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Abstract. It is well known (cf. Impagliazzo and Luby [in Proceedings of the 30th Annual IEEE
Symposium on Foundations of Computer Science, 1989, pp. 230–235]) that the existence of almost all
“interesting” cryptographic applications, i.e., ones that cannot hold information theoretically, implies
one-way functions. An important exception where the above implication is not known, however, is the
case of coin-flipping protocols. Such protocols allow honest parties to mutually flip an unbiased coin,
while guaranteeing that even a cheating (efficient) party cannot bias the output of the protocol by
much. Impagliazzo and Luby proved that coin-flipping protocols that are safe against negligible bias
do imply one-way functions, and, very recently, Maji, Prabhakaran, and Sahai [in Proceedings of the
2001 51st Annual IEEE Symposium on Foundations of Computer Science, 2010, pp. 613–622] proved
the same for constant-round protocols (with any nontrivial bias). For the general case, however, no
such implication was known. We make progress towards answering the above fundamental question,

showing that (strong) coin-flipping protocols safe against a constant bias (concretely,
√

2−1
2

− o(1))
imply one-way functions.
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1. Introduction. A central focus of modern cryptography has been to investi-
gate the weakest possible assumptions under which various cryptographic primitives
exist. This direction of research has been quite fruitful, and minimal assumptions are
known for a wide variety of primitives. In particular, it has been shown that one-way
functions (i.e., easy-to-compute but hard-to-invert functions) imply pseudorandom
generators, pseudorandom functions, symmetric-key encryption/message authentica-
tion, commitment schemes, and digital signatures [10, 11, 16, 14, 24, 25, 12, 26], where
one-way functions (OWFs) were also shown to be implied by each of these primitives
[19].

An important exception for which we have failed to prove the above rule is that
of coin-flipping protocols. A coin-flipping protocol [4] allows the honest parties to
mutually flip an unbiased coin, where even a cheating (efficient) party cannot bias
the outcome of the protocol by much. While one-way functions are known to imply
coin-flipping protocols [4, 24, 16], the other direction is less clear: Impagliazzo and
Luby [19] showed that negligible-bias coin-flipping protocols (i.e., such that an effi-
cient cheating strategy cannot make the common output to be 1, or to be 0, with
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390 IFTACH HAITNER AND ERAN OMRI

probability greater than 1
2 + neg(n)) imply one-way functions. Very recently, Maji,

Prabhakaran, and Sahai [21] proved the same implication for (12 − 1/ poly(n))-bias
constant-round protocols, where n is the security parameter of the protocol. We have
no such implications, however, for any other choice of parameters.

1.1. Our result. In this work, we make progress towards answering the above
fundamental question, showing that (strong) coin-flipping protocols, safe against a
constant bias, imply one-way functions. We note that previous works [19, 21] also
applied to weak coin-flipping protocols (in some restricted setting).1 Our result,
however, does not apply to weak coin-flipping protocols, and we consider only strong
coin-flipping protocols (see section 6 for further discussion). We prove the following
theorem.

Theorem 1 (informal). The existence of a (
√
2−1
2 − o(1))-bias coin-flipping pro-

tocol (of any round complexity) implies one-way functions.

1.2. Related results. As mentioned above, Impagliazzo and Luby [19] showed
that negligible-bias coin-flipping protocols imply one-way functions, and Maji, Prab-
hakaran, and Sahai [21] proved the same for (12 − 1/ poly(n))-bias constant-round

protocols. The authors of [21] also proved that (14 − o(1))-bias coin-flipping protocols
imply that BPP �= NP. Finally, it is well known that (12−υ(n))-bias coin-flipping pro-
tocols, for any υ(n) > 0, imply that BPP �= PSPACE. All of the above results extend
to weak coin-flipping protocols: in such protocols, each party has a different predeter-
mined value towards which it cannot bias the output coin.2 A quick overview of the
techniques underlying the above results can be found in section 1.3.3. A summary of
the known results is given in Table 1.

Information theoretic coin-flipping protocols (i.e., those whose security holds against
all powerful adversaries) were shown to exist in the quantum world; Mochon [22]
presents an ε-bias quantum weak coin-flipping protocol for any ε > 0. Chailloux and

Kerenidis [5] present a (
√
2−1
2 − ε)-bias quantum strong coin-flipping protocol for any

ε > 0 (which is optimal [20]). A key step in [5] is a reduction from strong to weak
coin-flipping protocols, which also holds in the classical world (see section 6 for further
discussion). Multiparty coin flipping in the full information model was considered by
Ben-Or and Linial [3]. They gave both upper and lower bounds on the bias that a
single party can inflict on a coin-flipping protocol.

A related line of work considers fair coin-flipping protocols. In this setting the
honest party is required to always output a bit, whatever the other party does. In
particular, a cheating party might bias the output coin just by aborting. We know
that one-way functions imply fair (1/

√
m)-bias coin-flipping protocols [1, 7], where m

is the round complexity of the protocols, and this quantity is known to be tight for
O(n/ logn)-round protocols with fully black-box reductions [9], where n is the input
length of the one-way function. Oblivious transfer, on the other hand, implies fair
1/m-bias protocols [23, 2], which is known to be tight [7].

1.3. Our technique. Let (A,B) be a balanced coin-flipping protocol (i.e., the
common output of the honest parties is a uniformly chosen bit), and let f be the

1See section 2.2 for the definition of (strong) coin-flipping protocols and weak coin-flipping pro-
tocols.

2While such protocols are strictly weaker than full-fledged coin-flipping protocols, they are still
useful in many settings, for instance, when Alice and Bob are trying to decide who is doing the
dishes.
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COIN FLIPPING WITH CONSTANT BIAS IMPLIES OWFs 391

Table 1

Results summary.

Coin-flipping protocol type Implication Paper

( 1
4
− o(1))-bias BPP �= NP Maji et al. [21]

Nontrivial bias, constant round BPP �= NP Zachos [27]

Nontrivial bias BPP �= PSPACE Folklore

Negligible bias Existence of OWFs Impagliazzo and Luby [19]

( 1
2
− o(1))-bias, constant round Existence of OWFs Maji et al. [21]

(
√

2−1
2

− o(1))-bias, strong coin flipping Existence of OWFs This work3

following efficiently computable function:

f(rA, rB, i) = Trans(rA, rB)i,Out(rA, rB),

where rA and rB are the random coins of A and B, respectively, Trans(rA, rB)i is
the first i messages exchanged in the execution (A(rA),B(rB)), and Out(rA, rB) is the
common output of this execution (i.e., the coin). Assuming that one-way functions
do not exist, it follows that distributional one-way functions do not exist either [19],
and therefore there exists an efficient inverter Inv that, given a random output y of f ,
samples a random preimage of y. Concretely, for any p ∈ poly there exists a ppt Inv
such that the following holds:

SD((X, f(X)), (Inv(f(X ′)), f(X ′))) ≤ 1/p(|X |),(1)

where X and X ′ are uniformly distributed over the domain of f , and SD stands for
statistical distance. In the following we show how to use the above Inv to bias the
output of (A,B).

Note that, given a random partial transcript t of (A,B), the call Inv(t, 1) returns a
random pair of random coins for the parties that is (1) consistent with t, and (2) yields
a common output 1. In other words, one can use Inv to sample a random continuation
of t which leads to a 1-leaf—a full transcript of (A,B) in which the common output is
1. As we show below, such capability is an extremely useful tool for a dishonest party
trying to bias the outcome of this protocol. In particular, we consider the following
cheating strategy A for A (a cheating strategy B for B is analogously defined): given
that the partial transcript is t, A uses Inv to sample a pair of random coins (rA, rB)
that is consistent with t and leads to a 1-leaf (A aborts if Inv fails to provide such
coins), and then acts as the honest A does on the random coins rA, given the transcript
t. Namely, at each of its turns A takes the first step of a random continuation that
leads to a 1-leaf.

