Application of Information Theory, Lecture 2 Joint \& Conditional Entropy, Mutual Information

 Handout ModeIftach Haitner
Tel Aviv University.

Nov 4, 2014

Part I

Joint and Conditional Entropy

Joint entropy

- Recall that the entropy of $\mathrm{rv} X$ over \mathcal{X}, is defined by

$$
H(X)=-\sum_{x \in \mathcal{X}} \mathrm{P}_{X}(x) \log \mathrm{P}_{X}(x)
$$

- Shorter notation: for $X \sim p$, let $H(X)=-\sum_{x} p(x) \log p(x)$ (where the summation is over the domain of X).
- The joint entropy of (jointly distributed) rvs X and Y with $(X, Y) \sim p$, is

$$
H(X, Y)=-\sum_{x, y} p(x, y) \log p(x, y)
$$

This is simply the entropy of the $\mathrm{rv} Z=(X, Y)$.

- Example:

x^{Y}	0	1
0	$\frac{1}{4}$	$\frac{1}{4}$
1	$\frac{1}{2}$	0

$$
\begin{aligned}
H(X, Y) & =-\frac{1}{2} \log \frac{1}{\frac{1}{2}}-\frac{1}{4} \log \frac{1}{\frac{1}{4}}-\frac{1}{4} \log \frac{1}{\frac{1}{4}} \\
& =\frac{1}{2} \cdot 1+\frac{1}{2} \cdot 2=1 \frac{1}{2}
\end{aligned}
$$

Joint entropy, cont.

- The joint entropy of $\left(X_{1}, \ldots, X_{n}\right) \sim p$, is

$$
H\left(X_{1}, \ldots, X_{n}\right)=-\sum_{x_{1}, \ldots, x_{n}} p\left(x_{1}, \ldots, x_{n}\right) \log p\left(x_{1}, \ldots, x_{n}\right)
$$

Conditional entropy

- Let $(X, Y) \sim p$.
- For $x \in \operatorname{Supp}(X)$, the random variable $Y \mid X=x$ is well defined.
- The entropy of Y conditioned on X, is defined by

$$
H(Y \mid X):=\underset{x \leftarrow X}{\mathrm{E}} H(Y \mid X=x)=\underset{X}{\mathrm{E}} H(Y \mid X)
$$

- Measures the uncertainty in Y given X.
- Let $p_{X} \& p_{Y \mid X}$ be the marginal \& conational distributions induced by p.

$$
\begin{aligned}
H(Y \mid X) & =\sum_{x \in \mathcal{X}} p_{X}(x) \cdot H(Y \mid X=x) \\
& =-\sum_{x \in \mathcal{X}} p_{X}(x) \sum_{y \in \mathcal{Y}} p_{Y \mid X}(y \mid x) \log p_{Y \mid X}(y \mid x) \\
& =-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log p_{Y \mid X}(y \mid x) \\
& =-\sum_{(X, Y)}^{\mathrm{E}} \log p_{Y \mid X}(Y \mid X) \\
& =-\sum_{Z=p_{Y \mid X}(Y \mid X)}^{\mathrm{E}} \log Z
\end{aligned}
$$

Conditional entropy, cont.

- Example

x^{Y}	0	1
0	$\frac{1}{4}$	$\frac{1}{4}$
1	$\frac{1}{2}$	0

What is $H(Y \mid X)$ and $H(X \mid Y)$?

$$
\begin{aligned}
H(Y \mid X) & =\underset{x \leftarrow X}{E} H(Y \mid X=x) \\
& =\frac{1}{2} H(Y \mid X=0)+\frac{1}{2} H(Y \mid X=1) \\
& =\frac{1}{2} H\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} H(1,0)=\frac{1}{2} . \\
H(X \mid Y) & =\underset{y \leftarrow Y}{E} H(X \mid Y=y) \\
& =\frac{3}{4} H(X \mid Y=0)+\frac{1}{4} H(X \mid Y=1) \\
& =\frac{3}{4} H\left(\frac{1}{3}, \frac{2}{3}\right)+\frac{1}{4} H(1,0)=0.6887 \neq H(Y \mid X) .
\end{aligned}
$$

Conditional entropy, cont..

