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Part I

Joint and Conditional Entropy
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Joint entropy

▸ Recall that the entropy of rv X over X , is defined by

H(X) = − ∑
x∈X

PX (x) log PX (x)

▸ Shorter notation: for X ∼ p, let H(X) = −∑x p(x) log p(x)
(where the summation is over the domain of X ).

▸ The joint entropy of (jointly distributed) rvs X and Y with (X ,Y ) ∼ p, is

H(X ,Y ) = −∑
x,y

p(x ,y) log p(x ,y)

This is simply the entropy of the rv Z = (X ,Y ).

▸ Example:

X
Y 0 1
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4

1
4

1 1
2 0
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1
2

log
1
1
2
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4
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−
1
4

log
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1
4

=
1
2
⋅ 1 +

1
2
⋅ 2 = 1

1
2
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Joint entropy, cont.

▸ The joint entropy of (X1, . . . ,Xn) ∼ p, is

H(X1, . . . ,Xn) = − ∑
x1,...,xn

p(x1, . . . ,xn) log p(x1, . . . ,xn)
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Conditional entropy

▸ Let (X ,Y ) ∼ p.
▸ For x ∈ Supp(X), the random variable Y ∣X = x is well defined.
▸ The entropy of Y conditioned on X , is defined by

H(Y ∣X) ∶= E
x←X

H(Y ∣X = x) = E
X

H(Y ∣X)

▸ Measures the uncertainty in Y given X .
▸ Let pX & pY ∣X be the marginal & conational distributions induced by p.

H(Y ∣X) = ∑
x∈X

pX (x) ⋅H(Y ∣X = x)

= − ∑
x∈X

pX (x) ∑
y∈Y

pY ∣X (y ∣x) log pY ∣X (y ∣x)

= − ∑
x∈X ,y∈Y

p(x ,y) log pY ∣X (y ∣x)

= − E
(X ,Y)

log pY ∣X (Y ∣X)

= − E
Z=pY ∣X (Y ∣X)

log Z
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Conditional entropy, cont.

▸ Example
X

Y 0 1
0 1

4
1
4

1 1
2 0

What is H(Y ∣X) and H(X ∣Y )?

H(Y ∣X) = E
x←X

H(Y ∣X = x)

=
1
2

H(Y ∣X = 0) +
1
2

H(Y ∣X = 1)

=
1
2

H(
1
2
,
1
2
) +

1
2

H(1,0) =
1
2
.

H(X ∣Y ) = E
y←Y

H(X ∣Y = y)

=
3
4

H(X ∣Y = 0) +
1
4

H(X ∣Y = 1)

=
3
4

H(
1
3
,
2
3
) +

1
4

H(1,0) = 0.6887≠H(Y ∣X).
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Conditional entropy, cont..

▸

H(X ∣Y ,Z) = E
(y,z)←(Y ,Z)

H(X ∣Y = y ,Z = z)

= E
y←Y

E
z←Z ∣Y=y

H(X ∣Y = y ,Z = z)

= E
y←Y

E
z←Z ∣Y=y

H((X ∣Y = y)∣Z = z)

= E
y←Y

H(Xy ∣Zy)

for (Xy ,Zy) = (X ,Z)∣Y = y
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Relating mutual entropy to conditional entropy

▸ What is the relation between H(X), H(Y ), H(X ,Y ) and H(Y ∣Y )?

▸ Intuitively, 0 ≤ H(Y ∣X) ≤ H(Y )

Non-negativity is immediate. We prove upperbound later.

▸ H(Y ∣X) = H(Y ) iff X and Y are independent.

▸ In our example, H(Y ) = H( 3
4 ,

1
4) >

1
2 = H(Y ∣X)

▸ Note that H(Y ∣X = x) might be larger than H(Y ) for some x ∈ Supp(X).

