
Go =Gi: Prip’ =b] < 3.

Go # Gy: Pr[b/ = b] =1 (i.e., P can, possibly inefficiently, extracted from
m(Ei))
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Zero knowledge Proofs
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Where is Waldo?
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Where is Waldo?

Question 6
Can you prove you know where Waldo is without revealing his location?

Iftach Haitner (T/

Foundation of Cryptography



The concept of zero knowledge

@ Proving w/o revealing any addition information.
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The concept of zero knowledge

@ Proving w/o revealing any addition information.

@ What does it mean?
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The concept of zero knowledge

@ Proving w/o revealing any addition information.

@ What does it mean?

Simulation paradigm.
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April 23, 2014
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Zero-knowledge proof
Definition 7 (zero-knowledge proofs)

An interactive proof (P, V) is computational zero-knowledge proof (CZK) for
L e NP, ifVPPT V* 3 PPT S such that

{{(P(w(x)), V) (X))y- }xec =e {S(X) }xec-

for any function w with w(x) € R.(x).
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Zero-knowledge proof
Definition 7 (zero-knowledge proofs)

An interactive proof (P, V) is computational zero-knowledge proof (CZK) for

L e NP, if ¥V PPT V*, 3 PPT S such that

{{(P(w(x)), V) (X))y- }xec =e {S(X) }xec-
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@ ZK is a property of the prover.

©@ 2K only required to hold wrt. true statements.

© Trivial to achieve for £ € BPP.

© The NP proof system is typically not zero knowledge.
© Meaningful also for languages outside N'P.

Q Auxiliary input. ..
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Section 2

Zero-Knowledge Proof for Graph Isomorphism
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ZK Proof for Graph Isomorphism

Idea: route finding
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ZK Proof for Graph Isomorphism

Idea: route finding
Protocol 8 ((P, V))
Common input: x = (Go = ([m], E), G1 = ([m], E+))
P’s input: a permutation = over [m] such that =(E;) = Eo.
@ P chooses 7’ + MMy, and sends E = 7/(Ey) to V.
© Vsends b+« {0,1} to P.
©Q Ifb=0, P sets 7’ = 7/, otherwise, it sends 7"/ = 7’ o 7 to V.
© V accepts iff 7/(Ep) = E.
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ZK Proof for Graph Isomorphism

Idea: route finding
Protocol 8 ((P, V))
Common input: x = (Go = ([m], E), G1 = ([m], E+))
P’s input: a permutation = over [m] such that =(E;) = Eo.
@ P chooses 7’ + MMy, and sends E = 7/(Ey) to V.
© Vsends b+« {0,1} to P.
©Q Ifb=0, P sets 7’ = 7/, otherwise, it sends 7"/ = 7’ o 7 to V.
© V accepts iff 7/(Ep) = E.

Claim 9

Protocol 8 is a SZK for GZ, with perfect completeness and soundness %
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Proving Claim 9

@ Completeness: Clear
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Proving Claim 9

@ Completeness: Clear
@ Soundness: If exist j € {0, 1} for which 7’ € N, with 7' (E;) = E, then V
rejects w.p. at least ;.

Assuming V rejects w.p. less than } and let mo and 7 be the values
guaranteed by the above observation (i.e., mapping Ey and Eq to E
respectively).

Then 7, ' (m1(E1)) = m0 = (Go, G1) € GZ.

Iftach Haitner (TAU) Foundation of Cryptography April 23, 2014 15/37



Proving Claim 9

@ Completeness: Clear
@ Soundness: If exist j € {0,1} for which Az’ € M, with 7'(Ej) = E, then V
rejects w.p. at least ;.

Assuming V rejects w.p. less than } and let mo and 7 be the values
guaranteed by the above observation (i.e., mapping Ey and Eq to E
respectively).

Then 7Ta1(ﬂ1(E1)) =Ty — (GQ,G1) € gT.

