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Abstract

We prove that a random graph G(n, p), with p above the Hamiltonicity threshold, is
typically such that for any r-colouring of its edges there exists a Hamilton cycle with at
least (2/(r+ 1)− o(1))n edges of the same colour. This estimate is asymptotically optimal.

1 Introduction

Hamiltonicity is one of the most flourishing and well-studied areas of research in the theory of
random graphs, boasting a wide array of results over hundreds of papers. In fact, the question
of finding the threshold for containing a Hamilton path has already been posed by Erdős and
Rényi in their seminal paper on random graphs [13]. Building on the breakthrough work
of Pósa [36], which introduced a method now known as Pósa’s rotation–extension technique,
Komlós and Szemerédi [27] and independently Bollobás [8] proved the fundamental result that
the threshold for the appearance of a Hamilton cycle in the binomial random graph G(n, p) is
p = (log n + log log n)/n. For a historical overview and a list of papers on this topic we refer
the reader to an annotated bibliography by Frieze [17].

A central theme in this area is that the appearance of Hamilton cycles is closely tied to
the disappearance of vertices of degree at most 1. In fact, having minimum degree 2 is often
thought of as the “bottleneck” for the appearance of Hamilton cycles. This perspective is
made remarkably precise in the hitting time results of Ajtai, Komlós and Szemerédi [1] and of
Bollobás [8] (see also the survey [28] for a shorter proof, and [3] for yet another quantitative
aspect of this phenomenon).

With the threshold for Hamiltonicity known, it is natural to ask about the typical structure
of the set of Hamilton cycles appearing in G(n, p), for p which is just above the Hamiltonicity
threshold. For such values of p, one might expect the number of Hamilton cycles in G(n, p) to
be small, and their structure sparse and fragile. It turns out, however, that this is quite far
from the truth. In fact, the set of Hamilton cycles of G(n, p) (for p as above) typically possesses
a rich and robust structure. Several concrete manifestations of this phenomenon have been
demonstrated in prior works. For example, it is known that the number of Hamilton cycles in
G(n, p) is — in some well-defined quantitative sense — concentrated around its mean [20]; that
the set of Hamilton cycles in G(n, p) typically possesses local resilience properties [29,33,34,38];
and that random edge-colourings of G(n, p) typically admit Hamilton cycles coloured according
to any prescribed pattern [4, 15].

In this paper, we establish yet another natural “robustness property” of the set of Hamilton
cycles in G(n, p) (for any p above the Hamiltonicity threshold). The precise problem we will
be studying is as follows. For a graph G and an integer r ≥ 2, let M(G, r) be the largest
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integer M such that in any r-colouring of the edges of G, there will be a Hamilton cycle
with at least M edges of the same colour (if G is not Hamiltonian, we set M(G, r) = 0).
The problem of estimating M(G, r) is somewhat similar to (though slightly different from)
multicolour discrepancy problems. In the general setting of combinatorial discrepancy theory,
one is given a hypergraph H and tries to r-colour its vertices in such a way that every hyperedge
is coloured as evenly as possible, in the sense that the numbers of vertices of a given colour
in every hyperedge e deviates from its “mean”, |e|/r, by as little as possible. The discrepancy
of H is then defined as the maximal deviation one is guaranteed to have in any colouring. In
the special setting we consider here, the vertices of the hypergraph H are the edges of G, and
the hyperedges of H are the Hamilton cycles in G. We note, however, that the problem of
estimating M(G, r) differs from its discrepancy variant in that M(G, r) is only concerned with
“one-sided deviations”, namely with colours appearing significantly more (and not less) than
what is expected. It is worth noting that discrepancy-type problems in graphs were studied for
various “target subgraphs”, such as cliques [14], spanning trees [5, 12], Hamilton cycles [5] and
clique factors [6].

It is natural to expect that if G contains only few Hamilton cycles, then one can r-colour the
edges of G in such a way that every Hamilton cycle sees approximately the same number, i.e.
roughly n/r, of edges of each colour. Our main result, Theorem 1.1, shows that the situation
in G(n, p) (for p above the Hamiltonicity threshold) is typically very different: one is always
guaranteed to find a Hamilton cycle which contains significantly more than n/r edges of the
same colour. As alluded to earlier, this is yet another indication of the rich structure of the set
of Hamilton cycles in G(n, p).

Before stating our main result, let us recall some standard terminology. For a positive
integer n and a real p ∈ [0, 1], denote by G(n, p) the binomial random graph, namely, the
probability space of all simple labelled graphs on n given vertices, where each pair of vertices
is connected by an edge independently with probability p. We say that an event A in our
probability space occurs with high probability (or whp) if P(A)→ 1 as n goes to infinity.

Theorem 1.1. Let r ≥ 2 be an integer and let p ≥ (log n+log log n+ω(1))/n. Then G ∼ G(n, p)
is whp such that in any r-colouring of its edges there exists a Hamilton cycle with at least
(2/(r + 1)− o(1))n edges of the same colour.

Using similar tools to those used in the proof of Theorem 1.1, we sketch a proof for the
following analogous result for perfect matchings.

Theorem 1.2. Let r ≥ 2 be an integer and let p ≥ (log n+ω(1))/n. Then, assuming n is even,
G ∼ G(n, p) is whp such that in any r-colouring of its edges there exists a perfect matching
with at least (1/(r + 1)− o(1))n edges of the same colour.

The fraction 1/(r+1) in Theorem 1.2, and hence also the fraction 2/(r+1) in Theorem 1.1, is
tight. In fact, in every n-vertex graph G there exists an r-colouring in which in every matching,
the maximum number of edges of the same colour is at most n/(r+1). Such a colouring, which
to the best of our knowledge first appeared in [9], can be described as follows. Partition V (G)
into sets V1, . . . , Vr such that |Vi| = n/(r + 1) for i = 1, . . . , r − 1 and |Vr| = 2n/(r + 1). For
i = 1, . . . , r (in increasing order), colour by i every edge touching Vi that has not already been
coloured. Namely, for each 1 ≤ i ≤ r, all edges contained in Vi ∪ · · · ∪ Vr and touching Vi are
coloured with colour i (see Fig. 1). It is easy to see that any monochromatic matching in this
colouring is of size at most n/(r + 1). Moreover, observe that any Hamilton cycle contains at
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Figure 1: A 4-coloured complete graph on n vertices. Each of the small bulbs represents a
set of n/5 vertices, and the large bulb in the middle represents a set of 2n/5 vertices. Any
monochromatic matching in this graph is of size at most n/5, hence also every Hamilton
cycle contains at most 2n/5 edges of the same colour.

most 2n/(r + 1) edges of a given colour, as otherwise it would also contain a matching of size
larger than n/(r + 1), hence also M(G, r) ≤ 2n/(r + 1).