▸ Chain rule (proved next). H(X ,Y ) = H(X) +H(Y ∣X)

▸ Intuitively, uncertainty in (X ,Y ) is the uncertainty in X plus the
uncertainty in Y given X .

▸ H(Y ∣X) = H(X ,Y ) −H(X) is as an alternative definition for H(Y ∣X).
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Chain rule (for the entropy function)

Claim 1
For rvs X ,Y , it holds that H(X ,Y ) = H(X) +H(Y ∣X).

▸ Proof immediately follow by the grouping axiom:

X
Y

P1,1 . . . P1,n

⋮ ⋮ ⋮

Pn,1 . . . Pn,n

Let qi = ∑
n
j=1 pi,j

H(P1,1, . . . ,Pn,n)

= H(q1, . . . ,qn) +∑qiH(
Pi,1

qi
, . . . ,

Pi,n

qi
)

= H(X) +H(Y ∣X).

▸ Another proof. Let (X ,Y ) ∼ p.

▸ p(x ,y) = pX (x) ⋅ pY ∣X (x ∣y).

Ô⇒ log p(x ,y) = log pX (x) + log pY ∣X (x ∣y)

Ô⇒ E log p(X ,Y ) = E log pX (X) +E log pY ∣X (Y ∣X)

Ô⇒ H(X ,Y ) = H(X) +H(Y ∣X).
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H(Y ∣X) ≤ H(Y )

Jensen inequality: for any concave function f , values t1, . . . , tk and
λ1, . . . , λk ∈ [0,1] with ∑i λi = 1, it holds that ∑i λi f (ti) ≤ f (∑i λi ti).
Let (X ,Y ) ∼ p. H(Y ∣X) = −∑

x,y
p(x ,y) log pY ∣X (y ∣x)

= ∑
x,y

p(x ,y) log
pX (x)
p(x ,y)

= ∑
x,y

pY (y) ⋅
p(x ,y)
pY (y)

log
pX (x)
p(x ,y)

= ∑
y

pY (y)∑
x

p(x ,y)
pY (y)

log
pX (x)
p(x ,y)

≤ ∑
y

pY (y) log∑
x

p(x ,y)
pY (y)

pX (x)
p(x ,y)

= ∑
y

pY (y) log
1

pY (y)
= H(Y ).
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H(Y ∣X) ≤ H(Y ) cont.

▸ Assume X and Y are independent (i.e., p(x ,y) = pX (x) ⋅ pY (y) for any
x ,y )

Ô⇒ pY ∣X = pY

Ô⇒ H(Y ∣X) = H(Y )
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Other inequalities

▸ H(X),H(Y ) ≤ H(X ,Y ) ≤ H(X) +H(Y ).
Follows from H(X ,Y ) = H(X) +H(Y ∣X).

▸ Left inequality since H(Y ∣X) is non negative.
▸ Right inequality since H(Y ∣X) ≤ H(Y ).

▸ H(X ,Y ∣Z) = H(X ∣Z) +H(Y ∣X ,Z) (by chain rule)

▸ H(X ∣Y ,Z) ≤ H(X ∣Y )

Proof: H(X ∣Y ,Z) = E
Z ,Y

H(X ∣ Y ,Z)

= E
Y

E
Z ∣Y

H(X ∣ Y ,Z)

= E
Y

E
Z ∣Y

H((X ∣ Y ) ∣ Z)

≤ E
Y

E
Z ∣Y

H(X ∣ Y )

= E
Y

H(X ∣ Y )

= H(X ∣Y ).
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Chain rule (for the entropy function), general case

Claim 2
For rvs X1, . . . ,Xk , it holds that
H(X1, . . . ,Xk) = H(Xi) +H(X2∣X1) + . . . +H(Xk ∣X1, . . . ,Xk−1).

Proof: ?

▸ Extremely useful property!