@ ZK: Idea—for (Go,G1) € GZ, it is easy to generate a random transcript
for Steps 1—2, and to be able to open it with prob %
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The simulator

For a start, consider a deterministic cheating verifier V* that never aborts.
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The simulator

For a start, consider a deterministic cheating verifier V* that never aborts.
Algorithm 10 (S)
Input: x = (Go = ([m], Eo), G1 = ([m], E1))
Do |x| times:
@ Choose b’ +— {0,1} and 7 < My, and “send" 7 (Ep ) to V*(x).

© Let bbe V*’s answer. If b = b/, send 7 to V*, output V*’s output and hallt.
Otherwise, rewind V* to its initial step, and go to step 1.

Abort.
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The simulator

For a start, consider a deterministic cheating verifier V* that never aborts.
Algorithm 10 (S)
Input: x = (Go = ([m], Eo), G1 = ([m], £4))
Do |x| times:
@ Choose b’ +— {0,1} and 7 < My, and “send" 7 (Ep ) to V*(x).

© Let bbe V*’s answer. If b = b/, send 7 to V*, output V*’s output and hallt.
Otherwise, rewind V* to its initial step, and go to step 1.

Abort.

Claim 11
{P, V) X))y txecz = {S(X)}xecz

Claim 11 implies that Protocol 8 is zero knowledge.
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Proving Claim 11
Consider the following inefficient simulator:

Algorithm 12 (S')
Input: x = (Go = ([m], Eo), Gy = ([m], E1)).
Do |x| times:

@ Choose 7 « My, and send E = 7(Ep) to V*(x).
© Let bbe V*'s answer.
W.p. 1,

@ Find ' such that E = «/(Ep), and send it to V*.
@ Output V*’s output and halt.

Otherwise, rewind V* to its initial step, and go to step 1.
Abort.
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Proving Claim 11
Consider the following inefficient simulator:

Algorithm 12 (S')
Input: x = (Go = ([m], Eo), Gy = ([m], E1)).
Do |x| times:

@ Choose 7 « My, and send E = 7(Ep) to V*(x).
© Let bbe V*'s answer.
W.p. 1,

@ Find ' such that E = «/(Ep), and send it to V*.
@ Output V*’s output and halt.

Otherwise, rewind V* to its initial step, and go to step 1.
Abort.

Claim 13
S(x) = S/(x) for any x € GZ.

Proof: ?
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Proving Claim 11 cont.

Consider a second inefficient simulator:
Algorithm 14 (S”)
Input: x = (Go = ([m], Ev), G1 = ([m], E1))

@ Choose 7 « My, and send E = 7(Ey) to V*(x).
© Find 7’ such that E = 7/(E,) and send it to V*
© Output V*’s output and halt.
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Algorithm 14 (S”)
Input: x = (Go = ([m], Ev), G1 = ([m], E1))

@ Choose 7 « My, and send E = 7(Ey) to V*(x).
© Find 7’ such that E = 7/(E,) and send it to V*
© Output V*’s output and halt.

Claim 15
Vx € GZ it holds that

Q ((P,V*(x)))y. =8"(x).
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Q ((P,V*(X)))y- = S"(x).
© SD(S"(x),S/(x)) < 271X

Proof: ?
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Consider a second inefficient simulator:
Algorithm 14 (S”)
Input: x = (Go = ([m], Ev), G1 = ([m], E1))

@ Choose 7 « My, and send E = 7(Ey) to V*(x).
© Find 7’ such that E = 7/(E,) and send it to V*
© Output V*’s output and halt.

Claim 15
Vx € GZ it holds that

Q ((P,V*(X)))y- = S"(x).
© SD(S"(x),S/(x)) < 271X

Proof: ? (1) is clear.
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Proving Claim 15(2)

Fix t € {0,1}* and let @ = Prg(x[t].
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Proving Claim 15(2)

Fix t € {0,1}* and let @ = Prg(x[t].