The above construction and its analysis suggest a connection between the problem of esti-
mating M(G, r) and the problem of finding monochromatic matchings in r-colourings of (the
edges of) G. Indeed, our proof of Theorem 1.1 relies on a new Ramsey-type result for matchings,
which may be of independent interest.

A classical theorem of Cockayne and Lorimer [9] states that for integers k1, . . . , kr ≥ 1 and
n ≥

∑r
i=1 (ki − 1) + max{k1, . . . , kr}+ 1, every r-colouring of the edges of the complete graph

Kn contains a monochromatic matching of size ki in colour i for some 1 ≤ i ≤ r. The following
theorem extends this result to almost complete host graphs.

Theorem 1.3. Let r ≥ 2, let k1, . . . , kr ≥ 1, let 0 ≤ δ ≤ 1
2(r+1) , let G be a graph with n vertices

and at least (1− δ)
(
n
2

)
edges, and suppose that

(
1− (r + 1)δ

)
n ≥

∑r
i=1 (ki − 1) + k + 1, where

k := max{k1, . . . , kr}. Then, for every r-colouring of the edges of G, there is 1 ≤ i ≤ r such
that G contains a matching of size ki, all of whose edges are coloured with colour i.

For k1 = · · · = kr = k, the condition in Theorem 1.3 becomes
(
1 − (r + 1)δ

)
n ≥

(r + 1)(k − 1) + 2, which is satisfied if k ≤
(

1
r+1 − δ

)
n. Hence, for this case we have the

following corollary.

Corollary 1.4. Let r ≥ 2, let 0 ≤ δ ≤ 1
2(r+1) , and let G be a graph on n vertices and at

least (1 − δ)
(
n
2

)
edges. Then, in every r-colouring of the edges of G there is a monochromatic

matching of size at least
⌊(

1
r+1 − δ

)
n
⌋
.

Our proof of Theorem 1.3 is inspired by a new proof of the Cockayne–Lorimer theorem,
given in [39].

As a second step towards proving Theorem 1.1, we will combine Corollary 1.4 with a mul-
ticolour version of the sparse regularity lemma (stated here as Theorem 3.2) to prove that in
any r-colouring of the edges of an n-vertex pseudorandom graph G, there must be a path of
length (2/(r+ 1)− o(1))n in which all but a fixed number of edges are of the same colour. We
will postpone the precise definition of pseudorandomness to Section 3, and for now only note
that as a bi-product, we get the following aesthetically pleasing result.

Theorem 1.5. Let r ≥ 2 be an integer and let ε > 0. Then there exist C = C(r, ε) and
K = K(r, ε) such that if p ≥ C/n, the random graph G ∼ G(n, p) is whp such that in any
r-colouring of its edges there exists a path of length at least (2/(r+ 1)− ε)n in which all but at
most K of the edges are of the same colour.
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It is interesting to note that Theorems 1.1 and 1.5 are nontrivial (and new) even for the
extreme case p = 1, i.e., where the coloured graph is the complete graph. An immediate
corollary of Theorem 1.5 is that for large enough C = C(r, ε), whp there is a monochromatic
matching of size (1/(r + 1) − ε)n in any r-colouring of the edges of G(n,C/n). In this sense,
Theorem 1.5 is again optimal, as explained before.

A closely related and in fact relatively well studied problem is that of finding long monochro-
matic paths in edge-colourings of graphs (which corresponds to requiringK = 0 in Theorem 1.5).
For two colours, this problem was resolved by Gerencsér and Gyárfás in [19] for complete graphs
and by Letzter in [30] for random graphs. For r ≥ 3 colours, it is conjectured that every edge-
colouring of Kn contains a monochromatic path of length (1/(r−1)−o(1))n, and that the same
holds whp for G(n, p) with np→∞ (see, e.g., [11]). It is known that if true, this would be best
possible (even in the complete graph; see, e.g., [25] and the references therein). This conjecture
was resolved for r = 3 by Gyárfás, Ruszinkó, Sárközy and Szemerédi in [21,22] (for the complete
graph) and by Dudek and Pra lat in [11] (for random graphs), and it remains open for all r ≥ 4.
Accidentally, for r = 2, 3 the two problems — that of finding a large monochromatic path and
that of finding a large path in which all but a constant number of the edges are of the same
colour — have the same answer (both in random and in complete graphs; this follows from
Theorem 1.5 and the aforementioned results of [11, 19, 21, 22, 30]). For r ≥ 4, however, these
two problems diverge; allowing a fixed number of edges to be coloured differently significantly
increases the length of a path one can find, from at most (1/(r−1)+o(1))n for monochromatic
paths to (2/(r + 1)− o(1))n for almost monochromatic ones.

A common technique for finding long monochromatic paths, pioneered by Figaj and  Luczak
in [16] (following an idea by  Luczak [32]), consists of applying the (sparse) regularity lemma and
finding large monochromatic connected matchings in the reduced graph of a regular partition. In
contrast, in order to find an almost monochromatic path, it is sufficient to find a monochromatic
(not necessarily connected) matching in the reduced graph. One can expect — and we show
that this is indeed the case — that in almost complete graphs (such as the reduced graphs we
consider here), one can find substantially larger monochromatic matchings when dropping the
requirement that they be connected. As mentioned above, this is a key step in the proof of
Theorem 1.5.

Let us now say a few words about the remaining ingredients which go into the proof of
Theorem 1.1. With Theorem 1.5 at hand, the proof of Theorem 1.1 proceeds as follows. The-
orem 1.5 gives us a path P of length (2/(r + 1) − o(1))n in which all but a fixed number of
edges are of the same colour. Our goal is therefore to extend this path into a Hamilton cycle,
or, equivalently, to find a Hamilton path in the remaining set of vertices between neighbours
of the endpoints of P . We achieve this by carefully splitting the remaining vertices into two
equal sets, each containing many neighbours of the corresponding endpoint of P , so that the
minimum degree of the graph spanned by each of these sets is at least 2. In fact, to do so we
need to “prepare” our graph, putting aside small degree vertices with their neighbours, and
finding P outside this set. We thus want to find a suitable path not in our random graph but
rather in some large induced subgraph thereof; hence we need a generalisation of Theorem 1.5
to pseudorandom graphs, Theorem 3.1. We continue by showing that in each of the two above-
mentioned sets there are many Hamilton paths which start at a given point (a neighbour of the
corresponding endpoint of P ), or, more precisely, Hamilton paths with many distinct ends. The
argument relies on the so-called rotation-extension technique, invented by Pósa in [36] and has
since been applied in numerous papers about Hamiltonicity of random graphs. We conclude
our proof by using expansion properties of our graph to connect the ends of two such Hamilton
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paths, by that extending P to a Hamilton cycle.