$$
\begin{aligned}
H(X \mid Y, Z) & =\underset{(y, z) \leftarrow(Y, Z)}{\mathrm{E}} H(X \mid Y=y, Z=z) \\
& =\underset{y \leftarrow Y Y \leftarrow Z \mid Y=y}{\mathrm{E}} H(X \mid Y=y, Z=z) \\
& =\underset{y \leftarrow Y Z \leftarrow Z \mid Y=y}{\mathrm{E}} H((X \mid Y=y) \mid Z=z) \\
& =\underset{y \leftarrow Y}{\mathrm{E}} H\left(X_{y} \mid Z_{y}\right)
\end{aligned}
$$

$$
\text { for }\left(X_{y}, Z_{y}\right)=(X, Z) \mid Y=y
$$

Relating mutual entropy to conditional entropy

- What is the relation between $H(X), H(Y), H(X, Y)$ and $H(Y \mid Y)$?
- Intuitively, $0 \leq H(Y \mid X) \leq H(Y)$

Non-negativity is immediate. We prove upperbound later.

- $H(Y \mid X)=H(Y)$ iff X and Y are independent.
- In our example, $H(Y)=H\left(\frac{3}{4}, \frac{1}{4}\right)>\frac{1}{2}=H(Y \mid X)$
- Note that $H(Y \mid X=x)$ might be larger than $H(Y)$ for some $x \in \operatorname{Supp}(X)$.
- Chain rule (proved next). $H(X, Y)=H(X)+H(Y \mid X)$
- Intuitively, uncertainty in (X, Y) is the uncertainty in X plus the uncertainty in Y given X.
- $H(Y \mid X)=H(X, Y)-H(X)$ is as an alternative definition for $H(Y \mid X)$.

Chain rule (for the entropy function)

Claim 1

For rvs X, Y, it holds that $H(X, Y)=H(X)+H(Y \mid X)$.

- Proof immediately follow by the grouping axiom:

x^{Y}			
	$P_{1,1}$	\ldots	$P_{1, n}$
	\vdots	\vdots	\vdots
	$P_{n, 1}$	\ldots	$P_{n, n}$

$$
\begin{aligned}
& \text { Let } q_{i}=\sum_{j=1}^{n} p_{i, j} \\
& \qquad \begin{aligned}
& H\left(P_{1,1}, \ldots, P_{n, n}\right) \\
&=H\left(q_{1}, \ldots, q_{n}\right)+\sum q_{i} H\left(\frac{P_{i, 1}}{q_{i}}, \ldots, \frac{P_{i, n}}{q_{i}}\right) \\
&=H(X)+H(Y \mid X) .
\end{aligned}
\end{aligned}
$$

- Another proof. Let $(X, Y) \sim p$.
- $p(x, y)=p_{X}(x) \cdot p_{Y \mid X}(x \mid y)$.
$\Longrightarrow \log p(x, y)=\log p_{X}(x)+\log p_{Y \mid X}(x \mid y)$
$\Longrightarrow \mathrm{E} \log p(X, Y)=\mathrm{E} \log p_{X}(X)+\mathrm{E} \log p_{Y \mid X}(Y \mid X)$
$\Longrightarrow H(X, Y)=H(X)+H(Y \mid X)$.

$H(Y \mid X) \leq H(Y)$

Jensen inequality: for any concave function f, values t_{1}, \ldots, t_{k} and $\lambda_{1}, \ldots, \lambda_{k} \in[0,1]$ with $\sum_{i} \lambda_{i}=1$, it holds that $\sum_{i} \lambda_{i} f\left(t_{i}\right) \leq f\left(\sum_{i} \lambda_{i} t_{i}\right)$.
Let $(X, Y) \sim p$.

$$
\begin{aligned}
H(Y \mid X) & =-\sum_{x, y} p(x, y) \log p_{Y \mid X}(y \mid x) \\
& =\sum_{x, y} p(x, y) \log \frac{p_{X}(x)}{p(x, y)} \\
& =\sum_{x, y} p_{Y}(y) \cdot \frac{p(x, y)}{p_{Y}(y)} \log \frac{p_{X}(x)}{p(x, y)} \\
& =\sum_{y} p_{Y}(y) \sum_{x} \frac{p(x, y)}{p_{Y}(y)} \log \frac{p_{X}(x)}{p(x, y)} \\
& \leq \sum_{y} p_{Y}(y) \log \sum_{x} \frac{p(x, y)}{p_{Y}(y)} \frac{p_{X}(x)}{p(x, y)} \\
& =\sum_{y} p_{Y}(y) \log \frac{1}{p_{Y}(y)}=H(Y) .
\end{aligned}
$$

$H(Y \mid X) \leq H(Y)$ cont.

