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Part I

Interactive Proofs
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NP as a Non-interactive Proofs

Definition 1 (NP)

L ∈ NP iff ∃ and poly-time algorithm V such that:

∀x ∈ L there exists w ∈ {0,1}∗ s.t. V(x ,w) = 1

V(x ,w) = 0 for every x /∈ L and w ∈ {0,1}∗

Only |x | counts for the running time of V.

A proof system

Efficient verifier, efficient prover (given the witness)

Soundness holds unconditionally
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Interactive proofs
Protocols between efficient verifier and unbounded provers.

Definition 2 (Interactive proof)

A protocol (P,V) is an interactive proof for L, if V is PPT and:

Completeness ∀x ∈ L, Pr[〈(P,V)(x)〉V = 1] ≥ 2/3.a

Soundness ∀x /∈ L, and any algorithm P∗

Pr[〈(P∗,V)(x)〉V = 1] ≤ 1/3.

IP is the class of languages that have interactive proofs.

a〈(A(a),B(b))(c)〉B denote B’s view in random execution of (A(a),B(b))(c).

IP = PSPACE!

We typically consider (and achieve) perfect completeness.

Negligible “soundness error" achieved via repetition.

Sometime we have efficient provers via “auxiliary input".

Relaxation: Computationally sound proofs [also known as, interactive
arguments]: soundness only guaranteed against efficient (PPT) provers.
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Section 1

Interactive Proof for Graph Non-Isomorphism
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Graph isomorphism

Πm – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs G0 = ([m],E0) and G1 = ([m],E1) are isomorphic, denoted G0 ≡ G1,
if ∃π ∈ Πm such that
(u, v) ∈ E0 iff (π(u), π(v)) ∈ E1.

GI = {(G0,G1) : G0 ≡ G1} ∈ NP

Does GNI = {(G0,G1) : G0 6≡ G1} ∈ NP?

We will show a simple interactive proof for GNI
Idea: Beer tasting...
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Interactive proof for GNI

Protocol 4 ((P,V))

Common input G0 = ([m],E0),G1 = ([m],E1)

1 V chooses b ← {0,1} and π ← Πm, and sends π(Eb) to P.a

2 P send b′ to V (tries to set b′ = b).

3 V accepts iff b′ = b.

aπ(E) = {(π(u), π(v) : (u, v) ∈ E}.

Claim 5

The above protocol is IP for GNI, with perfect completeness and soundness
error 1

2 .
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Proving Claim 5

Graph isomorphism is an equivalence relation (separates the set of all
graph pairs into separate subsets)

([m], π(Ei )) is a random element in [Gi ] — the equivalence class of Gi

Hence,

G0 ≡ G1: Pr[b′ = b] ≤ 1
2 .

G0 6≡ G1: Pr[b′ = b] = 1 (i.e., P can, possibly inefficiently, extracted from
π(Ei ))
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Part II

Zero knowledge Proofs
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Where is Waldo?

Question 6
Can you prove you know where Waldo is without revealing his location?
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The concept of zero knowledge

Proving w/o revealing any addition information.

What does it mean?

Simulation paradigm.
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Zero-knowledge proof

Definition 7 (zero-knowledge proofs)

An interactive proof (P,V) is computational zero-knowledge proof (CZK) for
L ∈ NP, if ∀ PPT V∗, ∃ PPT S such that

{〈(P(w(x)),V∗)(x)〉V∗}x∈L ≈c {S(x)}x∈L.

for any function w with w(x) ∈ RL(x).

Perfect ZK (PZK)/statistical ZK (SZK) — the above distributions are
identicallly/statistically close.

1 ZK is a property of the prover.
2 ZK only required to hold wrt. true statements.
3 Trivial to achieve for L ∈ BPP.
4 The NP proof system is typically not zero knowledge.
5 Meaningful also for languages outside NP.
6 Auxiliary input. . .
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Section 2

Zero-Knowledge Proof for Graph Isomorphism
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ZK Proof for Graph Isomorphism

Idea: route finding

Protocol 8 ((P,V))

Common input: x = (G0 = ([m],E0),G1 = ([m],E1))

P’s input: a permutation π over [m] such that π(E1) = E0.

1 P chooses π′ ← Πm and sends E = π′(E0) to V.

2 V sends b ← {0,1} to P.

3 If b = 0, P sets π′′ = π′, otherwise, it sends π′′ = π′ ◦ π to V.

4 V accepts iff π′′(Eb) = E .

Claim 9

Protocol 8 is a SZK for GI, with perfect completeness and soundness 1
2 .
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Proving Claim 9

Completeness: Clear

Soundness: If exist j ∈ {0,1} for which @π′ ∈ Πm with π′(Ej ) = E , then V
rejects w.p. at least 1

2 .