It holds that
Pr [t] = a-i“ — 1)"—1 .
S(x) = 2 2
=(1-2"M).q
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Proving Claim 15(2)

Fix t € {0,1}* and let @ = Prg(x[t].

It holds that
Pr [t] = a-i“ — 1)"—1 .
S(x) = 2 2
=(1-2"M).q

Hence, SD(S"(x),S/(x)) < 2-0)
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Remarks

@ Perfect ZK for “expected polynomial-time" simulators.
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Remarks

@ Perfect ZK for “expected polynomial-time" simulators.
© Aborting verifiers.
© Randomized verifiers.

@ The simulator first fixes the random coins of V* at random.
@ Same proof goes through.

© Negligible soundness error?
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“Transcript simulation” might not suffice!
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“Transcript simulation” might not suffice!
Let (G, E, D) be a public-key encryption scheme and let £ € N'P.
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“Transcript simulation” might not suffice!
Let (G, E, D) be a public-key encryption scheme and let £ € N'P.

Protocol 16 ((P,V))

Common input: x € {0,1}*

P’s input: w € R.(x)
@ V chooses (d, e) + G(1/*) and sends e to P
© Psends c=Eq(w)toV
© V accepts iff Dy(c) € Re(x)
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Let (G, E, D) be a public-key encryption scheme and let £ € N'P.

Protocol 16 ((P,V))
Common input: x € {0,1}*
P’s input: w € R.(x)
@ V chooses (d, e) + G(1/*) and sends e to P
© Psends c=Eq(w)toV
© V accepts iff Dy(c) € Re(x)

@ The above protocol has perfect completeness and soundness.
@ Is it zero-knowledge?
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“Transcript simulation” might not suffice!
Let (G, E, D) be a public-key encryption scheme and let £ € N'P.

Protocol 16 ((P, V))

Common input: x € {0,1}*

P’s input: w € R.(x)
@ V chooses (d, e) + G(1¥) and sends e to P
© Psendsc=Eq(w)toV
© V accepis iff Dy(c) € R (x)

@ The above protocol has perfect completeness and soundness.
@ Is it zero-knowledge?

@ It has “transcript simulator” (at least for honest verifiers): exits PPT S
such that {((P(w € R (X)), V)(X))yans xec ~c {S(X)}xes,

where trans stands for the transcript of the protocol (i.e., the messages
exchange through the execution).
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Section 3

Composition of Zero-Knowledge Proofs
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Is zero-knowledge maintained under composition?

@ Sequential repetition?
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Is zero-knowledge maintained under composition?

@ Sequential repetition?

@ Parallel repetition?
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Zero-knowledge proof, auxiliary input variant.

Definition 17 (zero-knowledge proofs, auxiliary input)

An interactive proof (P, V) is computational zero-knowledge proof (CZK) for
L € NP, if ¥V deterministic poly-time V*, 3 PPT S such that:2

{{(P(w(x)), V*(2(x))) (X))v- Ixec = {S(X; 2(X)) }xec

for any any w with w(x) € Rz(x) and any z: £ — {0, 1}*.

Perfect ZK (PZK)/statistical ZK (SZK) — the above distributions are
identicallly/statistically close.

4Length of auxiliary input does not count for the running time.
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Definition 17 (zero-knowledge proofs, auxiliary input)

An interactive proof (P, V) is computational zero-knowledge proof (CZK) for

L € NP, if ¥V deterministic poly-time V*, 3 PPT S such that:2
{(P(w(x)), V" (2(x)))(X))y- txec ~c {S(X, 2(X)) }xer

for any any w with w(x) € Rz(x) and any z: £ — {0, 1}*.

Perfect ZK (PZK)/statistical ZK (SZK) — the above distributions are
identicallly/statistically close.

4Length of auxiliary input does not count for the running time.

@ The protocol for GZ we just saw, is also auxiliary-input SZK
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Zero-knowledge proof, auxiliary input variant.