- Assume X and Y are independent (i.e., $p(x, y)=p_{X}(x) \cdot p_{Y}(y)$ for any x, y)
$\Longrightarrow p_{Y \mid X}=p_{Y}$
$\Longrightarrow H(Y \mid X)=H(Y)$

Other inequalities

- $H(X), H(Y) \leq H(X, Y) \leq H(X)+H(Y)$.

Follows from $H(X, Y)=H(X)+H(Y \mid X)$.

- Left inequality since $H(Y \mid X)$ is non negative.
- Right inequality since $H(Y \mid X) \leq H(Y)$.
- $\mathrm{H}(X, Y \mid Z)=H(X \mid Z)+H(Y \mid X, Z)$
(by chain rule)
- $H(X \mid Y, Z) \leq \mathrm{H}(X \mid Y)$

Proof:

$$
\begin{aligned}
H(X \mid Y, Z) & =\underset{Z, Y}{\mathrm{E}} H(X \mid Y, Z) \\
& =\underset{Y}{\mathrm{E}} \underset{Z \mid Y}{E} H(X \mid Y, Z) \\
& =\underset{Y}{\mathrm{E}} \underset{Z \mid Y}{\mathrm{E}} H((X \mid Y) \mid Z) \\
& \leq \underset{Y}{\mathrm{E}} \underset{Z \mid Y}{\mathrm{E}} H(X \mid Y) \\
& =\underset{Y}{\mathrm{E}} H(X \mid Y) \\
& =H(X \mid Y) .
\end{aligned}
$$

Chain rule (for the entropy function), general case

Claim 2

For rvs X_{1}, \ldots, X_{k}, it holds that
$H\left(X_{1}, \ldots, X_{k}\right)=H\left(X_{i}\right)+H\left(X_{2} \mid X_{1}\right)+\ldots+H\left(X_{k} \mid X_{1}, \ldots, X_{k-1}\right)$.
Proof: ?

- Extremely useful property!
- Analogously to the two variables case, it also holds that:
- $H\left(X_{i}\right) \leq H\left(X_{1}, \ldots, X_{k}\right) \leq \sum_{i} H\left(X_{i}\right)$
- $H\left(X_{1}, \ldots, X_{K} \mid Y\right) \leq \sum_{i} H\left(X_{i} \mid Y\right)$

Examples

- (from last class) Let X_{1}, \ldots, X_{n} be Boolean iid with $X_{i} \sim\left(\frac{1}{3}, \frac{2}{3}\right)$. Compute $H\left(X_{1}, \ldots, X_{n}\right)$
- As above, but under the condition that $\oplus_{i} X_{i}=0$?
- Via chain rule?
- Via mapping?

Applications

- Let X_{1}, \ldots, X_{n} be Boolean iids with $X_{i} \sim(p, 1-p)$ and let $X=X_{1}, \ldots, X_{n}$. Let f be such that $\operatorname{Pr}[f(X)=z]=\operatorname{Pr}\left[f(X)=z^{\prime}\right]$, for every $k \in \mathbb{N}$ and $z, z^{\prime} \in\{0,1\}^{k}$. Let $K=|f(X)|$.
Prove that $\mathrm{E} K \leq n \cdot h(p)$.

$$
\begin{aligned}
n \cdot h(p) & =H\left(X_{1}, \ldots, X_{n}\right) \\
& \geq H(f(X), K) \\
& =H(K)+H(f(X) \mid K) \\
& =H(K)+\mathrm{E} K \\
& \geq E K
\end{aligned}
$$

- Interpretation
- Positive results

Applications cont.

- How many comparisons it takes to sort n elements?

Let A be a sorter for n elements algorithm making t comparisons.
What can we say about t ?