Assuming V rejects w.p. less than 1
2 and let π0 and π1 be the values

guaranteed by the above observation (i.e., mapping E0 and E1 to E
respectively).
Then π−1

0 (π1(E1)) = π0 =⇒ (G0,G1) ∈ GI.

ZK: Idea – for (G0,G1) ∈ GI, it is easy to generate a random transcript
for Steps 1–2, and to be able to open it with prob 1

2 .
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The simulator

For a start, consider a deterministic cheating verifier V∗ that never aborts.

Algorithm 10 (S)

Input: x = (G0 = ([m],E0),G1 = ([m],E1))

Do |x | times:

1 Choose b′ ← {0,1} and π ← Πm, and “send" π(Eb′) to V∗(x).

2 Let b be V∗’s answer. If b = b′, send π to V∗, output V∗’s output and halt.
Otherwise, rewind V∗ to its initial step, and go to step 1.

Abort.

Claim 11

{〈(P,V∗)(x)〉V∗}x∈GI ≈ {S(x)}x∈GI

Claim 11 implies that Protocol 8 is zero knowledge.
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Proving Claim 11
Consider the following inefficient simulator:

Algorithm 12 (S′)

Input: x = (G0 = ([m],E0),G1 = ([m],E1)).

Do |x | times:

1 Choose π ← Πm and send E = π(E0) to V∗(x).

2 Let b be V∗’s answer.
W.p. 1

2 ,

1 Find π′ such that E = π′(Eb), and send it to V∗.
2 Output V∗’s output and halt.

Otherwise, rewind V∗ to its initial step, and go to step 1.

Abort.

Claim 13
S(x) ≡ S′(x) for any x ∈ GI.

Proof: ?
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Proving Claim 11 cont.

Consider a second inefficient simulator:

Algorithm 14 (S′′)

Input: x = (G0 = ([m],E0),G1 = ([m],E1))

1 Choose π ← Πm and send E = π(E0) to V∗(x).

2 Find π′ such that E = π′(Eb) and send it to V∗

3 Output V∗’s output and halt.

Claim 15
∀x ∈ GI it holds that

1 〈(P,V∗(x))〉V∗ ≡ S′′(x).

2 SD(S′′(x),S′(x)) ≤ 2−|x|.

Proof: ? (1) is clear.
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Proving Claim 15(2)

Fix t ∈ {0,1}∗ and let α = PrS′′(x)[t ].

It holds that

Pr
S′(x)

[t ] = α ·
|x|∑
i=1

(1− 1
2

)i−1 · 1
2

= (1− 2−|x|) · α

Hence, SD(S′′(x),S′(x)) ≤ 2−|x|
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Remarks

1 Perfect ZK for “expected polynomial-time" simulators.

2 Aborting verifiers.

3 Randomized verifiers.

1 The simulator first fixes the random coins of V ∗ at random.
2 Same proof goes through.

4 Negligible soundness error?
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“Transcript simulation" might not suffice!

Let (G,E,D) be a public-key encryption scheme and let L ∈ NP.

Protocol 16 ((P,V))

Common input: x ∈ {0,1}∗

P’s input: w ∈ RL(x)

1 V chooses (d ,e)← G(1|x|) and sends e to P

2 P sends c = Ee(w) to V

3 V accepts iff Dd (c) ∈ RL(x)

The above protocol has perfect completeness and soundness.

Is it zero-knowledge?

It has “transcript simulator" (at least for honest verifiers): exits PPT S
such that {〈(P(w ∈ RL(x)),V)(x)〉trans}x∈L ≈c {S(x)}x∈L,

where trans stands for the transcript of the protocol (i.e., the messages
exchange through the execution).
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Section 3

Composition of Zero-Knowledge Proofs
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Is zero-knowledge maintained under composition?

Sequential repetition?

Parallel repetition?
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Zero-knowledge proof, auxiliary input variant.

Definition 17 (zero-knowledge proofs, auxiliary input)

An interactive proof (P,V) is computational zero-knowledge proof (CZK) for
L ∈ NP, if ∀ deterministic poly-time V∗, ∃ PPT S such that:a

{〈(P(w(x)),V∗(z(x)))(x)〉V∗}x∈L ≈c {S(x , z(x))}x∈L

for any any w with w(x) ∈ RL(x) and any z : L 7→ {0,1}∗.