Definition 17 (zero-knowledge proofs, auxiliary input)

An interactive proof (P, V) is computational zero-knowledge proof (CZK) for
L € NP, if ¥V deterministic poly-time V*, 3 PPT S such that:2

HPW(x)), VE(2(x)))(X))y- txer ~e {S(X, 2(X)) 1xec

for any any w with w(x) € Rz(x) and any z: £ — {0, 1}*.

Perfect ZK (PZK)/statistical ZK (SZK) — the above distributions are
identicallly/statistically close.

4Length of auxiliary input does not count for the running time.

@ The protocol for GZ we just saw, is also auxiliary-input SZK
© What about randomized verifiers?
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Is zero-knowledge maintained under composition?, cont.

@ Auxiliary-input zero-knowledge is maintained under sequential repetition.
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@ Auxiliary-input zero-knowledge is maintained under sequential repetition.
@ Zero-knowledge might not maintained under parallel repetition.
Examples:
» Chess game
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Is zero-knowledge maintained under composition?, cont.

@ Auxiliary-input zero-knowledge is maintained under sequential repetition.
@ Zero-knowledge might not maintained under parallel repetition.
Examples:

» Chess game
» Signature game
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Section 4

Black-box Zero Knowledge
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Black-box simulators

Definition 18 (Black-box simulator)

(P, V) is CZK with black-box simulation for £ € NP, if 3 oracle-aided PPT S
s.t.

{((PW(x)), V¥ (20)0))(X))y- bxec ~e {87 N (x) e,

for any deterministic polynomial-time V*, any w with w(x) € R.(x) and any
z: L+ {0,1}%.

Prefect and statistical variants are defined analogously.
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Black-box simulators

Definition 18 (Black-box simulator)

(P, V) is CZK with black-box simulation for £ € NP, if 3 oracle-aided PPT S
s.t.

{((PW(x)), V¥ (20)0))(X))y- bxec ~e {87 N (x) e,

for any deterministic polynomial-time V*, any w with w(x) € R.(x) and any
z: L—{0,1}*

Prefect and statistical variants are defined analogously.

@ “Most simulators" are black box

@ Strictly weaker then general simulation!
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Section 5

Zero-knowledge proofs for all NP
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CZK for 3COL

@ Assuming that OWFs exists, we give a (black-box) CZK for 3COL .
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@ Assuming that OWFs exists, we give a (black-box) CZK for 3COL .
@ We show how to transform it for any £ € A'P (using that 3COL € N'PC).
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CZK for 3COL
@ Assuming that OWFs exists, we give a (black-box) CZK for 3COL .
@ We show how to transform it for any £ € A'P (using that 3COL € N'PC).

Definition 19 (3COL)
G=(M,E) e 3COL,if3¢p: M [3] s.t. ¢p(u) # ¢(v) for every (u,v) € E. J
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CZK for 3COL
@ Assuming that OWFs exists, we give a (black-box) CZK for 3COL .
@ We show how to transform it for any £ € A'P (using that 3COL € N'PC).

Definition 19 (3COL)
G=(M,E) e 3COL,if3¢p: M [3] s.t. ¢p(u) # ¢(v) for every (u,v) € E. J

We use commitment schemes.
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The protocol
Let 73 be the set of all permutations over [3].
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The protocol
Let w3 be the set of all permutations over [3]. We use perfectly binding
commitment Com = (Snd, Rcv).
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The protocol
Let 73 be the set of all permutations over [3]. We use perfectly binding
commitment Com = (Snd, Rcv).

Protocol 20 ((P, V))
Common input: Graph G = (M, E) with n = |G|
P’s input: a (valid) coloring ¢ of G

@ P chooses 7+ M3 andsets ) = o ¢

Q@ Vv € M: P commits to v(v) using Com (with security parameter 17).
Let ¢, and d, be the resulting commitment and decommitment.