Assuming that Inv behaves as its ideal variant that returns a uniform random
preimage on any transcript, it is not that hard to prove (see outline in section 1.3.1)
that either A or B can significantly bias the outcome of the protocol. Proving that
the same holds with respect to the real inverter, however, is not trivial. Algorithm
Inv is guaranteed to work well only on random transcript/output pairs, as induced by
a random output of f (namely, a transcript/output pair defined by a random honest
execution of (A,B)). A random execution of (A,B) or of (A,B) (i.e., with one party

3As mentioned above, while previous results also apply to weak coin flipping, our result applies
only to strong coin flipping.
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392 IFTACH HAITNER AND ERAN OMRI

being controlled by the adversary) might, however, generate a query distribution that
is very far from that induced by f .

Fortunately, we manage to prove (and this is the crux of our proof; see outline
in section 1.3.2) that the following holds: we call a query nontypical if its probability
mass with respect to the execution of (A,B) (or of (A,B)) is much larger than its mass
with respect to the output distribution of f . We first show that even if both A and
B totally fail on such nontypical queries, then either A or B can significantly bias the
outcome of the protocol assuming access to the ideal sampler. Since on typical queries
the real sampler should perform almost as well as its ideal version, we conclude that
the cheating probability of either A or B is high, also when the cheating strategies
are using the real sampler.

1.3.1. When using the ideal sampler. Consider a mental experiment in
which the cheating strategies A and B (both using the ideal sampler) are interacting
with each other. It is not hard to see that the common output of (A,B) in this case
is always 1. Moreover, the transcript distribution induced by such an execution is
that of a random execution of the “honest” protocol (A,B) conditioned so that the
common output is 1 (i.e., a random 1-leaf). In particular, the probability of each
1-leaf in a random execution of (A,B) is twice its probability in (A,B).

The probability of a 1-leaf t happening is the product of the probabilities that
in each stage of the protocol the relevant party sends the “right” message. Such a
product can be partitioned into two parts: the part corresponding to the actions of A,
and the part corresponding to the actions of B. In particular, either A or B contributes
a factor of value at least

√
2 to the probability of t. Namely, the probability of a 1-leaf

t in either (A,B) or in (A,B) is
√
2 times its probability in (A,B). Summing over

all 1-leaves, it follows that the common output of either (A,B) or (A,B) is 1 with
probability at least

√
2 · 12 = 1/

√
2. That is, either A or B can bias the output of

(A,B) by at least 1√
2
− 1

2 =
√
2−1
2 .

The above intuition can be made formal in proving the success probability of
the cheating strategies with respect to the ideal sampler. In the actual treatment,
given in section 4, however, we use a slightly different approach and prove this result
inductively up the protocol tree. This inductive approach is useful when considering
the attacks with respect to the real sampler. A similar approach was used by Ben-Or
and Linial [3] to bound from below the success probability of the best attack strategy
in any multiparty coin-flipping protocol in the full information model. Below, we
mention that the mental experiment in which A and B interact with each other does
give the intuition for what we call the “compensation lemma” (see Lemma 19), which
plays a crucial role in proving the success of the attacks when using the real sampler.

1.3.2. Using the real sampler. By our earlier discussion, it suffices to prove
that the following holds: either A or B can significantly bias the output of the protocol
when given access to the ideal sampler, even if both cheating strategies are assumed
to fail completely when asking nontypical queries. To this end, we partition the non-
typical queries into two: (1) queries (t, 1) such that the probability to visit t in (A,B)
or (A,B) is much larger than this probability with respect to f (i.e., superpolynomial
in n larger than Pr[f(X) = (t, ∗)]), and (2) queries (t, 1) such that the probability of
ending in a 1-leaf conditioned on t is small (i.e., Pr[f(X) = (t, 1) | f(X) = (t, ∗)] is
small).

Indeed, the main lemma of this work, Lemma 13, considers the cheating strategies
A and B with access to the ideal sampler. Lemma 13 states that either A or B can
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bias the output of (A,B) by almost
√
2−1
2 , even if they completely fail on nontypical

queries. The proof of Theorem 1 (restated as Theorem 14) then follows by using the
fact that, on typical queries, replacing the ideal sampler with the real inverter may
cause very little effect. In the following, we outline the proof of Lemma 13, focusing
on the first type of nontypical queries, which we find to be the more interesting case.

For q ∈ N, let UnBalA contain the transcripts whose weights induced by (A,B)
are at least q times larger than their weights in the honest protocol (UnBalB is defined
similarly). Using the intuition of the mental experiment described in section 1.3.1,
one can show that the probability of every transcript t induced by a random execution
of (A,B) is at most twice its probability in a random (honest) execution of (A,B).
Hence, the following “compensation effect” happens: if the probability of a transcript
t in (a random execution of) (A,B) is q times larger than its probability in (A,B),
then the probability of t in (A,B) is q times smaller than this value. We conclude
that UnBalA is visited by BIdeal with probability at most 1/q.

To show that both A and B can be assumed to fail completely when asking
queries in UnBalA (the argument for UnBalB is analogous), we consider another mental
experiment. In this mental experiment, we replace the probabilities of ending up with
a 1-leaf, upon reaching a transcript in UnBalA, by associating a new value to each
such transcript. These values are no longer probability measures. Specifically, for all
t ∈ UnBalA, we replace the probability that (A,B) ends up in a 1-leaf conditioned
on t with the value 1/

√
q, and replace the probability that (A,B) ends up in a 1-leaf

conditioned on t with the value
√
q (this is only a mental experiment, so we can

allow these values to be larger than 1). Using a similar approach to that used in
section 1.3.1, we can prove that, in the above experiment, it is still true that either

A or B biases the output of (A,B) by
√
2−1
2 .

Finally, we note that we can safely fail both cheating strategies on UnBalA almost
without changing their overall success probability in the above experiment. Specifi-
cally, A will not suffer much since it visits these nodes with probability at most 1 and
gains only 1/

√
q upon visiting them. On the other hand, B will not suffer much since

it visits these nodes with probability at most 1/q and gains only
√
q upon visiting

them (hence, these nodes contribute at most 1/
√
q to its overall success). Observe

that the probabilities induced by an execution of (A,B) (or of (A,B)) on typical tran-
scripts in the real scenario, as well as the success probability of the adversary upon
visiting these transcripts, are exactly the same as in the above mental experiment.

We conclude that either A or B biases the output of (A,B) by
√
2−1
2 − 1/ poly, even

assuming that both cheating strategies totally fail on nontypical queries.

1.3.3. Perspective. The sampling strategy we used above was inspired by the
“smooth sampling” approach used by [6, 13, 17] in the setting of parallel repetition
of interactive arguments to sample a random wining strategy for the cheating prover.
Such an approach can be thought of as a “hedged greedy” strategy, using the recent
terminology of Maji, Prabhakaran, and Sahai [21], as it does not necessarily choose the
best move at each step (the one that maximizes the success probability of the honest
strategy), but rather hedges its choice according to the relative success probability.
The authors of [21] used a different hedged greedy strategy to bias any coin-flipping
protocol by 1

4 −o(1). They then showed how to implement this strategy using an NP-
oracle, yielding that (14 − o(1))-bias coin-flipping protocols imply BPP �= NP. Their
proof, however, does not follow through using a one-way function inverter and, thus,
does not yield that such protocols imply that one-way functions do not exist.
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394 IFTACH HAITNER AND ERAN OMRI

Impagliazzo and Luby [19] used a more conservative method to bias a coin-flipping
protocol by 1√

m
(wherem is the protocol’s round complexity). Their cheating strategy

(which, in turn, was inspired by [8]) follows the prescribed one (i.e., acts honestly),
while deviating from it at most once through the execution. In particular, at each
step it estimates its potential gain from deviating from the prescribed strategy. If
this gain is large enough, it deviates from the prescribed strategy and then continues
as the honest party would. Since their strategy needs to estimate only the potential
gain before deviating from the prescribed strategy, it is rather straightforward to prove
that it can be implemented using a one-way function inverter (in particular, the query
distribution induced by their strategy is simply the output distribution of the one-way
function).