▸ Analogously to the two variables case, it also holds that:

▸ H(Xi) ≤ H(X1, . . . ,Xk) ≤ ∑i H(Xi)

▸ H(X1, . . . ,XK ∣Y ) ≤ ∑i H(Xi ∣Y )
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Examples

▸ (from last class) Let X1, . . . ,Xn be Boolean iid with Xi ∼ ( 1
3 ,

2
3).

Compute H(X1, . . . ,Xn)

▸ As above, but under the condition that ⊕i Xi = 0 ?

▸ Via chain rule?
▸ Via mapping?
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Applications

▸ Let X1, . . . ,Xn be Boolean iids with Xi ∼ (p,1 − p) and let X = X1, . . . ,Xn.
Let f be such that Pr [f (X) = z] = Pr [f (X) = z ′], for every k ∈ N and
z,z ′ ∈ {0,1}k . Let K = ∣f (X)∣.
Prove that E K ≤ n ⋅ h(p).

▸

n ⋅ h(p) = H(X1, . . . ,Xn)

≥ H(f (X),K )

= H(K ) +H(f (X) ∣ K )

= H(K ) +E K
≥ E K

▸ Interpretation

▸ Positive results
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Applications cont.

▸ How many comparisons it takes to sort n elements?

Let A be a sorter for n elements algorithm making t comparisons.
What can we say about t?

▸ Let X be a uniform random permutation of [n] and let Y1, . . . ,Yt be the
answers A gets when sorting X .

▸ X is determined by Y1, . . . ,Yt .

Namely, X = f (Y1, . . . ,Yt) for some function f .
▸ H(X) = log n!

▸

H(X) = H(f (Y1, . . . ,Yn))

≤ H(Y1, . . . ,Yn)

≤ ∑
i

H(Yi)

= t

Ô⇒ t ≥ log n! = Θ(n log n)

Iftach Haitner (TAU) Application of Information Theory, Lecture 2 Nov 4, 2014 16 / 26



Concavity of entropy function

Let p = (p1, . . . ,pn) and q = (q1, . . . ,qn) be two distributions, and for λ ∈ [0,1]
consider the distribution τλ = λp + (1 − λ)q.
(i.e., τλ = (λp1 + (1 − λ)q1, . . . , λpn + (1 − λ)qn).

Claim 3
H(τλ) ≥ λH(p) + (1 − λ)H(q)

Proof:

▸ Let Y over {0,1} be 1 wp λ

▸ Let X be distributed according to p if Y = 0 and according to q otherwise.

▸ H(τλ) = H(X) ≥ H(X ∣ Y ) = λH(p) + (1 − λ)H(q)

We are now certain that we drew the graph of the (two-dimensional) entropy
function right...
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Part II

Mutual Information
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Mutual information

▸ I(X ; Y ) — the “information" that X gives on Y

▸

I(X ; Y ) ∶= H(Y ) −H(Y ∣X)

= H(Y ) − (H(X ,Y ) −H(X))

= H(X) +H(Y ) −H(X ,y)
= I(Y ; X).

▸ The mutual information that X gives about Y equals the mutual
information that Y gives about X .

▸ I(X ; X) = H(X)

▸ I(X ; f (X)) = H(f (X)) (and smaller then H(X) is f is non-injective)

▸ I(X ; Y ,Z) ≥ I(X ; Y ), I(X ; Z) (since H(X ∣ Y ,Z) ≤ H(X ∣ Y ),H(X ∣ Z))

▸ I(X ; Y ∣Z) ∶= H(Y ∣Z) −H(Y ∣X ,Z)

▸ I(X ; Y ∣Z) = I(Y ; X ∣Z) (since I(X ′; Y ′) = I(Y ′; X ′))
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Numerical example

▸ Example

X
Y 0 1

0 1
4

1
4

1 1
2 0

I(X ; Y ) = H(X) −H(X ∣Y )

= 1 −
3
4
⋅ h(

1
3
)

= I(Y ; X)

= H(Y ) −H(Y ∣X)

= h(
1
4
) −

1
2

h(
1
2
)
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Chain rule for mutual information

Claim 4 (Chain rule for mutual information)
For rvs X1, . . . ,Xk ,Y , it holds that
I(X1, . . . ,Xk ; Y ) = I(X ; Y ) + I(X2; Y ∣X1) + . . . + I(Xk ; Y ∣X1, . . . ,Xk−1).