Organisation We begin by proving Theorem 1.3 in Section 2. In Section 3 we prove Theo-
rem 3.1, a generalisation of Theorem 1.5 to pseudorandom graphs. At the end of the section
we show how to connect the monochromatic linear forest we obtain to a long path, almost all
of whose edges are of the same colour. The goal of Section 4 is to introduce fairly general
machinery to prepare random graphs in such a way that a path found in some (large) part of
the graph can always be extended to a Hamilton cycle.

Notation and terminology Let G = (V,E) be a graph. For two vertex sets U,W ⊆ V we
denote by EG(U) the set of edges of G spanned by U and by EG(U,W ) the set of edges having
one endpoint in U and the other in W . The degree of a vertex v ∈ V is denoted by dG(v), and
we write dG(v, U) = |EG({v}, U)|. We let δ(G) and ∆(G) denote the minimum and maximum
degrees of G. When the graph G is clear from the context, we may omit the subscript G in the
notations above.

If f, g are functions of n we use the notation f ∼ g to denote asymptotic equality, namely,
f ∼ g if f = (1 + o(1))g, and we write f � g if f = o(g). For the sake of simplicity and clarity
of presentation, we often make no particular effort to optimise the constants obtained in our
proofs, and omit floor and ceiling signs when they are not crucial.

2 Large monochromatic matchings in almost complete graphs

The goal of this section is to prove Theorem 1.3. The primary tool used in the proof is the
well-known Tutte–Berge formula (see, e.g., [31]), which we state as follows. For a graph G, let
ν(G) denote the maximum size of a matching in G, and odd(G) denote the number of connected
components of G whose size is odd.

Theorem 2.1 (Tutte–Berge formula). Every graph G satisfies

ν(G) =
1

2
· |V (G)| − 1

2
· max
U⊆V (G)

(odd(G− U)− |U |).

We will also need the following simple lemma.

Lemma 2.2. Let G be a graph with n vertices and t connected components. Then |E(G)| ≤(
n−t+1

2

)
.

Proof. Let G be as in the lemma, and let C1, . . . , Ct be the connected components of G. Ev-
idently, |E(G)| ≤

∑t
i=1

(|Ci|
2

)
. Thus, in order to prove the lemma, it suffices to show that the

function g(x1, . . . , xt) =
∑t

i=1

(
xi
2

)
with domain {(x1, . . . , xt) ∈ [n]t : x1 + · · · + xn = t}

attains its maximum when x1 = n − t + 1, x2 = · · · = xt = 1, where it equals
(
n−t+1

2

)
. So

let (x1, . . . , xt) ∈ [n]t be a maximum point of g. It is enough to show that there is (at most)
one 1 ≤ i ≤ t such that xi ≥ 2. So suppose by contradiction that xi, xj ≥ 2 for some distinct
i, j ∈ [t]. Without loss of generality, assume that xj ≥ xi. Now, setting yi := xi−1, yj := xj +1,
and yk := xk for k ∈ [t] \ {i, j}, observe that g(y1, . . . , yk) = g(x1, . . . , xk) + xj − (xi − 1) ≥
g(x1, . . . , xk) + 1, in contradiction to the choice of x1, . . . , xk.
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Proof of Theorem 1.3

Let G be a graph with n vertices and at least (1− δ)
(
n
2

)
edges, and suppose that

(
1− (r + 1)δ

)
n ≥

r∑
i=1

(ki − 1) + k + 1, (1)

where k := max{k1, . . . , kr}. We may assume that k ≥
(

1
r+1 − δ

)
n − 1, because otherwise

(1) also holds with k1 replaced by k1 + 1 (which increases k by at most 1), meaning that we
may instead prove the theorem for k1 + 1, k2, . . . , kr (which evidently implies the statement for
k1, . . . , kr).

Fix any r-colouring of the edges of G. For each i ∈ [r], let Gi be the graph on V (G) whose
edges are the edges of G which are coloured with colour i. Our goal is to show that there is
1 ≤ i ≤ r such that ν(Gi) ≥ ki. So suppose, for the sake of contradiction, that ν(Gi) ≤ ki − 1
for every i ∈ [r]. By Theorem 2.1, for each i ∈ [r] there must be Ui ⊆ V (Gi) = V (G) such that

n

2
− 1

2
· (odd(Gi − Ui)− |Ui|) = ν(Gi) ≤ ki − 1,

or, equivalently, odd(Gi − Ui) ≥ n − 2(ki − 1) + |Ui|. In particular, Gi − Ui has at least
n − 2(ki − 1) + |Ui| connected components. This means that n − |Ui| = |V (Gi − Ui)| ≥
n−2(ki−1)+ |Ui|, and hence |Ui| ≤ ki−1. By Lemma 2.2, the following holds for every i ∈ [r]:

|E(Gi − Ui)| ≤
(

(n− |Ui|)− (n− 2(ki − 1) + |Ui|) + 1

2

)
=

(
2(ki − 1)− 2|Ui|+ 1

2

)
.

It follows that

|E(G)| ≤
r∑

i=1

|E(Gi − Ui)|+ #{e ∈ E(G) : e ∩ (U1 ∪ · · · ∪ Ur) 6= ∅}

≤
r∑

i=1

(
2(ki − 1)− 2|Ui|+ 1

2

)
+

(
n

2

)
−
(
n− |U1| − · · · − |Ur|

2

)
.

(2)

Now, consider the function g(u1, . . . , ur) defined by

g(u1, . . . , ur) :=
r∑

i=1

(
2(ki − 1)− 2ui + 1

2

)
−
(
n− u1 − · · · − ur

2

)
.