©Q Vsendse=(u,v)«< EtoP
© P sends (dy, ¥(u)),(dy,,¥(v)) to V
© V verifies that

@ Both decommitments are valid,
Q ¥(u),y(v) € [3], and
© (u) # v(v).
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Claim 21

The above protocol is a CZK for 3COL, with perfect completeness and
soundness 1/ |E|.
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Claim 21

The above protocol is a CZK for 3COL, with perfect completeness and
soundness 1/ |E|.

@ Completeness: Clear
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Claim 21

The above protocol is a CZK for 3COL, with perfect completeness and
soundness 1/ |E]|.

@ Completeness: Clear

@ Soundness: Let {c,},em be the commitments resulting from an
interaction of V with an arbitrary P*.

Define ¢: M — [3] as follows:

Vv € M: let ¢(v) be the (single) value that it is possible to decommit ¢,
into (if not in [3], set ¢(v) = 1).
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Claim 21

The above protocol is a CZK for 3COL, with perfect completeness and
soundness 1/ |E]|.

@ Completeness: Clear

@ Soundness: Let {c,},em be the commitments resulting from an
interaction of V with an arbitrary P*.

Define ¢: M — [3] as follows:

Vv € M: let ¢(v) be the (single) value that it is possible to decommit ¢,
into (if not in [3], set ¢(v) = 1).

If G ¢ 3COL, then I(u, v) € E s.t. ¥(u) = (V).
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Claim 21

The above protocol is a CZK for 3COL, with perfect completeness and
soundness 1/ |E]|.

@ Completeness: Clear

@ Soundness: Let {c,},em be the commitments resulting from an
interaction of V with an arbitrary P*.

Define ¢: M — [3] as follows:

Vv € M: let ¢(v) be the (single) value that it is possible to decommit ¢,
into (if not in [3], set ¢(v) = 1).

If G ¢ 3COL, then I(u, v) € E s.t. ¥(u) = (V).

Hence, V rejects such x w.p. at least 1/ |E|.
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Proving ZK

Fix a deterministic, non-aborting V* that gets no auxiliary input.
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Proving ZK

Fix a deterministic, non-aborting V* that gets no auxiliary input.
Algorithm 22 (S)
Input: A graph G = (M, E) with n = |G|
Do n- |E| times:
@ Choose ¢ = (u,v) + E.
Q Sety(u) < [3],

Q@ Sety(v) « [3]\ {¢(u)}, and
@ Sety(w)=1forwe M\ {u,v}.

©Q Vv € M: commit to ¢(v) to V* (resulting in ¢, and d,)
© Let e be the edge sent by V*.
If e= €, send (dy, ¥ (u)), (dy,(v)) to V*, output V*’s output and halt.

Otherwise, rewind V* to its initial step, and go to step 1.
Abort.
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Proving ZKX cont.
Algorithm 23 (§)

Input: G = (V, E) with n = |G|, and a (valid) coloring ¢ of G.
Do for n- |E| times:

@ Choose € «+ E.
@ Act like the honest prover does given private input ¢.
© Let e be the edge sent by V*. If e = ¢

@ Send (v(u),dy), (¥(v),d,) to V*,
@ Output V*’s output and halt.

Otherwise, rewind V* to its initial step, and go to step 1.
Abort.
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Proving ZKX cont.

Algorithm 23 (§)

Input: G = (V, E) with n = |G|, and a (valid) coloring ¢ of G.
Do for n- |E| times:

@ Choose € «+ E.

@ Act like the honest prover does given private input ¢.
© Let e be the edge sent by V*. If e = ¢

o Send (¢(U)7 dU)v (QZJ(V), dV) tO V*!
@ Output V*’s output and halt.

Otherwise, rewind V* to its initial step, and go to step 1.
Abort.