Finally, we mention that the cheating strategy used by the authors of [21] to
prove their result for constant-round protocols takes an approach that is very different
from the above. Specifically, their cheating strategy uses a one-way function inverter
to implement (with close resemblance) the well-known recursive PSPACE-attack on
such protocols. Unlike the above greedy strategies, the running time of this recursive
approach is doubly exponential in the round complexity of the protocol (which is still
efficient for constant-round protocols).

Paper organization. General notation and definitions used throughout the pa-
per are given in section 2. Our adversarial strategy to bias any coin-flipping protocol
is presented in section 3. In section 4 we analyze this strategy assuming access to an
ideal sampler. Finally, in section 5 we extend this analysis to the real sampler.

2. Preliminaries.

2.1. Notation. We use calligraphic letters to denote sets, uppercase for random
variables, and lowercase for values. For an integer n ∈ N, we let [n] = {1, . . . , n}.

A function μ : N → [0, 1] is negligible if μ(n) = n−ω(1), where neg denotes an ar-
bitrary negligible function. (In particular, f(n) = neg(n) means that f is negligible,
while f(n) > neg(n) means that f is not negligible.) We let poly denote an arbi-
trary polynomial, and let ppt denote the set of probabilistic algorithms (i.e., Turing
machines) that run in strict polynomial time. Given a two-party protocol (A,B) and
inputs iA and iB, we let Out(A(iA),B(iB)) and (A(iA),B(iB)) denote the (joint) output
and transcript, respectively, of the execution of (A,B) with inputs iA and iB.

Given a random variable X , we write x ← X to indicate that x is selected
according to X . Similarly, given a finite set S, we let s← S denote that s is selected
according to the uniform distribution on S. We adopt the convention that when the
same random variable occurs several times in an expression, all occurrences refer to a
single sample. For example, Pr[f(X) = X ] is defined to be the probability that when
x ← X , we have f(x) = x. We write Un to denote the random variable distributed
uniformly over {0, 1}n. Given a measure M over a set S, the support of M is defined
as Supp(M) := {s ∈ S : M(s) > 0}. The statistical distance of two distributions P
and Q over a finite set U , denoted by SD(P,Q), is defined as 1

2 ·
∑

u∈U |P (u)−Q(u)|.
We use the following notion of measure dominance.

Definition 2 (dominating measure). A measure M is said to δ-dominate a
measure M ′ if the following hold:

1. Supp(M ′) ⊆ Supp(M), and
2. M(y) ≥ δ ·M ′(y) for every y ∈ Supp(M ′).

We stress that it is meaningful to consider δ-dominance even for 0 < δ ≤ 1.
Indeed, for our purposes, it will suffice for a measureM to 1/ poly-dominate a measure
M ′.

D
ow

nl
oa

de
d 

01
/3

0/
18

 to
 1

32
.6

7.
8.

10
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COIN FLIPPING WITH CONSTANT BIAS IMPLIES OWFs 395

2.2. Coin-flipping protocols. In a (strong) coin-flipping protocol the honest
execution outputs an unbiased coin, where no (efficient) cheating party can bias the
outcome by much. This intuitive description is captured using the following definition.

Definition 3. A polynomial-time protocol (A,B) is a δ-bias (strong) coin-flipping
protocol if the following hold:

1. Pr[Out(A,B)(n) = 0] = Pr[Out(A,B)(n) = 1] = 1
2 , and

2. for any ppts A and B, any c ∈ {0, 1}, and all large enough n,

Pr[Out(A,B)(n) = c], Pr[Out(A,B)(n) = c] ≤ 1

2
+ δ(n).

In the case that δ(n) = neg(n), we simply say that (A,B) is a coin-flipping protocol.
It is common to also consider protocols with weaker correctness guarantee than

the one we defined above, where with some small probability the output of the protocol
in neither 0 nor 1. All the results we present in this paper can be easily generalized
to handle such relaxations.

Remark 4 ((partially) fair coin flipping). There are settings in which honest
parties are required to always output a bit c ∈ {0, 1}, even if the other party arbitrarily
deviates from the prescribed protocol (and specifically, upon premature abort by the
other party). Constructing coin-flipping protocols in this setting is a much more
challenging task. Specifically, it is known that constructing an m-round δ-bias coin-
flipping protocol for δ ∈ o(1/m) is unconditionally impossible. We mention that since
any δ-bias coin-flipping protocol in this setting (i.e., with partial fairness) is also a
δ-bias coin-flipping protocol in our setting, our results hold for such protocols as well.

A weaker variant of coin-flipping protocols (that we do not consider in this paper)
is that of weak coin-flipping protocols. Such protocols are useful in the case that
parties have (a priori known) opposite preferences.

Definition 5. A polynomial time protocol (A,B) is a weak δ-bias coin-flipping
protocol if the following hold:

1. Pr[Out(A,B)(n) = 0] = Pr[Out(A,B)(n) = 1] = 1
2 , and

2. there exist bits cA �= cB ∈ {0, 1} such that the following holds for any ppts A
and B, and large enough n:

Pr[Out(A,B)(n) = cA], Pr[Out(A,B)(n) = cB] ≤
1

2
+ δ(n).

In the case that δ(n) = neg(n), we simply say that (A,B) is a weak coin-flipping
protocol.

2.3. One-way functions and distributional one-way functions. An effi-
ciently computable function is one-way if it is hard to invert it on a random output.

Definition 6 (one-way functions). A polynomially computable function f :
{0, 1}n �→ {0, 1}�(n) is one-way if the following holds for any ppt A:

Pr
y←f(Un)

[A(y) ∈ f−1(y)] = neg(n).

A seemingly weaker requirement is being distributional one-way, meaning that it
is hard to sample a random preimage of a random output. The following definition is
due to Impagliazzo and Luby [19].

Definition 7 (distributional one-way functions). A polynomially computable
function f : {0, 1}n �→ {0, 1}�(n) is distributional one-way if there exists p ∈ poly
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such that the following holds for any ppt A:

SD ((Un, f(Un)), (A(f(U
′
n)), f(U

′
n))) ≥

1

p(n)
.

Clearly, any one-way function is also a distributional one-way function. While the
other implication is not necessarily always true, it was shown in Impagliazzo and Luby
[19] that the existence of distributional one-way functions implies that of (standard)
one-way functions. In particular, [19] proved that if one-way functions do not exist,
then any efficiently computable function has an inverter of the following form. The
full proof of this implication can be found in [18].

Definition 8 (γ-inverter). Let f : D → R be a deterministic function. An
algorithm Inv is called a γ-inverter of f if the following holds:

SD ((U, f(U)), (Inv(f(U ′)), f(U ′))) ≤ γ,

where U,U ′ are uniformly distributed in D.
We call a 0-inverter of f an ideal inverter of f . Alternatively, an ideal inverter

of f is an algorithm that on y ∈ R returns a uniformly chosen element (preimage) in
f−1(y).

Lemma 9 (see [19, Lemma 1]). Assume that one-way functions do not exist; then
for any polynomially computable function f : {0, 1}n �→ {0, 1}�(n) and any p ∈ poly,
there exists a ppt Inv that is a 1/p(n)-inverter of f for infinitely many n’s.

Note that nothing is guaranteed when invoking a good inverter for f (i.e., γ-
inverter for some small γ) on an arbitrary distribution D. Yet, the following lemma
states that if D is dominated by the output distribution of f , then such good inverters
are useful.