Claim 2.3. Let u1, . . . , ur be such that 0 ≤ ui ≤ ki − 1 for every i ∈ [r]. Then

g(u1, . . . , ur) < −δ
(
n

2

)
.

Before proving Claim 2.3, let us complete the proof of Theorem 1.3 assuming this claim.
Recall that |Ui| ≤ ki − 1 for every i ∈ [r]. Thus, by applying Claim 2.3 with ui = |Ui|
(i ∈ [r]), we get that g(|U1|, . . . , |Ur|) < −δ

(
n
2

)
. On the other hand, (2) states that |E(G)| ≤(

n
2

)
+ g(|U1|, . . . , |Ur|), which contradicts our assumption that |E(G)| ≥ (1 − δ)

(
n
2

)
. Thus, in

order to complete the proof it suffices to prove Claim 2.3.
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Proof of Claim 2.3. It will be convenient to set vi := ki−1−ui for i ∈ [r]. Then 0 ≤ vi ≤ ki−1
for every i ∈ [r]. Note that the inequality g(u1, . . . , ur) < −δ

(
n
2

)
is equivalent to having

h(v1, . . . , vr) :=

(
n−

∑r
i=1 (ki − 1) +

∑r
i=1 vi

2

)
−

r∑
i=1

(
2vi + 1

2

)
> δ

(
n

2

)
. (3)

For 1 ≤ i ≤ r, observe that if we fix the values of (vj : j ∈ [r] \ {i}) and let vi vary, then
the resulting function h(v1, . . . , vr) of vi is a quadratic function in which the coefficient of v2

i

is −3
2 < 0. Therefore, this function is concave. It follows that for any choice of fixed values

of (vj : j ∈ [r] \ {i}), the minimum of h(v1, . . . , vr) over 0 ≤ vi ≤ ki − 1 is obtained either at
vi = 0 or at vi = ki − 1, and is not obtained at any point in the open interval (0, ki − 1). We
conclude that if (v1, . . . , vr) is a minimum point of h(v1, . . . , vr), then vi ∈ {0, ki − 1} for every
1 ≤ i ≤ r. So we see that in order to verify (3), it is enough to show that h(v1, . . . , vr) > δ

(
n
2

)
for v1, . . . , vr satisfying vi ∈ {0, ki − 1} for every 1 ≤ i ≤ r.

Let I ⊆ [r], and suppose that vi = ki − 1 for i ∈ I and vi = 0 for i ∈ [r] \ I. Then the value
of h(v1, . . . , vr) is:(

n−
∑

i∈[r]\I (ki − 1)

2

)
−
∑
i∈I

(
2ki − 1

2

)
≥
(∑

i∈I (ki − 1) + k + 1 + (r + 1)δn

2

)
−
∑
i∈I

(
2ki − 1

2

)
≥
(∑

i∈I (ki − 1) + k

2

)
+ (k + 1) · (r + 1)δn−

∑
i∈I

(
2ki − 1

2

)
.

Here, the first inequality uses (1), and the second inequality follows from the fact that
(
x+y

2

)
≥(

x
2

)
+ xy for all x, y ≥ 0. Now, since k ≥

(
1

r+1 − δ
)
n− 1 (as mentioned in the beginning of the

proof) and δ ≤ 1
2(r+1) (by assumption), we have

(k + 1) · (r + 1)δn ≥
(

1

r + 1
− δ
)
n · (r + 1)δn ≥ n

2(r + 1)
· (r + 1)δn =

δn2

2
> δ

(
n

2

)
.

Thus, to establish Claim 2.3, it suffices to verify that(∑
i∈I (ki − 1) + k

2

)
−
∑
i∈I

(
2ki − 1

2

)
≥ 0. (4)

Observe that for every i ∈ I, if we fix the values of (kj : j ∈ I \ {i}) and consider the left-hand
side of (4) as a one-variable function of ki, then this function is quadratic and the coefficient
of k2

i is −3/2 < 0. Thus, this function is concave. It follows that at a minimum point of the
left-hand side of (4), we must have ki ∈ {1, k} for every i ∈ I (recall that ki ≤ k for every
1 ≤ i ≤ r). So let J ⊆ I, and suppose that ki = k for every i ∈ J and ki = 1 for every i ∈ I \J .
Setting s := |J |, we see that the left-hand side of (4) equals(

s · (k − 1) + k

2

)
− s ·

(
2k − 1

2

)
=

(k − 1)(s− 1)

2
· ((s− 1)k − s).

So it remains to show that f(s) := (k−1)(s−1) ·((s− 1)k − s) ≥ 0 for every value of s. If k = 1
then f(s) = 0 for every s, so suppose that k ≥ 2. Now, we have f(0) = (k − 1)k ≥ 0, f(1) = 0,
and f(s) ≥ (s− 1)k − s = (k − 1)s− k ≥ 2(k − 1)− k ≥ 0 for every s ≥ 2, as required.
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With Claim 2.3 established, the proof of Theorem 1.3 is complete.

It should be noted that a MathOverflow post due to F. Petrov [35] contains a derivation
of the Cockayne–Lorimer result [9] using the Tutte–Berge formula in a similar manner to our
proof of Theorem 1.3.

3 Large monochromatic linear forests in pseudorandom graphs

The goal of this section is to prove Theorem 1.5. In fact, we prove a stronger statement,
namely Theorem 3.1 below. This theorem extends Theorem 1.5 to the more general setting of
pseudorandom graphs, and will be used in the proof of Theorem 1.1.

Let us now introduce some definitions. For a pair of disjoint vertex-sets U,W in a graph, the
density of (U,W ) is defined as d(U,W ) := |E(U,W )|/(|U ||W |). For γ, p ∈ (0, 1], we say that
G = (V,E) is (γ, p)-pseudorandom if for any two disjoint U,W ⊆ V with |U |, |W | ≥ γ|V | we
have |d(U,W )−p| ≤ γp. We now recall the known fact that if G = (V,E) is (γ, p)-pseudorandom
then every set U ⊆ V of size at least 2γ|V | satisfies∣∣∣∣∣ |E(U)|(|U |

2

) − p∣∣∣∣∣ ≤ γp. (5)

To see that (5) holds, take a random partition of U into two equal parts U1, U2 and observe

that the expected value of |E(U1, U2)| is |E(U)| ·
(|U |

2

)−1
· |U1||U2|. On the other hand, we have

|d(U1, U2)− p| ≤ γp for every such choice of U1, U2. Therefore,∣∣∣∣∣ |E(U)|(|U |
2

) − p∣∣∣∣∣ =

∣∣∣∣E|E(U1, U2)|
|U1||U2|

− p
∣∣∣∣ ≤ γp,

as required.
Note that if G is a (γ, p)-pseudorandom graph on n vertices (for any p ∈ (0, 1]) then there

exists an edge between any two disjoint sets of size at least γn.