- Let X be a uniform random permutation of [n] and let Y_{1}, \ldots, Y_{t} be the answers A gets when sorting X.
- X is determined by Y_{1}, \ldots, Y_{t}.

Namely, $X=f\left(Y_{1}, \ldots, Y_{t}\right)$ for some function f.

- $H(X)=\log n!$

$$
\begin{aligned}
H(X) & =H\left(f\left(Y_{1}, \ldots, Y_{n}\right)\right) \\
& \leq H\left(Y_{1}, \ldots, Y_{n}\right) \\
& \leq \sum_{i} H\left(Y_{i}\right) \\
& =t
\end{aligned}
$$

$\Longrightarrow t \geq \log n!=\Theta(n \log n)$

Concavity of entropy function

Let $p=\left(p_{1}, \ldots, p_{n}\right)$ and $q=\left(q_{1}, \ldots, q_{n}\right)$ be two distributions, and for $\lambda \in[0,1]$ consider the distribution $\tau_{\lambda}=\lambda p+(1-\lambda) q$. (i.e., $\tau_{\lambda}=\left(\lambda p_{1}+(1-\lambda) q_{1}, \ldots, \lambda p_{n}+(1-\lambda) q_{n}\right)$.

Claim 3

$H\left(\tau_{\lambda}\right) \geq \lambda H(p)+(1-\lambda) H(q)$
Proof:

- Let Y over $\{0,1\}$ be $1 \mathrm{wp} \lambda$
- Let X be distributed according to p if $Y=0$ and according to q otherwise.
- $H\left(\tau_{\lambda}\right)=H(X) \geq H(X \mid Y)=\lambda H(p)+(1-\lambda) H(q)$

We are now certain that we drew the graph of the (two-dimensional) entropy function right...

Part II

Mutual Information

Mutual information

- $I(X ; Y)$ - the "information" that X gives on Y

$$
\begin{aligned}
I(X ; Y) & :=H(Y)-H(Y \mid X) \\
& =H(Y)-(H(X, Y)-H(X)) \\
& =H(X)+H(Y)-H(X, y) \\
& =I(Y ; X) .
\end{aligned}
$$

- The mutual information that X gives about Y equals the mutual information that Y gives about X.
- $I(X ; X)=H(X)$
- $I(X ; f(X))=H(f(X))$ (and smaller then $H(X)$ is f is non-injective)
- $I(X ; Y, Z) \geq I(X ; Y), I(X ; Z) \quad($ since $H(X \mid Y, Z) \leq H(X \mid Y), H(X \mid Z))$
- $I(X ; Y \mid Z):=H(Y \mid Z)-H(Y \mid X, Z)$
- $I(X ; Y \mid Z)=I(Y ; X \mid Z) \quad\left(\right.$ since $\left.I\left(X^{\prime} ; Y^{\prime}\right)=I\left(Y^{\prime} ; X^{\prime}\right)\right)$

Numerical example

- Example

x^{Y}	0	1
0	$\frac{1}{4}$	$\frac{1}{4}$
1	$\frac{1}{2}$	0

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y) \\
& =1-\frac{3}{4} \cdot h\left(\frac{1}{3}\right) \\
& =I(Y ; X) \\
& =H(Y)-H(Y \mid X) \\
& =h\left(\frac{1}{4}\right)-\frac{1}{2} h\left(\frac{1}{2}\right)
\end{aligned}
$$

Chain rule for mutual information

Claim 4 (Chain rule for mutual information)

For rvs X_{1}, \ldots, X_{k}, Y, it holds that
$I\left(X_{1}, \ldots, X_{k} ; Y\right)=I(X ; Y)+I\left(X_{2} ; Y \mid X_{1}\right)+\ldots+I\left(X_{k} ; Y \mid X_{1}, \ldots, X_{k-1}\right)$.
Proof: ? HW

Examples

- Let X_{1}, \ldots, X_{n} be iid with $X_{i} \sim(p, 1-p)$, under the condition that $\oplus_{i} X_{i}=0$. Compute $I\left(X_{1}, \ldots, X_{n-1} ; X_{n}\right)$.
By chain rule

$$
\begin{aligned}
& I\left(X_{1}, \ldots, X_{n-1} ; X_{n}\right) \\
& \quad=H\left(X_{1} ; X_{n}\right)+H\left(X_{2} ; X_{n} \mid X_{1}\right)+\ldots+H\left(X_{n-1} ; X_{n} \mid X_{1}, \ldots, X_{n-2}\right) \\
& \quad=0+0+\ldots+1=1
\end{aligned}
$$