Lemma 10. Let f : D → R be a deterministic function, and let Ideal be an ideal
inverter of f . Let A be an oracle-aided algorithm that makes at most m oracle queries
to Ideal, where all of A’s queries are in R. For i ∈ [m], let the random variable Qi

describe the ith query of A, where Qi is set to ⊥ if the ith query is not asked, and
define the measure Mi as follows:

Mi(y) =

{
Pr[Qi = y], y ∈ R,
0 otherwise.

The probability is taken over the randomness of the algorithm A and the randomness of
the ideal inverter Ideal. Let U denote the uniform distribution over D and suppose that
f(U) δ-dominates Mi for all i ∈ [m] (according to Definition 2); then the following
holds for any γ-inverter Inv of f :

SD

(
AIdeal,AInv

)
≤ γ ·m

δ
.

Proof. We prove the lemma in two steps. In the first step, we prove that, for the
case that m = 1, it holds that

SD

(
AIdeal,AInv

)
≤ γ

δ
.

Then, we prove the case where m > 1 by reducing it back to the case of m = 1 (by
considering a slightly different algorithm).
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The case of m = 1. Since A behaves exactly the same in both cases up to the point
at which the query is asked to the inverter, and since upon the same query/answer
pair, the algorithm still behaves exactly the same in both cases, we may bound our
discussion to the statistical distance between the distributions on query/answer pairs
according to each random process. We denote byQ the random variable describing the
query (note that this random variable is identically distributed in both scenarios). We
denote by XIdeal the random variable describing the answer given in an execution with
the ideal inverter, and denote by XInv the random variable describing the answer given
in an execution with the γ-inverter Inv. Since in the case Q = ⊥ we are guaranteed
that XIdeal = XInv = ⊥, we have that

SD

(
AIdeal,AInv

)
≤ 1

2
·

∑
q∈R,a∈{0,1}∗

∣∣∣∣PrIdeal
[Q = q ∧ Ideal(q) = a]− Pr

Inv
[Q = q ∧ Inv(q) = a]

∣∣∣∣
=

1

2
·

∑
q∈R,a∈{0,1}∗

|Pr[Q = q] · Pr[Ideal(q) = a]

− Pr[Q = q] · Pr[Inv(q) = a]|

=
1

2
·

∑
q∈R,a∈{0,1}∗

|Pr[Q = q] · (Pr[Ideal(q) = a]− Pr[Inv(q) = a])| .

Since M1 is δ-dominated by f(U), we have that Pr[Q = q] = Mi(q) ≤ Pr[f(U)=q]
δ for

every q ∈ R. Hence,

SD

(
AIdeal,AInv

)
≤ 1

2
·

∑
q∈R,a∈{0,1}∗

∣∣∣∣Pr[f(U) = q]

δ
· (Pr[Ideal(q) = a]− Pr[Inv(q) = a])

∣∣∣∣
=

1

δ
· 1
2
·

∑
q∈R,a∈{0,1}∗

|Pr[f(U) = q] · Pr[Ideal(q) = a]− Pr[f(U) = q] · Pr[Inv(q) = a])|

=
1

δ
· SD ((U, f(U)), (Inv(f(U ′)), f(U ′))) ≤ γ

δ
.

The case of m > 1. Define a sequence {Hi}mi=0 of hybrid random variables by
letting the ith hybrid describe the output of the algorithm A in an execution where
the first i queries of A are answered by Ideal and the remaining m − i queries are
answered by Inv. Specifically, we have that Hm ≡ AIdeal and that H0 ≡ AInv. By the
triangle inequality, we have that

SD

(
AIdeal,AInv

)
= SD (H0, Hm)

≤
m∑
i=1

SD (Hi−1, Hi).

Therefore, it suffices to prove that for every i it holds that SD (Hi−1, Hi) ≤ γ
δ . Ob-

serve that except for the ith query, both random variables describe the same random
process, which can be viewed as an algorithm that asks only a single oracle query.
Furthermore, since the first i−1 queries were asked to the ideal inverter, it holds that
the ith query is indeed distributed as Qi. Thus, the lemma follows by applying the
proof for the case where m = 1.
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3. The attack. Let (A,B) be a coin-tossing protocol. In the following we define
adversarial strategies for both A and B to bias the output of the protocol towards 1.
The strategies for biasing the output towards 0 are defined analogously.

3.1. Notation. We associate the following random variables with an (honest)
execution of (A,B). Throughout, we let n be the security parameter of the protocol
and omit it whenever its value is clear from the context. We assume for simplicity
that the protocol’s messages are single bits, and naturally view a valid execution of
the protocol as a path in the binary tree T = Tn, whose nodes are associated with all
possible (valid) transcripts. The root of T , corresponding to the empty transcript,
is denoted by the empty string λ, and the children of a node t (if they exist) are
denoted by t ◦ 0 and t ◦ 1 (◦ stands for string concatenation), corresponding to the
two (possibly partial) executions with these transcripts. A node with no descendants
(associated with a full transcript) is called a leaf, where we assume for simplicity that
a nonleaf node has exactly two descendants. Given a node t, we let |t| denote its
depth, and for i ∈ [|t|] we let ti denote the prefix of length i of t, which describes the
ith node on the path from λ to t (e.g., t0 = λ).

We call a transcript t an A node (resp., B node), if this is A’s (resp., B’s) turn
to send the next message, where without loss of generality the root λ is an A node.
We also assume that the parties always exchange m = m(n) messages, and that each
party uses s = s(n) random coins, denoted rA and rB, respectively. Given a pair
of s-long random strings (rA, rB), we let Trans(rA, rB) = (A(rA),B(rB)) (i.e., the full
transcript induced by the execution of (A(rA),B(rB))).

For t ∈ T , let Uni(t) denote a random sample of (rA, rB), conditioned on Trans(rA,
rB)|t| = t. Given random coins rA ∈ {0, 1}s, we let NextA(rA; t) be the next message
sent by A with random coins rA after seeing the transcript t, and we define the
random variable A(t) as NextA(RA; t), where (RA, ∗) ← Uni(t). (NextB(rB; t) and
B(t) are defined analogously.) Finally, we assume without loss of generality that the
transcript of an (honest) execution of the protocol always defines an output, 0 or 1
(consistent for both parties). For a leaf t, we let Vt be the output of the protocol
determined by this leaf, where if t is an internal node, we define Vt as

Vt = E
(rA,rB)←Uni(t)

[VTrans(rA,rB)].(2)

Namely, Vt is the probability that (A,B) outputs 1, conditioned on t being the current
transcript.

Similarly, we associate the following random variables with an execution of (A,B),
where A is a cheating strategy for A: we denote the random coins used by A by rA,
and for t ∈ T we let UniA(t) denote a random sample of (rA, rB), conditioned on
(A(rA),B(rB))|t| = t. Given random coins rA ∈ {0, 1}∗, we let NextA(rA; t) be
the next message sent by A with random coins rA after seeing the transcript t,
and we define the random variable A(t) as NextA(RA; t), where (RA, ∗) ← UniA(t).
(NextB(rB; t) and B(t) are defined analogously.) Finally, we define V At as

V At = E
(rA,rB)←UniA(t)

[V(A(rA),B(rB))],(3)

where we set V(A(rA),B(rB)) = 0 if (A(rA),B(rB)) aborts. Namely, V At is a lower
bound on the probability that (A,B) outputs 1, with the condition that t is the
current transcript. (V Bt is defined analogously.)
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3.2. The adversary A. We now present an adversarial strategy A for A, de-
signed to bias the outcome of the protocol towards 1 (the adversarial strategy B for B
is defined analogously). In each round A uses a “sampling oracle” Samp to sample a
value for the coins of A, and then acts as the (honest) A would, given these coins and
the current transcript. Roughly speaking, the objective of Samp is to return a random
pair of coins (rA, rB) consistent with t (i.e., Trans(rA, rB)|t| = t), which leads to a 1-
node (i.e., VTrans(rA,rB) = 1). In the following we analyze the success probability of A
when using different implementations for Samp. Specifically, in section 4 we consider
an “ideal sampler” (which is not necessarily efficient). Then, in section 5, we consider
a more realistic implementation of the sampler (specifically, using the inverter that
will stem from the assumption that one-way functions do not exist). Before describing
and analyzing each of these samplers, we first give the formal description of A.