The following is the main result of this section, and will play an important role in the proof
of Theorem 1.1.

Theorem 3.1. Let r ≥ 2 be an integer and let ε > 0. Then there exist γ = γ(r, ε) and
K = K(r, ε) such that the following holds. Let G = (V,E) be a (γ, p)-pseudorandom graph for
some p ∈ (0, 1], and suppose |V | = n is large enough (in terms of r, ε). Then, in any r-colouring
of the edges of G there exists a path of length at least (2/(r + 1)− ε)n in which all but at most
K of the edges are of the same colour.

The proof of Theorem 3.1 relies on (a “multicolour” version of) the well-known sparse
regularity lemma, proved by Kohayakawa [26] and Rödl (see [10]), and later in a stronger form
by Scott [37]. To state this result, we now introduce some additional definitions. A pair (U,W )
of disjoint vertex-sets is called (δ, q)-regular if for all U ′ ⊆ U , W ′ ⊆ W with |U ′| ≥ δ|U | and
|W ′| ≥ δ|W | it holds that |d(U ′,W ′)− d(U,W )| ≤ δq. An equipartition of a set is a partition
in which the sizes of any two parts differ by at most 1 (to keep the presentation clean, we will
ignore divisibility issues and just assume that all parts have the same size). Let G1, . . . , Gr
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be graphs on the same vertex-set V of size n. An equipartition {V1, . . . , Vt} of V is said to
be (δ)-regular with respect to (G1, . . . , Gr) if for all but at most δ

(
t
2

)
of the pairs (Vi, Vj),

1 ≤ i < j ≤ t, it holds that for every ` ∈ [r], the pair (Vi, Vj) is (δ, q)-regular in G`, where
q := (|E(G1)|+ · · ·+ |E(Gr)|)/

(
n
2

)
. We are now ready to state the multicolour sparse regularity

lemma from [37].

Theorem 3.2 (Multicolour sparse regularity lemma [37]). For every r, t0 ≥ 1 and δ ∈ (0, 1)
there exists T = T (r, t0, δ) such that for every collection G1, . . . , Gr of graphs on the same
vertex-set V , there is an equipartition of V which is (δ)-regular with respect to (G1, . . . , Gr),
and has at least t0 and at most T parts.

Another tool we will use in the proof of Theorem 3.1 is the following simple lemma from [7]
(see Lemma 4.4 there).

Lemma 3.3. Let n, k ≥ 1 be integers, and let F be a bipartite graph with sides X,Y of size
n each. Suppose that there is an edge between every pair of sets X ′ ⊆ X and Y ′ ⊆ Y with
|X ′| = |Y ′| = k. Then F contains a path of length at least 2n− 4k.

The proof of Lemma 3.3 proceeds by a careful analysis of the DFS algorithm, an idea
which originated in [7] and has since been widely used in the study of paths in random and
pseudorandom graphs (see also [28] and [30, Corollary 2.1]).

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let r ≥ 2 and let ε ∈ (0, 1). Fix δ > 0 to be small enough so that
δ < 1/(4r) and

(
1/(r + 1) − 2δ

)
· (2 − 4δ) ≥ 2/(r + 1) − ε/2 (for this second requirement,

choosing δ ≤ ε/12 suffices). Set t0 := 1/δ, and let T = T (r, t0, δ) be as in Theorem 3.2. We will
prove the theorem with γ = γ(r, ε) := ε/(4T ) and K = K(r, ε) := T .

Let p ∈ (0, 1] and let G be a (γ, p)-pseudorandom graph on n vertices (for some sufficiently
large n). Set q := |E(G)|/

(
n
2

)
, and note that by (5) we have (1 − γ)p ≤ q ≤ (1 + γ)p. Let

f : E(G) → [r] be an r-colouring of the edges of G. For each i ∈ [r], let Gi be the graph on
V (G) whose edges are the edges of G coloured by colour i. Let {V1, . . . , Vt} be a (δ)-regular
equipartition with respect to (G1, . . . , Gr), where t0 ≤ t ≤ T . Let H be the graph on [t] in
which {i, j} ∈ E(H) if and only if (Vi, Vj) is (δ, q)-regular in G` for every ` ∈ [r]. The definition

of a (δ)-regular partition implies that |E(H)| ≥ (1− δ)
(|V (H)|

2

)
.

We now define a “reduced” edge-colouring of H. Let {i, j} be an edge of H. Since
|Vi| = |Vj | = n/t ≥ n/T ≥ γn, we have dG(Vi, Vj) ≥ (1 − γ)p ≥ p/2 (as G is (γ, p)-
pseudorandom). Since dG(Vi, Vj) = dG1(Vi, Vj) + · · · + dG`

(Vi, Vj), there must be some ` ∈ [r]
such that dG`

(Vi, Vj) ≥ p/(2r). Colour the edge {i, j} by colour ` (if there is more than one
possible colour, choose one arbitrarily).

Since |E(H)| ≥ (1 − δ)
(|V (H)|

2

)
, Corollary 1.4 implies that H contains a monochromatic

matching of size at least
⌊(

1/(r+ 1)− δ
)
tc ≥

(
1/(r+ 1)− δ

)
t− 1 ≥

(
1/(r+ 1)− 2δ

)
t where the

inequality holds because t ≥ t0 = 1/δ. Suppose, without loss of generality, that this matching
is in colour 1, and denote its edge-set by M . Fix any e = {i, j} ∈ M . Since {i, j} is an edge
of H coloured with colour 1, it must be the case that dG1(Vi, Vj) ≥ p/(2r) and that (Vi, Vj) is
(δ, q)-regular in G1. Then for every V ′i ⊆ Vi, V ′j ⊆ Vj with |V ′i | ≥ δ|Vi| and |V ′j | ≥ δ|Vj | it holds
that dG1(V ′i , V

′
j ) ≥ dG1(Vi, Vj) − δq ≥ p/(2r) − δq ≥ p/(2r) − δ(1 + γ)p ≥ p/(2r) − δ · 2p > 0,

where the last inequality holds due to our choice of δ. So we see that G1 contains an edge
between every pair of sets V ′i ⊆ Vi, V

′
j ⊆ Vj with |V ′i | ≥ δ|Vi| = δn/t and |V ′j | ≥ δ|Vj | = δn/t.
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By Lemma 3.3 with k := δn/t, the bipartite subgraph of G1 with sides Vi and Vj contains a
path Pe of length at least (2− 4δ)n/t.