Perfect ZK (PZK)/statistical ZK (SZK) — the above distributions are
identicallly/statistically close.

aLength of auxiliary input does not count for the running time.

1 The protocol for GI we just saw, is also auxiliary-input SZK
2 What about randomized verifiers?
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Is zero-knowledge maintained under composition?, cont.

Auxiliary-input zero-knowledge is maintained under sequential repetition.

Zero-knowledge might not maintained under parallel repetition.

Examples:

I Chess game
I Signature game
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Section 4

Black-box Zero Knowledge

Iftach Haitner (TAU) Foundation of Cryptography April 23, 2014 26 / 37



Black-box simulators

Definition 18 (Black-box simulator)

(P,V) is CZK with black-box simulation for L ∈ NP, if ∃ oracle-aided PPT S
s.t.

{〈(P(w(x)),V∗(z(x)))(x)〉V∗}x∈L ≈c {SV∗(x,z(x))(x)}x∈L

for any deterministic polynomial-time V∗, any w with w(x) ∈ RL(x) and any
z : L 7→ {0,1}∗.

Prefect and statistical variants are defined analogously.

1 “Most simulators" are black box

2 Strictly weaker then general simulation!
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Section 5

Zero-knowledge proofs for all NP
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CZK for 3COL

Assuming that OWFs exists, we give a (black-box) CZK for 3COL .

We show how to transform it for any L ∈ NP (using that 3COL ∈ NPC).

Definition 19 (3COL)

G = (M,E) ∈ 3COL, if ∃ φ : M 7→ [3] s.t. φ(u) 6= φ(v) for every (u, v) ∈ E .

We use commitment schemes.
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The protocol
Let π3 be the set of all permutations over [3].

We use perfectly binding
commitment Com = (Snd,Rcv).

Protocol 20 ((P,V))

Common input: Graph G = (M,E) with n = |G|

P’s input: a (valid) coloring φ of G

1 P chooses π ← Π3 and sets ψ = π ◦ φ
2 ∀v ∈ M: P commits to ψ(v) using Com (with security parameter 1n).

Let cv and dv be the resulting commitment and decommitment.

3 V sends e = (u, v)← E to P

4 P sends (du, ψ(u)), (dv , ψ(v)) to V

5 V verifies that

1 Both decommitments are valid,
2 ψ(u), ψ(v) ∈ [3], and
3 ψ(u) 6= ψ(v).

Iftach Haitner (TAU) Foundation of Cryptography April 23, 2014 30 / 37



The protocol
Let π3 be the set of all permutations over [3]. We use perfectly binding
commitment Com = (Snd,Rcv).

Protocol 20 ((P,V))

Common input: Graph G = (M,E) with n = |G|

P’s input: a (valid) coloring φ of G

1 P chooses π ← Π3 and sets ψ = π ◦ φ
2 ∀v ∈ M: P commits to ψ(v) using Com (with security parameter 1n).

Let cv and dv be the resulting commitment and decommitment.

3 V sends e = (u, v)← E to P

4 P sends (du, ψ(u)), (dv , ψ(v)) to V

5 V verifies that

1 Both decommitments are valid,
2 ψ(u), ψ(v) ∈ [3], and
3 ψ(u) 6= ψ(v).

Iftach Haitner (TAU) Foundation of Cryptography April 23, 2014 30 / 37



The protocol
Let π3 be the set of all permutations over [3]. We use perfectly binding
commitment Com = (Snd,Rcv).

Protocol 20 ((P,V))

Common input: Graph G = (M,E) with n = |G|

P’s input: a (valid) coloring φ of G

1 P chooses π ← Π3 and sets ψ = π ◦ φ
2 ∀v ∈ M: P commits to ψ(v) using Com (with security parameter 1n).

Let cv and dv be the resulting commitment and decommitment.

3 V sends e = (u, v)← E to P

4 P sends (du, ψ(u)), (dv , ψ(v)) to V

5 V verifies that

1 Both decommitments are valid,
2 ψ(u), ψ(v) ∈ [3], and
3 ψ(u) 6= ψ(v).

Iftach Haitner (TAU) Foundation of Cryptography April 23, 2014 30 / 37



Claim 21
The above protocol is a CZK for 3COL, with perfect completeness and
soundness 1/ |E |.

Completeness: Clear

Soundness: Let {cv}v∈M be the commitments resulting from an
interaction of V with an arbitrary P∗.

Define φ : M 7→ [3] as follows:
∀v ∈ M: let φ(v) be the (single) value that it is possible to decommit cv
into (if not in [3], set φ(v) = 1).