Algorithm 11 (adversary A).
Input: Security parameter n.
Oracle: Samp.
Operation: Let t be the current transcript.

1. Halt if t is a leaf node.
2. Let (rA, ∗)← Samp(t). Abort if rA =⊥.
3. Send NextA(rA; t) to B.

Given an instantiation of Samp, we view ASamp as a random algorithm whose
random coins are those used by Samp (independent coins for each call).

4. Using the ideal sampler. Our “ideal sampler” Ideal is defined as follows:
on input t ∈ T , Ideal returns a random sample (rA, rB) ← Uni(t), conditioned on
VTrans(rA,rB) = 1. In the case that Vt = 0, Ideal returns ⊥. The following lemma
asserts that at least one of the parties has a good cheating strategy given oracle
access to this sampler.

Lemma 12. For any n ∈ N and any transcript t ∈ Tn, it holds that

V A
Ideal

t · V BIdeal

t ≥ Vt.

Assuming that Vλn = 1/2, it holds that either V A
Ideal

λ ≥ 1/
√
2 or V B

Ideal

λ ≥ 1/
√
2.

Namely, either AIdeal or BIdeal can bias the output of the protocol by 1√
2
− 1

2 .

Proof of Lemma 12. We prove the lemma using induction up the protocol tree.
The proof is immediate for a leaf node and for an internal node t with Vt = 0 (i.e.,
when Ideal(t) =⊥). In the following t is a fixed internal node (with Vt > 0). Thus,

for the sake of simplicity of notation, we let A = AIdeal, V = Vt, and V A = V A
Ideal

t .

Similarly, for j ∈ {0, 1} we let Vj = Vtj and V Aj = V A
Ideal

tj . (V B and V Bj are defined

analogously.) We need to prove that V A · V B ≥ V , assuming that V Aj · V Bj ≥ Vj for
both j ∈ {0, 1}. We assume that t is an A node (the other case is analogous). Let
β = Pr[A(t) = 1] (i.e., the probability that the next message of the honest A is 1).
Note that V = β · V1 + (1− β) · V0, and that

Pr[A(t) = 1]

= Pr
(rA,rB)←Uni(t)

[Trans(rA, rB)|t|+1 = t ◦ 1 | VTrans(rA,rB) = 1]

=
Pr(rA,rB)←Uni(t)[Trans(rA, rB)|t|+1 = t ◦ 1 ∧ VTrans(rA,rB) = 1]

Pr(rA,rB)←Uni(t)[VTrans(rA,rB) = 1]

=
β · V1

V
,
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where the last equation is by a simple chain rule, i.e., since

β = Pr
(rA,rB)←Uni(t)

[Trans(rA, rB)|t|+1 = t ◦ 1], and

V1 = Pr
(rA,rB)←Uni(t)

[VTrans(rA,rB) = 1 | Trans(rA, rB)|t|+1 = t ◦ 1].

Thus,

• V A = Pr[A(t) = 1] · V A1 +Pr[A(t) = 0] · V A0 = β·V1

V · V A1 + (1−β)·V0

V · V A0 , and
• V B = Pr[A(t) = 1] · V B1 + Pr[A(t) = 0] · V B0 = β · V B1 + (1 − β) · V B0 .

Using the induction hypothesis, we get that

V A · V B =

(
β · V1

V
· V A1 +

(1− β) · V0

V
· V A0

)
·
(
β · V B1 + (1− β) · V B0

)
=

β2 · V1

V
· V A1 · V B1 +

(1− β)2 · V0

V
· V A0 · V B0

+
β(1− β)

V
· (V1 · V A1 · V B0 + V0 · V A0 · V B1 )

≥ β2 · V 2
1

V
+

(1− β)2 · V 2
0

V
+

β · (1− β) · V1 · V0

V
·
(
V A1
V A0

+
V A0
V A1

)
.

Since V 2 = (β · V1 + (1− β) · V0)
2 = β2 · V 2

1 + (1− β)2 · V 2
0 + 2 · β · (1− β) · V1 · V0, it

follows that

V A · V B ≥ β2 · V 2
1

V
+

(1− β)2 · V 2
0

V
+

β · (1 − β) · V1 · V0

V
·
(
V A1
V A0

+
V A0
V A1

)

= V +
β · (1− β) · V1 · V0

V
·
(
V A1
V A0

+
V A0
V A1
− 2

)
.

Thus, to prove that V A · V B ≥ V it suffices to prove that
V A
1

V A
0

+
V A
0

V A
1
≥ 2. We will

show that (
V A
1

V A
0

+
V A
0

V A
1
− 2) · V A1 · V A0 ≥ 0, which also suffices, since V A1 and V A0 are

both positive values. Indeed,(
V A1
V A0

+
V A0
V A1
− 2

)
· V A1 · V A0 = (V A1 )2 + (V A0 )2 − 2V A1 · V A0

= (V A1 − V A0 )2

≥ 0.

5. Moving to an efficient sampler. Our goal in this section is to use the
above analysis of the success probability of our adversaries when given access to the
ideal sampler, for analyzing their success probability when given access to an efficient
sampler. The accuracy of such an inverter will be parametrized by a function 1/p for
some p ∈ poly. In the following we fix such p.

Assuming that one-way functions do not exist, our efficient sampler is defined as
follows: let f : {0, 1}s(n) × {0, 1}s(n) × {0, . . . ,m(n)} be defined as

f(rA, rB, i) = Trans(rA, rB)i, VTrans(rA,rB).

Namely, f(rA, rB, i) outputs the ith node in the execution of (A(rA),B(rB)) and the
outcome coin induced by the leaf (i.e., full transcript) of this execution. Given a node
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t ∈ Tn, the sampler Realp returns Invf (t, 1), where Invf is the distributional inverter
for f guaranteed by Lemma 9 with respect to accuracy parameter 1/p.4

Notice that while Lemma 9 tells us that Invf samples well over a random output
of f , the distribution induced by the calls of ARealp might be very different from this
distribution. While we cannot bound the difference between these two distributions,
we prove that there exists a high-probability event conditioned on these distributions
being close enough. Loosely speaking, we first show that Lemma 12 still (almost)
holds even if both AIdeal and BIdeal fail on their “nontypical” queries to Ideal—the calls
that happen with probability that is very different from the one induced by f . Since

Realp performs similarly to Ideal on the typical queries, it follows that V A
Realp

λ ·V BRealp

λ

is almost as large as Vλ, and, therefore, either ARealp or BRealp can significantly bias
the outcome of the protocol.

In Lemma 13, we formally capture the above intuition regarding AIdeal and BIdeal

(with access to the ideal sampler). We denote by w(t) the probability that the node t

is visited in a random execution of (A,B), and by wA
Ideal

(t) the probability of this visit

in a random execution of (AIdeal,B). (wB
Ideal

(t) is defined analogously.) Recall that we
omit n from the notation whenever its value is clear from the context. Specifically,
we let λ denote the root of Tn, and Vλ = E[Out(A,B)(1n)].