Observe that the paths (Pe : e ∈ M) are pairwise-disjoint (as M is a matching in H), and
that the number of vertices covered by these paths is at least

|M | · (2− 4δ)n/t ≥
(
1/(r + 1)− 2δ

)
t · (2− 4δ)n/t ≥ (2/(r + 1)− ε/2)n,

where the last inequality uses our choice of δ.
Finally, put k = |M |, noting that k ≤ t ≤ T , and enumerate the paths (Pe : e ∈ M) as

P1, . . . , Pk. For each 1 ≤ i ≤ |M |, let Ai, Bi denote the first, respectively last, γn vertices of
Pi. Since G is (γ, p)-pseudorandom, there exists an edge ei = {bi, ai+1} between bi ∈ Bi and
ai+1 ∈ Ai+1 for every i = 1, . . . , k − 1. Let a1 be the first vertex of P1 and let bk be the last
vertex of Pk. Let P be the path obtained by concatenating (parts of) the paths P1, . . . , Pk

using the edges e1, . . . , ek−1, namely,

P = a1
P1−→ b1

e1−→ a2
P2−→ b2

e2−→ · · · ek−1−−−→ ak
Pk−→ bk.

It is easy to see that

|P | ≥ |P1|+ · · ·+ |Pk| − (2k − 2) · γn ≥ (2/(r + 1)− ε/2)n− 2Tγn ≥ (2/(r + 1)− ε)n,

where in the last inequality we used our choice of γ. Moreover, all edges of P except for
e1, . . . , ek−1 have the same colour. As k ≤ T = K, the path P satisfies all the required
properties, completing the proof.

In view of Theorem 3.1, in order to obtain Theorem 1.5 it is enough to prove that random
graphs (with sufficiently high edge density) are whp pseudorandom.

Lemma 3.4. For every γ > 0 there exists C = C(γ) > 0 such that if p ≥ C/n then G ∼ G(n, p)
is whp (γ, p)-pseudorandom.

In the proof of Lemma 3.4 and in several other proofs in the next section we will make use
of the following version of Chernoff bounds (see, e.g., in, [24, Chapter 2]).

Theorem 3.5 (Chernoff bounds). Let X =
∑n

i=1Xi, where Xi ∼ Bernoulli(pi) are independent,
and let µ = EX =

∑n
i=1 pi. Let 0 < α < 1 < β. Then

P(X ≤ αµ) ≤ exp(−µ(α logα− α+ 1)),

P(X ≥ βµ) ≤ exp(−µ(β log β − β + 1)).

Proof of Lemma 3.4. Note that we may assume γ > 0 is arbitrarily small. Write V = V (G).
Fix disjoint U,W with |U |, |W | ≥ γn and write x = |U ||W |/n2 ≥ γ2. Note that X := |E(U,W )|
is a binomial random variable with xn2 trials and success probability p. Thus by Theorem 3.5
there exists c = c(γ) > 0 such that

P(|d(U,W )− p| ≥ γp) = P(|X − pxn2| ≥ γpxn2) ≤ 2 exp(−cpn2).

Taking C = C(γ) to be large enough so that C > 2/c, say, we obtain by the union bound that

P(∃U,W ⊆ V, |U |, |W | ≥ γn : |d(U,W )− p| ≥ γp) ≤ 4n · e−2n = o(1).

With Lemma 3.4, the proof of Theorem 1.5 is now complete.
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4 Extending paths to Hamilton cycles

The goal of this section is to give a general machinery to “prepare” a random graph (above
the hamiltonicity threshold) in a way that any path found in some large portion of the graph
can be extended, whp, to a Hamilton cycle. We will then use this machinery to extend the
path obtained in Theorem 3.1 to a Hamilton cycle, proving Theorem 1.1. Throughout this
section, we assume that n is large enough whenever needed. In addition, as the statement in
Theorem 1.1 is clearly monotone in p, we will conveniently assume throughout this section that
np− log n− log logn� log logn.

Lemma 4.1. Let ε > 0, let p = (log n + log log n + ω(1))/n and let G ∼ G(n, p). Then, whp,
there exists a partition V (G) = V ? ∪ V ′ with |V ?| ≤ εn for which every path P ⊆ V ′ with
|V (P )| ≤ 2n/3 can be extended to a Hamilton cycle in G.

The proof of Lemma 4.1 uses Pósa’s rotation–extension technique. Let us now recall some
corollaries of Pósa’s lemma [36]. For an overview of the rotation–extension technique, we refer
the reader to [28].

Lemma 4.2 (Pósa’s lemma [36]). Let G be a graph, let P = v0, . . . , vt be a longest path in G,
and let R be the set of all v ∈ V (P ) such that there exists a path P ′ in G with V (P ′) = V (P )
and with endpoints v0 and v. Then |N(R)| ≤ 2|R| − 1.

Recall that a non-edge {x, y} of G is called a booster if adding {x, y} to G creates a graph
which is either Hamiltonian or whose longest path is longer than that of G. For a positive integer
k and a positive real α we say that a graph G = (V,E) is a (k, α)-expander if |N(U)| ≥ α|U |
for every set U ⊆ V of at most k vertices. The following is a widely-used fact stating that
(k, 2)-expanders have many boosters. For a proof, see e.g. [28].

Lemma 4.3. Let G be a connected (k, 2)-expander which contains no Hamilton cycle. Then G
has at least (k + 1)2/2 boosters.

We now move on to establish some useful properties satisfied whp by G(n, p) (for p as in
Lemma 4.7).

Lemma 4.4. Let ε > 0 be sufficiently small, let p = (log n + log log n + ω(1))/n, and let
G ∼ G(n, p). Then, whp,

(P1) δ(G) ≥ 2 and ∆(G) ≤ 10 log n;

(P2) No vertex v ∈ V (G) with d(v) < log n/10 is contained in a 3- or a 4-cycle, and every two
distinct vertices u, v ∈ V (G) with d(u), d(v) < log n/10 are at distance at least 5 apart;

(P3) Every set U ⊆ V (G) of size at most εn/100 spans at most ε|U | log n/10 edges.