- Let T and F be the top and front side, respectively, of a 6 -sided fair dice. Compute I($T ; F$).

$$
\begin{aligned}
I(T ; F) & =H(T)-H(T \mid F) \\
& =\log 6-\log 4 \\
& =\log 3-1 .
\end{aligned}
$$

Part III

Data processing

Data processing Inequality

Definition 5 (Markov Chain)

Rvs $(X, Y, Z) \sim p$ form a Markov chain, denoted $X \rightarrow Y \rightarrow Z$, if $p(x, y, z)=p_{X}(x) \cdot p_{Y \mid X}(y \mid x) \cdot p_{Z \mid Y}(z \mid y)$, for all x, y, z.

Example: random walk on graph.

Claim 6

If $X \rightarrow Y \rightarrow Z$, then $I(X ; Y) \geq I(X ; Z)$.

- By Chain rule, $I(X ; Y, Z)=I(X ; Z)+I(X ; Y \mid Z)=I(X ; Y)+I(X ; Z \mid Y)$.
- $I(X ; Z \mid Y)=0$
- $p_{Z \mid Y=y}=p_{Z \mid Y=y, X=x}$ for any x, y

$$
\begin{aligned}
I(X ; Z \mid Y) & =H(Z \mid Y)-H(Z \mid Y, X) \\
& =\underset{Y}{E_{Y}} H\left(p_{Z \mid Y=y}\right)-\underset{Y, X}{E} H\left(p_{Z \mid Y=y, X=x}\right) \\
& =\underset{Y}{E} H\left(p_{Z \mid Y=y}\right)-\underset{Y}{E} H\left(p_{Z \mid Y=y}\right)=0 .
\end{aligned}
$$

- Since $I(X ; Y \mid Z) \geq 0$, we conclude $I(X ; Y) \geq I(X ; Z)$. \square

Fano's Inequality

- How well can we guess X from Y ?
- Could with no error if $H(X \mid Y)=0$. What if $H(X \mid Y)$ is small?

Theorem 7 (Fano's inequality)

For any rvs X and Y, and any (even random) g, it holds that

$$
h\left(P_{e}\right)+P_{e} \log |\mathcal{X}| \geq H(X \mid \hat{X}) \geq H(X \mid Y)
$$

for $\hat{X}=g(Y)$ and $P_{e}=\operatorname{Pr}[\hat{X} \neq X]$.

- Note that $P_{e}=0$ implies that $H(X \mid Y)=0$
- The inequality can be weekend to $1+P_{e} \log |\mathcal{X}| \geq H(X \mid Y)$,
- Alternatively, to $P_{e} \geq \frac{H(X \mid Y)-1}{\log |X|}$
- Intuition for $\propto \frac{1}{\log |X|}$
- We call \hat{X} an estimator for X (from Y).

Proving Fano's inequality

Let X and Y be rvs, let $\hat{X}=g(Y)$ and $P_{e}=\operatorname{Pr}[\hat{X} \neq X]$.

- Let $E= \begin{cases}1, & \hat{X} \neq X \\ 0, & \hat{X}=X .\end{cases}$

$$
\begin{aligned}
H(E, X \mid \hat{X}) & =H(X \mid \hat{X})+\underbrace{H(E \mid X, \hat{X})}_{=0} \\
& =\underbrace{H(E \mid \hat{X})}_{\leq H(E)=h\left(P_{e}\right)}+\underbrace{H(X \mid E, \hat{X})}_{\leq P_{e} \log |X|(?)}
\end{aligned}
$$

- It follows that $h\left(P_{e}\right)+P_{e} \log |\mathcal{X}| \geq H(X \mid \hat{X})$
- Since $X \rightarrow Y \rightarrow \hat{X}$, it holds that $I(X ; Y) \geq I(X ; \hat{X})$
$\Longrightarrow H(X \mid \hat{X}) \geq H(X \mid Y)$