Lemma 13. Let (A,B) be a coin-tossing protocol as above. For any q ∈ poly and
for any n ∈ N, there exists a set E ⊆ {t ∈ Tn : Vt > 0} such that the following holds:

1. For any t ∈ E, it holds that max{wAIdeal

(t), wB
Ideal

(t)} ∈ O(q(n)5 · w(t) · Vt),
and

2. V AE Ideal

λ · V BE Ideal

λ ≥ Vλ − 1
q(n) , where AE acts as A does, but aborts if a node

outside of E is reached. (BE is defined analogously.)
Proving Lemma 13 is the main contribution of this section, but first let us use it

for proving Theorem 14.
Theorem 14 (restating Theorem 1). Let (A,B) be a coin-tossing protocol with

Vλ = E[Out(A,B)(1n)]. Assuming that one-way functions do not exist, then for any
g ∈ poly there exists a pair of efficient (cheating) strategies A and B such that the
following holds: for infinitely many n’s, for each j ∈ {0, 1} either Pr[(A(j),B)(1n) =
j] or Pr[(B(j),B)(1n) = j] is greater than

√
V j
n − 1

g(n) , where V 1
n = Vλ and V 0

n =

1− Vλ.
In particular, for the case of Vλ = 1

2 , one party can “bias the outcome” of (A,B)
by almost 1√

2
− 1

2 .

Proof. We focus on j = 1, where the proof for j = 0 follows analogously. We
prove the theorem by considering the success probabilities of the adversaries ARealp

and BRealp (with access to an efficient inverter Invf ) on the set E ⊆ Tn guaranteed by

Lemma 13, namely, the success probabilities of AERealp and BERealp . We show that if
Invf is “good enough,” then they will do almost as well as AE Ideal and BE Ideal would.
Towards this end, we show that the distribution induced by f on a random input
(1/ poly)-dominates (according to Definition 2) both query distributions induced by
AE Ideal and BE Ideal. Thus, we can apply Lemma 10 to show that each adversary behaves
almost identically when given access to Ideal as when given access to Invf . Finally, we

remark that, while AERealp and BERealp may not be efficient (since they need to abort
on t /∈ E), they serve as a mental experiment and provide lower bounds on the success
probabilities of ARealp and BRealp , respectively. We next give the formal argument.

4We assume for simplicity that the security parameter of the protocol is determined by its (even
partial) transcript, and, therefore, the domain of f in the calls to Invf is well defined.
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Let g′(n) := g(n)√
V 1

, where we assume without loss of generality that g(n) ≥ 1√
V 1

(otherwise, the statement is trivial). Let Df (y) be the probability that a random
output of f equals y. Note that the following holds for any t ∈ Tn:

Df(t, 1) := Pr[f(U2s(n), In) = (t, 1)]

= Pr[In = |t|] · Pr[Trans(U2s(n))|t| = t ∧ VTrans(U2s(n)) = 1]

=
1

m(n) + 1
· w(t) · Vt,

where In is uniformly distributed over {0, . . . ,m(n)}. Let E ⊆ Tn be the set guaran-
teed by Lemma 13 with respect to q(n) = 2 · g′(n). It follows that

max{wAIdeal

(t), wB
Ideal

(t)} ∈ O(q(n)5 ·m(n) ·Df (t, 1))(4)

for any t ∈ E . In other words, the distributions induced by the queries of AE Ideal and
BE Ideal on the range of f are δ-dominated by the distribution of a random output of
f for δ = 1/O(q(n)5 ·m(n)).

Fix n ∈ N such that the inverter Invf (guaranteed by Lemma 9) is a 1/p(n)-
inverter for f , and let Realp be the sampler described above (i.e., Realp(t) returns

Invf (t, 1)). For Samp ∈ {Ideal,Realp}, let EAE Samp

be the algorithm that emulates a

random execution of (AESamp,B) and outputs the outcome of this execution, where

AE is as in Lemma 13 (EBESamp

is defined analogously). For i ∈ {0, . . . ,m(n)}, let Qi

be the value of the ith Ideal-query made in the execution of EAE Ideal

(set to ⊥ if no such
call was made). Relation (4) yields that Pr[Qi = (t, 1)] ∈ O(q(n)5 ·m(n) · Df (t, 1))
for any i ∈ [m(n)] and for any t ∈ E . Thus, Lemma 10 yields that

SD(EAE Ideal

, EAERealp
) ∈

O
(
q(n)5 ·m(n)2

)
p(n)

< 1/8g′(n)

for the proper choice of p. Therefore,

V AERealp

λ = Pr[EAERealp
= 1] ≥ Pr[EAE Ideal

= 1]− 1/4g′(n) = V AE Ideal

λ − 1/4g′(n).(5)

Doing the analogous calculation for V BERealp

λ and using Lemma 13, it follows that

V AERealp

λ · V BERealp

λ ≥ (V AE Ideal

λ − 1/4g′(n)) · (V BE Ideal

λ − 1/4g′(n))(6)

= V AE Ideal

λ · V BE Ideal

λ − V AE Ideal

λ + V BE Ideal

λ

4g′(n)
+

1

2g′(n)2

≥ V 1 − 1

q(n)
− 1

2g′(n)
= V 1 − 1

g′(n)
.

Since V A
Realp

λ ≥ V AERealp

λ and V B
Realp

λ ≥ V BERealp

λ (on the nodes in E the strategiesAERealp
and ARealp act identically, and AERealp fails on the other nodes), it follows that

V A
Realp

λ · V B
Realp

λ ≥ V 1 − 1

g′(n)
.(7)

It follows that

V 1 − 1

g′(n)
= V 1 −

√
V 1

g(n)
≥ V 1 − 2 ·

√
V 1

g(n)
+

1

g(n)2
=

(√
V 1 − 1

g(n)

)2

,

where the inequality holds since g(n) ≥ 1√
V 1

. In particular, either V A
Realp

λ or V B
Realp

λ is

larger than
√
V 1 − 1

g′(n) ≥
√
V 1− 1

g(n) , which completes the proof of the theorem.
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5.1. Proving Lemma 13. Towards proving Lemma 13 we identify the nodes
(queries) in T = Tn that are potentially “nontypical” (i.e., either Vt is small or

max{wAIdeal

(t), wB
Ideal

(t)} is large) and prove that by modifyingAIdeal or BIdeal to totally
fail on such nodes, we hardly change their overall success probability. Alternatively,
if AIdeal and BIdeal abort whenever they reach a nontypical node (as do AE Ideal and
BE Ideal), then they will only give away a 1/ poly fraction of their success probability.
The proof then follows by taking E to be the set of “typical” nodes in T .

We next give a slightly more detailed overview of the proof. For simplicity, in
the discussion below, we (implicitly) assume that Vλ is constant (in the formal proof,
we deal with any value of Vλ). We need to show that the set E satisfies both of the
requirements in Lemma 13. Proving that the first requirement is satisfied will be
immediate, simply by the way we define nontypical nodes. To show that E satisfies
the second requirement (i.e., that AIdeal and BIdeal can indeed abort on nodes outside
E without losing much), we partition the nontypical nodes into two sets. The first
set, denoted Small, contains those nodes for which Vt ∈ O( 1

q2 ). The second set,

denoted UnBal, contains the nodes whose weights induced by AIdeal or BIdeal are Ω(q2)
times larger than their weights in an honest execution of the protocol. On a very
intuitive level, handling the set Small is fairly easy: consider a mental experiment
in which we (artificially) set a new “success probability” for such nodes by setting

V A
Ideal

t = V B
Ideal

t =
√
Vt for every t ∈ Small. Since V A

Ideal

t · V BIdeal

t ≥ Vt, the proof of
Lemma 12 will still go through with respect to the above experiment. Namely, it

will still hold that V A
Ideal

λ · V BIdeal

λ ≥ Vλ. To then allow aborting on nodes in Small,

we observe that neither AIdeal nor BIdeal gains much on any node t ∈ Small (at most√
Vt ∈ O(1/q)). Hence, even if Small is reached with high probability, it contributes

an overall success probability of O(1/q).