(P4) There exist disjoint sets U1, U2 ⊆ V (G) with |U1|, |U2| ≤ εn for which the following hold
for every v ∈ V (G):

(a) If d(v) ≥ log n/10 then d(v, U1), d(v, U2) ≥ ε log n/100;

(b) If d(v) ≤ log n/10 then v and all of its neighbours are in U1.
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Proof of (P1). For the minimum degree see, e.g., [18]. For the maximum degree, since d(v) ∼
Bin(n− 1, p) we have

P(d(v) ≥ 10 log n) ≤
(

n

10 log n

)
p10 logn ≤

(
enp

10 log n

)10 logn

� 1/n,

and the statement follows by the union bound.

Proof of (P2). Write V = V (G) and α = 1/10. Let 1 ≤ ` ≤ 4 and let P = (v0, . . . , v`) be a
sequence of `+ 1 distinct vertices from V , where optionally v0 = v`. Suppose first that v0 6= v`.
Let S0 = V \ {v1, v`} and S` = V \ {v0, v`−1}. Let AP be the event that P is contained in
G, and for i = 0, ` let Bi be the event that d(vi, Si) ≤ α log n. By Theorem 3.5 we obtain
that P(Bi) ≤ n−0.6. The events AP ,B0,B` are mutually independent, hence P(AP ∧B0 ∧B`) ≤
p`n−1.2. Let A be the event that there exists a path P = v0, . . . , v` with ` ∈ [4] in G such
that AP and d(v0), d(v`) ≤ α log n. By the union bound, P(A) ≤

∑4
`=1 n

`+1−1.2p` = o(1). The
case v0 = v` (which implies ` ∈ {3, 4}) is similar. Let S = V \ {v1, v`−1} and let B be the
event d(v0, S) ≤ α log n. As before, P(B) ≤ n−0.6, and the events AP ,B are independent, hence
P(Ap ∧ B) ≤ p`n−0.6. Let A′ be the event that there exists a cycle P of length ` ∈ {3, 4} such
that AP and d(v0) ≤ α log n. By the union bound, P(A′) ≤

∑4
`=3 n

`p`n−0.6 = o(1).

Proof of (P3). For a given set U ⊆ V (G) and for a given k ≥ 0, the probability that |EG(U)| ≥ k
is at most ((|U |

2

)
k

)
· pk ≤

(
|U |2

k

)
· pk ≤

(
e|U |2p
k

)k

.

Hence, by the union bound, noting that p ≤ 2 log n/n, the probability that (P3) does not hold
is at most

εn/100∑
t=1

(
n

t

)
·
(

et2p

εt log n/10

)εt logn/10

≤
εn/100∑
t=1

(en
t

)t
·
(

60t

εn

)εt logn/10

=

εn/100∑
t=1

(
60e

ε
·
(

60t

εn

)ε logn/10−1
)t

≤
εn/100∑
t=1

(
60e

ε
· 0.6Ω(ε logn)

)t

=

εn/100∑
t=1

o(1)t = o(1).

Proof of (P4). The proof involves an application of the symmetric form of the Local Lemma
(see, e.g., [2, Chapter 5]; a similar application appears in [23]). Write V = V (G) and let
X = {v ∈ V : d(v) ≤ log n/10}. We start by observing that X is typically small. Indeed, by
Theorem 3.5 we have P(d(v) ≤ log n/10) ≤ n−0.6, and by Markov’s inequality |X| ≤ n0.5 whp.
By the definition of X we have that X+ := X∪N(X) satisfies |X+| ≤ |X|·log n/10 ≤ n0.6 whp.

From now on we fix G, assuming that |X+| ≤ n0.6 and that G satisfies (P1) and (P2); these
events happen whp. Let ε′ = 1/(d1/εe + 1) and note that for ε < 1/2 we have ε/2 ≤ ε′ < ε.
Write s = 1/ε′, let t = bn/sc ∼ ε′n, and let A1, . . . , At, Z be a partitioning of the vertices of G
into t “blobs” Ai of size s and an extra set Z with |Z| ≤ s. For j ∈ [t], let (x1

j , x
2
j ) be a uniformly
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chosen (ordered) pair of distinct vertices from Aj . For i = 1, 2 define U ′i = {xij}tj=1. Clearly,
|U ′1| = |U ′2| = t and U ′1 ∩ U ′2 = ∅. For every v ∈ V \ X, let Bv be the event that d(v, U ′i) <
ε′ log n/40 for some i = 1, 2. For such v, let L(v) be the set of blobs that contain neighbours of
v, namely, L(v) = {Ai : N(v) ∩Ai 6= ∅}. For j ∈ [t] write nj(v) = |N(v) ∩Aj |, and note that∑

j nj(v) ≥ d(v)− s ≥ log n/10− s ≥ log n/20 (for n large enough). For i = 1, 2 and j ∈ [t], let

χi
j(v) be the indicator of the event that xij is a neighbour of v, and note that Eχi

j(v) = ε′nj(v).

Observe that for i = 1, 2, d(v, U ′i) =
∑

j χ
i
j(v), hence E[d(v, U ′i)] = ε′

∑
j nj(v) ≥ ε′ log n/20.

Thus, by Theorem 3.5, P(Bv) ≤ n−c for some c = c(ε) > 0.
For two distinct vertices u, v ∈ V \ X say that u, v are related if L(u) ∩ L(v) 6= ∅. For

a vertex u ∈ V \X, let R(u) be the set of vertices in V \X which are related to u, and note
that |R(u)| ≤ s∆(G)2, which is, by (P1), at most C log2 n for some C = C(ε) > 0. Note that
Bu is mutually independent of the set of events {Bv | v ∈ (V \X) \ R(u)}. We now apply the
symmetric form of the Local Lemma1: observing that en−c · C log2 n < 1 (for large enough n),
we get that with positive probability, none of the events (Bv : v ∈ V \X) occur, meaning that
d(v, U ′i) ≥ ε′ log n/40 ≥ ε log n/80 for every v ∈ V \X and i = 1, 2. We choose U ′1, U

′
2 to satisfy

this. Now define U1 = U ′1 ∪X+ and U2 = U ′2 \X+, and note that from the discussion above,
|U1|, |U2| ∼ ε′n ≤ εn. Let v ∈ V \X. The fact that G satisfies (P2) implies that v has at most
1 neighbour in X+. Thus, for every v ∈ V \X it holds that d(v, U1) ≥ d(v, U ′1) ≥ ε log n/100
and d(v, U2) ≥ d(v, U ′2)− 1 ≥ ε log n/100, as required.