Proof: ? HW
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Examples

▸ Let X1, . . . ,Xn be iid with Xi ∼ (p,1−p), under the condition that⊕i xi = 0.
Compute I(X1, . . . ,Xn−1; Xn).

By chain rule

I(X1, . . . ,Xn−1; Xn)

= H(X1; Xn) +H(X2; Xn∣X1) + . . . +H(Xn−1; Xn∣X1, . . . ,Xn−2)

= 0 + 0 + . . . + 1 = 1.

▸ Let T and F be the top and front side, respectively, of a 6-sided fair dice.
Compute I(T ; F).

I(T ; F) = H(T ) −H(T ∣F)

= log 6 − log 4
= log 3 − 1.
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Part III

Data processing
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Data processing Inequality

Definition 5 (Markov Chain)

Rvs (X ,Y ,Z) ∼ p form a Markov chain, denoted X → Y → Z , if
p(x ,y ,z) = pX (x) ⋅ pY ∣X (y ∣x) ⋅ pZ ∣Y (z ∣y), for all x ,y ,z.

Example: random walk on graph.

Claim 6
If X → Y → Z , then I(X ; Y ) ≥ I(X ; Z).

▸ By Chain rule, I(X ; Y ,Z) = I(X ; Z) + I(X ; Y ∣Z) = I(X ; Y ) + I(X ; Z ∣Y ).
▸ I(X ; Z ∣Y ) = 0

▸ pZ ∣Y=y = pZ ∣Y=y,X=x for any x ,y
▸

I(X ; Z ∣Y ) = H(Z ∣Y ) −H(Z ∣Y ,X)

= E
Y

H(pZ ∣Y=y) − E
Y ,X

H(pZ ∣Y=y,X=x)

= E
Y

H(pZ ∣Y=y) −E
Y

H(pZ ∣Y=y) = 0.

▸ Since I(X ; Y ∣Z) ≥ 0, we conclude I(X ; Y ) ≥ I(X ; Z).
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Fano’s Inequality

▸ How well can we guess X from Y?

▸ Could with no error if H(X ∣Y ) = 0. What if H(X ∣Y ) is small?
Theorem 7 (Fano’s inequality)

For any rvs X and Y , and any (even random) g, it holds that

h(Pe) +Pe log ∣X ∣ ≥ H(X ∣X̂) ≥ H(X ∣Y )

for X̂ = g(Y ) and Pe = Pr [X̂ ≠ X ].

▸ Note that Pe = 0 implies that H(X ∣Y ) = 0

▸ The inequality can be weekend to 1 +Pe log ∣X ∣ ≥ H(X ∣Y ),

▸ Alternatively, to Pe ≥
H(X ∣Y)−1

log∣X ∣

▸ Intuition for ∝ 1
log∣X ∣

▸ We call X̂ an estimator for X (from Y ).
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Proving Fano’s inequality

Let X and Y be rvs, let X̂ = g(Y ) and Pe = Pr [X̂ ≠ X ].

▸ Let E = {
1, X̂ ≠ X
0, X̂ = X .

H(E ,X ∣X̂) = H(X ∣X̂) +H(E ∣X , X̂)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

= H(E ∣X̂)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

≤H(E)=h(Pe)

+H(X ∣E , X̂)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤Pe log∣X ∣(?)

▸ It follows that h(Pe) +Pe log ∣X ∣ ≥ H(X ∣X̂)

▸ Since X → Y → X̂ , it holds that I(X ; Y ) ≥ I(X ; X̂)

Ô⇒ H(X ∣X̂) ≥ H(X ∣Y )
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