Handling the unbalanced nodes inside UnBal, on the other hand, seems much
more challenging. These nodes might have arbitrary expected values (i.e., Vt) and are
reached by one of the adversaries with high probability. As such, they may contribute
significantly to the success probability of the cheating parties. Fortunately, by making
a critical use of the query distribution induced by the ideal sampler, we are able to
prove the following “compensation lemma”: a node t whose weight with respect to

AIdeal is k times larger than its real weight (i.e., wA
Ideal

(t) = k · w(t)) has weight
with respect to BIdeal that is k time smaller than its real weight. Hence, the set
UnBal can be separated into two disjoint subsets UnBalA and UnBalB, where UnBalB
is almost never visited by AIdeal, and UnBalA is almost never visited by BIdeal. Now,
we handle each of these sets in a manner similar to the way we handled the nodes
in Small (for simplicity we consider here only the set UnBalA): consider the mental

experiment in which for every t ∈ UnBalA we modify the values of V A
Ideal

t and V B
Ideal

t

such that V A
Ideal

t = 1/q and V B
Ideal

t = q (this is only a mental experiment, so we do

not care that these values might be larger than 1). Since V A
Ideal

t · V BIdeal

t = 1 ≥ Vt,
the proof of Lemma 12 still goes through with respect to this experiment as well.
Furthermore, we can safely fail both cheating strategies on UnBalA without changing
their overall success probability too much. Specifically, AIdeal will not suffer much
because its success probability on these nodes is bounded by 1

q (i.e., it has gained at

most O(1 · 1q = 1
q ) from these nodes), and BIdeal will not suffer much since it almost

never visits these nodes (i.e., it has gained O(q · 1
q2 = 1

q ) from these nodes).

We now work towards formalizing the above discussion. We assume that Vλ ≥
1/q, since otherwise the lemma follows trivially, and start with formally defining the
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different subsets of T that we considered above. We define the relative weights of

t ∈ T as WrelA
Ideal

(t) = wAIdeal
(t)

w(t) and WrelB
Ideal

(t) = wBIdeal
(t)

w(t) . Then let

UnBalA := {t ∈ T : WrelA
Ideal

(t) > 16 · q3},(8)

UnBalB := {t ∈ T : WrelB
Ideal

(t) > 16 · q3},(9)

and let UnBal = UnBalA ∪ UnBalB. Finally, we let

Small :=

{
t ∈ T \ UnBal : Vt <

1

16 · q2

}
(10)

and let E = T \ (Small ∪ UnBal). The following fact is immediate.

Claim 15. For any t ∈ E it holds that max{wAIdeal

(t), wB
Ideal

(t)} ∈ O(q5 · w(t) ·
Vt).

Proof. For any t ∈ E , it holds that t /∈ UnBalA. Hence,

wA
Ideal

(t) = WrelA
Ideal

(t) · w(t) ≤ 16 · q3 · w(t) ≤ 28 · q5 · w(t) · Vt,

where the last inequality follows since t /∈ Small (and therefore 16 · q2 ·Vt ≥ 1).
To prove that E satisfies the second property of Lemma 13, we present a pair of

random variables Y A
Ideal

t and Y A
Ideal

t such that the following holds for λ (the root of
T ):

1. Y A
Ideal

λ · Y BIdeal

λ ≥ Vλ, and

2. V AE Ideal

λ ≥ Y A
Ideal

λ − 1/2q and V BE Ideal

λ ≥ Y B
Ideal

λ − 1/2q.

The variables Y A
Ideal

λ and Y B
Ideal

λ are defined below, but intuitively they measure the
success probability of AIdeal and BIdeal, respectively, in the mental experiment where
their success probability on internal nodes outside E is changed according to the

informal description above. The above immediately yields that V AE Ideal

λ · V BE Ideal

λ ≥
Vλ − 1

q , completing the proof of Lemma 13.

Since our goal is to bound (from below) the success probabilities of AE Ideal and
BE Ideal, it suffices to restrict the discussion to the nodes in T that have nonzero
probability of being reached in executions with AE Ideal and BE Ideal. This set of nodes
defines a tree (which is defined below and denoted T ′) that can alternatively be defined
as the set of all nodes in T that have no proper ancestor in Small ∪ UnBal. We use
the following random variables.

Definition 16. For t ∈ T ′ := Supp((A,B)(1n)) ∩ Supp((A,B)(1n)) ⊆ T ,5 we

define Y A
Ideal

t as follows (Y B
Ideal

t is defined analogously):
• If t ∈ E, then

1. if t is a leaf, Y A
Ideal

t = Vt;

2. otherwise, Y A
Ideal

t = Pr[AIdeal(t) = 1] · Y AIdeal

t◦1 + Pr[AIdeal(t) = 0] · Y AIdeal

t◦0 .
• If t ∈ UnBal, then

1. if t ∈ UnBalA, Y A
Ideal

t = 1
4q ;

2. otherwise (t ∈ UnBalB), Y A
Ideal

t = 4q.

• Otherwise (t ∈ Small), Y A
Ideal

t = 1
4q .

5We assume without loss of generality that an honest party aborts if the other party does. Hence,
T ′ is indeed contained in T .
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We emphasize that the adversaries AIdeal and BIdeal remain exactly as before, and

the random variables Y A
Ideal

t and Y B
Ideal

t only enable us to present a refined analysis of
their success probabilities. The following fact easily follows from arguments similar
to those used in the proof of Lemma 12.

Claim 17. For any t ∈ T ′, it holds that

Y A
Ideal

t · Y B
Ideal

t ≥ Vt.

Proof. The proof is by induction up the protocol tree. For a node t /∈ E , the
lemma is trivially true since Y A

Ideal

t · Y BIdeal

t ≥ Vt. For any other node t (without loss
of generality t is an A node), the proof follows from exactly the same argument as
in Lemma 12. This is true since for the base cases nothing has changed, and for an
internal node t it holds that

• Y A
Ideal

t = Pr[AIdeal(t) = 1] · Y AIdeal

t◦1 + Pr[AIdeal(t) = 0] · Y AIdeal

t◦0 , and

• Y B
Ideal

t = Pr[A(t) = 1] · Y BIdeal

t◦1 + Pr[A(t) = 0] · Y BIdeal

t◦0 .
Hence, the proof of the induction step follows exactly as in the proof of Lemma 12,
which uses no property of the children of t other than that they satisfy the induction
hypothesis.

To complete the proof of Lemma 13, we need to prove that the success probability
of both AE Ideal and BE Ideal is not far from the above mental experiment. We prove the
following lemma.

Lemma 18. It holds that V AE Ideal

λ ≥ Y A
Ideal

λ − 1/2q and V BE Ideal

λ ≥ Y B
Ideal

λ − 1/2q.
Proof. The main tool we are using for proving Lemma 18 is the following “com-

pensation lemma.”
Lemma 19 (compensation lemma). Let the relative weights of t ∈ T be as above

(i.e., WrelA
Ideal

(t) = wAIdeal
(t)

w(t) and WrelB
Ideal

(t) = wBIdeal
(t)

w(t) ). The following holds for

every t ∈ T :

WrelA
Ideal

(t) ·WrelB
Ideal

(t) =
Vt

Vλ
.

Namely, the lemma states that a node t whose weight with respect to AIdeal is k

times larger than its typical weight (i.e., wA
Ideal

(t) > k·w(t)) has weight with respect to
BIdeal that is (close to) k times smaller than its typical weight. The proof of Lemma 19
is given later. We first use the lemma for completing the proof of Lemma 18.