Claim 24

{((P(W(x)), V*)(X))y- }xeacoL~{SY ) (x, w(X))}xeacoL,
for any w with w(x) € Rz(x).
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Proving ZKX cont.
Algorithm 23 (§)
Input: G = (V, E) with n = |G|, and a (valid) coloring ¢ of G.
Do for n- |E| times:
@ Choose € «+ E.
@ Act like the honest prover does given private input ¢.
© Let e be the edge sentby V*. If e = &

o Send (¢(U)7 dU)v (QZJ(V), dV) tO V*!
@ Output V*’s output and halt.

Otherwise, rewind V* to its initial step, and go to step 1.
Abort.

Claim 24

{((P(W(x)), V*)(X))y- }xeacoL~{SY ) (x, w(X))}xeacoL,
for any w with w(x) € Rz(x).

Proof: ?
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Proving ZKX cont..
Claim 25 J

{SV ) (x) hxeacor ~e {SY M (x, w(X))}xeacoL, for any w with w(x) € Rz(x)..
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Proving ZKX cont..
Claim 25

{SV ) (x) hxeacor ~e {SY M (x, w(X))}xeacoL, for any w with w(x) € Rz(x).. J
Proof:
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Proving ZKX cont..
Claim 25

{SV ) (x) hxeacor ~e {SY M (x, w(X))}xeacoL, for any w with w(x) € Rz(x)..

J

Proof: Assume 3 PPT D, p € poly, w(x) € R.(x) and an infinite set Z C 3COL
S.t.

Pr [D(8¥")(x)) = 1] — Pr [D(§¥ ) (x, w(x))) = 1] = p(|1x|)
forall x € 7.
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Proving ZKX cont..
Claim 25

{8V () }xescoL ~e {SV" M (X, w(X))}xeacoL for any w with w(x) € Re(x).. J

Proof: Assume 3 PPT D, p € poly, w(x) € R.(x) and an infinite set Z C 3COL
S.t.

Pr [D(8¥")(x)) = 1] — Pr [D(§¥ ) (x, w(x))) = 1] = p(|1x|)
for all x € 7.

Hence, 3 PPT R* and b € [3] \ {1} such that

Pr{{(Snd(1), R*(x, w(x))) (1)) = 1]-Pr [{ (Sna(b), R* (x, w(x)) (1)) = 1]
1
~Ix? - p(Ix))
forall x € Z.
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Proving ZKX cont..
Claim 25

{SV ) (x) hxeacor ~e {SY M (x, w(X))}xeacoL, for any w with w(x) € Rz(x).. J

Proof: Assume 3 PPT D, p € poly, w(x) € R.(x) and an infinite set Z C 3COL
S.t.

Pr [D(8¥")(x)) = 1] — Pr [D(§¥ ) (x, w(x))) = 1] = p(|1x|)
forall x € 7.

Hence, 3 PPT R* and b € [3] \ {1} such that

Pr{{(Snd(1), R*(x, w(x))) (1)) = 1]-Pr [{ (Sna(b), R* (x, w(x)) (1)) = 1]
1
~ IxP-p(Ix))
forall x € 7.

In contradiction to the (non-uniform) security of Com.
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Remarks

@ Aborting verifiers
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Remarks

@ Aborting verifiers

@ Auxiliary inputs
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Remarks

@ Aborting verifiers
@ Auxiliary inputs

@ Soundness amplification
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Extending to all NP
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Extending to all NP

For £ € NP, let Mapy and Map, be two poly-time computable functions s.t.
@ x € L <= Mapy(x) € 3COL,

@ (x,w) € Ry < Mapy/(x,w) € RscoL(Mapy(x)).
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Extending to all NP

For £ € NP, let Mapy and Map, be two poly-time computable functions s.t.

@ x € L <= Mapy(x) € 3COL,
@ (x,w) € Ry < Mapy/(x,w) € RscoL(Mapy(x)).

We assume for simplicity that Mapy, is injective.