If G /∈ 3COL, then ∃(u, v) ∈ E s.t. ψ(u) = ψ(v).

Hence, V rejects such x w.p. at least 1/ |E |.
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Proving ZK

Fix a deterministic, non-aborting V∗ that gets no auxiliary input.

Algorithm 22 (S)

Input: A graph G = (M,E) with n = |G|

Do n · |E | times:

1 Choose e′ = (u, v)← E .

1 Set ψ(u)← [3],
2 Set ψ(v)← [3] \ {ψ(u)}, and
3 Set ψ(w) = 1 for w ∈ M \ {u, v}.

2 ∀v ∈ M: commit to ψ(v) to V∗ (resulting in cv and dv )

3 Let e be the edge sent by V∗.
If e = e′, send (du, ψ(u)), (dv , ψ(v)) to V∗, output V∗’s output and halt.

Otherwise, rewind V∗ to its initial step, and go to step 1.

Abort.
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Proving ZK cont.

Algorithm 23 (S̃)

Input: G = (V ,E) with n = |G|, and a (valid) coloring φ of G.

Do for n · |E | times:

1 Choose e′ ← E .

2 Act like the honest prover does given private input φ.

3 Let e be the edge sent by V∗. If e = e′

1 Send (ψ(u),du), (ψ(v),dv ) to V∗,
2 Output V∗’s output and halt.

Otherwise, rewind V∗ to its initial step, and go to step 1.
Abort.

Claim 24

{〈(P(w(x)),V∗)(x)〉V∗}x∈3COL≈{S̃V∗(x)(x ,w(x))}x∈3COL,
for any w with w(x) ∈ RL(x).

Proof: ?
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Proving ZK cont..

Claim 25

{SV∗(x)(x)}x∈3COL ≈c {S̃V∗(x)(x ,w(x))}x∈3COL, for any w with w(x) ∈ RL(x)..

Proof: Assume ∃ PPT D, p ∈ poly, w(x) ∈ RL(x) and an infinite set I ⊆ 3COL
s.t.

Pr
[
D(SV∗(x)(x)) = 1

]
− Pr

[
D(S̃V∗(x)(x ,w(x))) = 1

]
≥ 1

p(|x |)

for all x ∈ I.

Hence, ∃ PPT R∗ and b ∈ [3] \ {1} such that

Pr
[〈

(Snd(1),R∗(x ,w(x))) (1|x|)
〉

R∗
= 1

]
−Pr

[〈
(Snd(b),R∗(x ,w(x))) (1|x|)

〉
R∗
= 1

]
≥ 1

|x |2 · p(|x |)

for all x ∈ I.

In contradiction to the (non-uniform) security of Com.
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Remarks

Aborting verifiers

Auxiliary inputs

Soundness amplification
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Extending to all NP

For L ∈ NP, let MapX and MapW be two poly-time computable functions s.t.

x ∈ L ⇐⇒ MapX (x) ∈ 3COL,

(x ,w) ∈ RL ⇐⇒ MapW (x ,w) ∈ R3COL(MapX (x)).

We assume for simplicity that MapX is injective.

Let (P,V) be a CZK for 3COL.

Protocol 26 ((PL,VL))

Common input: x ∈ {0,1}∗.

PL’s input: w ∈ RL(x).

1 The two parties interact in (P(MapW (x ,w)),V)(MapX (x)),

where PL and VL taking the role of P and V respectively.

2 VL accepts iff V accepts in the above execution.
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Extending to all L ∈ NP cont.

Claim 27
(PL,VL) is a CZK for L with the same completeness and soundness as
(P,V) as for 3COL.

Completeness and soundness: Clear.

Zero knowledge: Let S (an efficient) ZK simulator for (P,V) (for 3COL).

On input (x , zx ) and verifier V∗, let SL output SV∗(x,zx )(MapX (x)).

Claim 28

{〈(PL(w(x)),V∗L(z(x)))(x)〉V∗L}x∈L ≈c {S
V∗L(x,z(x))
L (x)}x∈L ∀ PPT V∗L, w , z.

Proof: Assume {〈(PL(w(x)),V∗L(z(x))(x)〉V∗L}x∈L 6≈c {S
V∗L(x,z(x))
L (x)}x∈L.

Hence,
{〈(P(MapW (x ,w(x))),V∗)(x)〉V∗(z′(x))}x∈3COL 6≈c {SV∗(x,z′(x))(x)}x∈3COL,

where V∗(x , z ′x = (zx , x−1)) acts like V∗L(x−1, zx ), and z ′(x) = (z(x−1), x−1)

for x−1 = Map−1
X (x).
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