In the following we focus on analyzing the value of V AE Ideal

λ (the proof of V BE Ideal

λ

is done analogously). Let F be the set of leaves in T ′. That is, F contains nodes of
two types: (i) a leaf t of the original tree T (such that there is no ancestor t′ of t
in Small ∪ UnBal), and (ii) a node t ∈ Small ∪ UnBal (such that there is no ancestor
t′ �= t of t in Small∪UnBal). Furthermore, any execution (AIdeal,B) passes through a
node in F . It follows that

Y A
Ideal

λ =
∑
t∈F

wA
Ideal

(t) · Y AIdeal

t ,(11)

V AE Ideal

λ =
∑
t∈F

wA
Ideal

(t) · V AE Ideal

t .(12)

Let
• F1 = F ∩ UnBalB,
• F2 = F ∩ (UnBalA ∪ Small), and
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• F3 = F \ (F1 ∪ F2) = F ∩ E .
Lemma 19 yields that UnBalA and UnBalB are disjoint. It follows that F1,F2, and
F3 form a partition of F , and (11) yields that

Y A
Ideal

λ =
∑
t∈F1

wA
Ideal

(t) · Y AIdeal

t +
∑
t∈F2

wA
Ideal

(t) · Y AIdeal

t +
∑
t∈F3

wA
Ideal

(t) · Y AIdeal

t

≤
∑
t∈F1

wA
Ideal

(t) · 4q +
∑
t∈F2

wA
Ideal

(t) · 1
4q

+
∑
t∈F3

wA
Ideal

(t) · V AE Ideal

t

≤ 4q ·
∑
t∈F1

wA
Ideal

(t) +
1

4q
·
∑
t∈F2

wA
Ideal

(t) + V AE Ideal

λ

≤ 4q ·
∑
t∈F1

wA
Ideal

(t) +
1

4q
+ V AE Ideal

λ ,(13)

where the first inequality follows from Definition 16, which yields that Y A
Ideal

t = 4q

for any t ∈ F1, that Y
AIdeal

t = 1/4q for any t ∈ F2, and that Y A
Ideal

t = V AE Ideal

t for any
t ∈ F3. The second inequality follows from (12).

We next consider the probability of visiting F1 in a random execution of (AIdeal,B).

The definition of UnBalB yields that WrelB
Ideal

(t) > 16 · q3 for any t ∈ F1. Applying
Lemma 19 yields that

wA
Ideal

(t)

w(t)
= WrelA

Ideal

(t) <
1

16 · q2 ·
Vt

Vλ
(14)

for any t ∈ F1. Since Vt ≤ 1 and 1
Vλ
≤ q, we have that wA

Ideal

(t) < w(t)
16·q2 . Plugging

this into (13) yields that

Y A
Ideal

λ < 4q ·
∑
t∈F1

w(t)

16 · q2 +
1

4q
+ V AE Ideal

λ

=
4q

16 · q2 ·
∑
t∈F1

w(t) +
1

4q
+ V AE Ideal

λ

≤ 1

4 · q +
1

4 · q + V AE Ideal

λ

=
1

2 · q + V AE Ideal

λ .

Hence, V AE Ideal

λ ≥ Y A
Ideal

λ − 1/2q, as desired.

5.1.1. Putting it all together. We next summarize the arguments that con-
clude the proof of Lemma 13.

Proof of Lemma 13. Let E be defined as in the foregoing discussion. Claim 15
asserts that E satisfies the first requirement of Lemma 13. For the second requirement,
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Lemma 18 yields that V AE Ideal

λ ≥ Y A
Ideal

λ − 1
2q and V BE Ideal

λ ≥ Y B
Ideal

λ − 1
2q . Hence, we have

V AE Ideal

λ · V BE Ideal

λ ≥
(
Y A

Ideal

λ − 1

2q

)
·
(
Y B

Ideal

λ − 1

2q

)

= Y A
Ideal

λ · Y BIdeal

λ − Y A
Ideal

λ + Y B
Ideal

λ

2q
+

(
1

2q

)2

≥ Y A
Ideal

λ · Y BIdeal

λ − 2

2q
.

Claim 17 asserts that Y A
Ideal

λ · Y BIdeal

λ ≥ Vλ, and hence, the second requirement is also
satisfied; i.e.,

V AE Ideal

λ · V BE Ideal

λ ≥ Vλ −
1

q
.

5.1.2. The proof of the compensation lemma.
Proof of Lemma 19. For t ∈ T and c ∈ {0, 1}, let βt(c) be the probability that

the next message is c given that the transcript until now has been t. That is,

βt(c) = Pr
(rA,rB)←Uni(t)

[Trans(rA, rB)|t|+1 = t ◦ c].(15)

Recall that w(t) is the probability that t is a prefix of the full communication tran-
script in an honest execution of the protocol. Assume that t = c1c2 . . . c�; then
w(t) = βt0(c1) · βt1(c2) · . . . · βt�−1

(c�).

Consider now an execution of (AIdeal,B). For c ∈ {0, 1}, let βA
Ideal

t (c) be the
probability that the next message is c given that the transcript until now has been t.
That is,

βA
Ideal

t (c) = Pr[AIdeal(t) = c].(16)

Recall that wA
Ideal

(t) is the probability that the node t is reached in an execution of
(AIdeal,B). It follows that

wA
Ideal

(t) = βA
Ideal

t0 (c1) · βA
Ideal

t1 (c2) · . . . · βA
Ideal

t�−1
(c�).

Note that, if t is an A node, then βA
Ideal

t (c) = βt(c)·Vt◦c
Vt

, and otherwise βA
Ideal

t (c) = βt(c).
It follows that

WrelA
Ideal

(t) =
wA

Ideal

(t)

w(t)

=
1

w(t)
· βAIdeal

t0 (c1)β
AIdeal

t1 (c2) · . . . · βA
Ideal

t�−2
(c�−1) · βA

Ideal

t�−1
(c�)

=
1

w(t)
· βt0(c1) · Vt1

Vt0

βt1(c2) · . . . ·
βt�−2

(c�−1) · Vt�−1

Vt�−2

βt�−1
(c�)

=
βt0(c1)βt1(c2) · . . . · βt�−2

(c�−1)βt�−1
(c�)

w(t)
· Vt1

Vt0

· 1 · . . . ·
Vt�−1

Vt�−2

· 1.

Since w(t) = βt0(c1)βt1(c2) · . . . · βt�−2
(c�−1)βt�−1

(c�), we obtain that

WrelA
Ideal

(t) =

�/2∏
i=1

Vt2i−1

Vt2i−2

.
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A similar argument shows that

WrelB
Ideal

(t) =

�/2∏
i=1

Vt2i

Vt2i−1

.

Hence, we conclude that

WrelA
Ideal

(t) ·WrelB
Ideal

(t) =

�/2∏
i=1

Vt2i−1

Vt2i−2

·
�/2∏
i=1

Vt2i

Vt2i−1

=

�∏
i=1

Vti

Vti−1

=
Vt

Vλ
.

6. Discussion and open questions. The main open question is understanding
the limits of efficient attacks in breaking coin-flipping protocols. Specifically (assum-
ing one-way functions do not exist), does there exist, for any (correct) coin-flipping
protocol, an efficient adversary that biases its output towards 0 or towards 1 by
1
2 − 1/ poly, or even by

√
2−1
2 + Ω(1)? In light of the reduction of Chailloux and

Kerenidis [5] from (
√
2−1
2 +

√
2 · ε+ o(ε))-bias strong coin-flipping to ε-bias weak coin-

flipping, a positive answer, even to the weaker form of the above question, would mean
that constant-bias weak coin-flipping protocols imply the existence of one-way func-
tions. More specifically, if an adversary can always bias the output of a coin-flipping

protocol by
√
2−1
2 + c for some c ∈ Ω(1) (assuming one-way functions do not exist),

then, for any ε such that
√
2 · ε+ o(ε) < c, the existence of ε-bias weak coin-flipping

protocols implies the existence of one-way functions.

While our analysis proves only the existence of an adversary achieving
√
2−1
2 −

o(1) bias (and thus has no direct implication for weak coin flipping), it shows that
(assuming one-way functions do not exist) for any coin-flipping protocol there exists
an efficient adversary that can bias its output both towards 0 and towards 1, by√

2−1
2 − o(1). Hence, our attack accomplishes a harder task than the required one.

Interestingly,
√
2−1
2 is the right bound for this more challenging task. That is, there

exists a (correct) coin-flipping protocol for which no adversary (not even an unbounded

one) can bias the output towards 1 by more than
√
2−1
2 .6
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