Let (P,V) be a CZK for 3COL.
Protocol 26 ((P.,V.))
Common input: x € {0,1}*.
P.'sinput: w € Rz (x).
@ The two parties interact in (P(Map,, (x, w)), V)(Map(x)),

where P, and V. taking the role of P and V respectively.

@ V. accepts iff V accepts in the above execution.
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Extending to all £ € AP cont.
Claim 27

(Pz,Ve)is aCZK for £ with the same completeness and soundness as
(P,V) as for 3COL.
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Extending to all £ € AP cont.
Claim 27

(Pz,Ve)is aCZK for £ with the same completeness and soundness as
(P,V) as for 3COL.

@ Completeness and soundness: Clear.

Iftach Haitner (TAU) Foundation of Cryptography April 23, 2014 37/37



Extending to all £ € AP cont.
Claim 27

(Pz,Ve)is aCZK for £ with the same completeness and soundness as
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@ Completeness and soundness: Clear.

@ Zero knowledge: Let S (an efficient) ZK simulator for (P, V) (for 3COL).
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Extending to all £ € AP cont.
Claim 27

(Pz,Ve)is aCZK for £ with the same completeness and soundness as
(P,V) as for 3COL.

@ Completeness and soundness: Clear.
@ Zero knowledge: Let S (an efficient) ZK simulator for (P, V) (for 3COL).
On input (x, z,) and verifier V*, let S output SV" *:#)(Map,(x)).
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Extending to all £ € AP cont.
Claim 27

(Pz,Ve)is aCZK for £ with the same completeness and soundness as
(P,V) as for 3COL.

@ Completeness and soundness: Clear.
@ Zero knowledge: Let S (an efficient) ZK simulator for (P, V) (for 3COL).
On input (x, z,) and verifier V*, let S output SV (%) (Map, (x)).
Claim 28

{(P(W(x)), VLN X))y brer me S (X)kxe ¥ PPTVE, W, 2. J
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Extending to all £ € AP cont.
Claim 27

(Pz,Ve)is aCZK for £ with the same completeness and soundness as
(P,V) as for 3COL.

@ Completeness and soundness: Clear.
@ Zero knowledge: Let S (an efficient) ZK simulator for (P, V) (for 3COL).
On input (x, z,) and verifier V*, let S output SV" *:#)(Map,(x)).
Claim 28
{(P(W(x)), V()N (X)ys e ~e (XD () beee ¥ PPTVE, w, 2. J

Proof:
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Extending to all £ € AP cont.
Claim 27

(Pz,Ve)is aCZK for £ with the same completeness and soundness as
(P,V) as for 3COL.

@ Completeness and soundness: Clear.
@ Zero knowledge: Let S (an efficient) ZK simulator for (P, V) (for 3COL).
On input (x, z,) and verifier V*, let S output SV (%) (Map, (x)).
Claim 28

{(P(W(x)), VLN X))y brer me S (X)kxe ¥ PPTVE, W, 2. J

Proof: Assume {(P(w(x)), Vi(2(x)(X)y. }rer #e {SE2") (X)) ver.
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Extending to all £ € AP cont.

(P2, V) is aCZK for £ with the same completeness and soundness as

Claim 27
(P,V) as for 3COL. J

@ Completeness and soundness: Clear.
@ Zero knowledge: Let S (an efficient) ZK simulator for (P, V) (for 3COL).

On input (x, z,) and verifier V*, let S output SV" *:#)(Map,(x)).

Claim 28
{(P(W(x)), VEEOONX)ys e ~e {SE D (X hxee ¥ PPTVE, w, 2. J

Proof: Assume {((Pz(w(x)), Vi(2(x))(X))y; hrer 7o {22 () bxec.
Hence, o

£{(P(VMaP (. W(X))), V) (X)) (o breson e {8V 7 0D (x) heacos
where V*(x, z, = (zx,x ")) acts like Vi (x~1, z,), and Z/(x) = (z(x 1), x~ ")
for x~1 = Map, ' (x).
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