In the proof of Lemma 4.1, we will argue that whp G ∼ G(n, p) is such that every subset
W ⊆ V (G) possessing certain properties induces a Hamiltonian graph. To this end, we will
use the fact that given such a set W and a relatively sparse expander H on W which is a
subgraph of G, it is highly likely that there is an edge e of G which is a booster with respect
to H. This fact is established in Lemma 4.5 below. In the proof of Lemma 4.5 we will use
the well-known and easy-to-show fact that if a graph H is a (|V (H)|/4, 2)-expander then H is
connected. Indeed, if (by contradiction) H is not connected, then take a connected component
X of size at most |V (H)|/2 and a set U ⊆ X of size min{|V (H)|/4, |X|}, and observe that
|N(U)| ≤ |X| − |U | < 2|U |, contradicting the assumption that H is a (|V (H)|/4, 2)-expander.

Lemma 4.5. Let c > 0 be a sufficiently small absolute constant (c = 10−5 suffices), let p =
(log n+log log n+ω(1))/n and let G ∼ G(n, p). Then, whp, G satisfies the following: for every
W ⊆ V (G) of size |W | ≥ 0.1n and for every (|W |/4, 2)-expander H on W which is a subgraph
of G and has at most cn log n edges, if H is not Hamiltonian then G contains a booster with
respect to H.

Proof. We use a first moment argument. Evidently, the number of choices for the set W is at
most 2n. Let us fix a choice of W . For each t, the number of choices of H for which |E(H)| = t
is at most ((|W |

2

)
t

)
≤
(
n2

t

)
≤
(
en2

t

)t

.

1Note that in expectation there are nΩ(1) vertices v ∈ V \ X for which the event Bv occurs. Hence, it is
not true that whp every vertex v ∈ V \ X has high degree to both U ′1 and U ′2. One can then try to fix the
situation for the (relatively few) “unsatisfied” vertices by moving elements into U ′1 and U ′2 and between these
sets. However, moving elements between U ′1 and U ′2 — which might be necessary if for example some v ∈ V \X
has all of its neighbours in U ′1 (and hence none in U ′2) — can then affect the situation of other vertices. Seeing
as the simple union-bound/alterations arguments do not work, we employ the Local Lemma.
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Now let H be a non-Hamiltonian (|W |/4, 2)-expander on W , and set t := |E(H)|. As mentioned
above, H is connected. By Lemma 4.3, H has at least (|W |/4)2/2 = |W |2/32 ≥ n2/3200
boosters. Now, the probability that G contains H but no booster thereof is at most

pt · (1− p)n2/3200 ≤ pt ·
(

1− log n

n

)n2/3200

≤
(

2 log n

n

)t

· exp(−n log n/3200).

Summing over all choices of W and H, we see that the probability that the assertion of the
lemma does not hold is at most

2n · exp(−n log n/3200) ·
cn logn∑
t=1

(
2en log n

t

)t

. (6)

Setting g(t) := (2en log n/t)t, we note that g′(t) = g(t) · (log(2en log n/t)− 1) > 0 for every t
in the range of the sum in (6), assuming c < 1, say. Thus, this sum is not larger than

cn log n · (2e/c)cn logn = exp((log(2e/c) · c+ o(1))n log n).

Now, if c is small enough so that log(2e/c) · c < 1/3200, we get that (6) tends to 0 as n tends
to infinity. This completes the proof.

The following lemma states that a graph possessing certain simple properties is necessarily
an expander. Statements of this type are fairly common in the study of Hamiltonicity of random
graphs (see, e.g., [28]). For completeness, we include a proof.

Lemma 4.6. Let m, d ≥ 1 be integers and let H be a graph on h ≥ 4m vertices satisfying the
following properties:

1. δ(H) ≥ 2;

2. No vertex v ∈ V (H) with d(v) < d is contained in a 3- or a 4-cycle, and every two distinct
vertices u, v ∈ V (H) with d(u), d(v) < d are at distance at least 5 apart;

3. Every set U ⊆ V (H) of size at most 5m contains at most d|U |/10 edges;

4. There is an edge between every pair of disjoint sets U1, U2 ⊆ V (H) of size m each.

Then H is an (h/4, 2)-expander.

Proof. Our goal is to show that for every U ⊆ V (H) with |U | ≤ h/4 it holds that |N(U)| ≥ 2|U |.
So let U ⊆ V (H) be such that |U | ≤ h/4. Suppose first that |U | ≥ m. Since there evidently is
no edge between U and V (H)\(U ∪N(U)), it must be the case that |V (H)\(U ∪N(U)| < m by
Item 4. So we have |U ∪N(U)| > h−m and hence |N(U)| > h−m−|U | ≥ 3

4h−m ≥
1
2h ≥ 2|U |,

as required. Here we used the assumption that h ≥ 4m as well as the fact that |U | ≤ h/4.
Suppose now that |U | ≤ m. Let X be the set of all u ∈ U satisfying d(u) < d, and set

Y := U \ X. We claim that |N(Y )| ≥ 4|Y |. Suppose, for the sake of contradiction, that
|N(Y )| < 4|Y |. Then |Y ∪ N(Y )| < 5|Y | ≤ 5|U | ≤ 5m. On the other hand, the definition of
Y implies that H has at least d|Y |/2 edges incident to vertices of Y . Since all of these edges
are contained in Y ∪N(Y ), we see that Y ∪N(Y ) contains at least d|Y |/2 > d · |Y ∪N(Y )|/10
edges. But this stands in contradiction with Item 3. Thus, |N(Y )| ≥ 4|Y |.

14



Next, note that by Item 2, every two elements of X are at distance at least 5; in particular,
X is an independent set, and every two elements of X have disjoint neighbourhoods. Now
Item 1 implies that |N(X)| ≥ 2|X|.

Observe that each vertex of Y has at most one neighbour in X ∪N(X), for otherwise there
would be a 4-cycle containing an element of X or a pair of elements of X at distance at most 4,
both of which are impossible due to Item 2. So we conclude that |N(Y ) ∩ (X ∪N(X))| ≤ |Y |,
and hence |N(Y ) \ (X ∪N(X))| ≥ |N(Y )| − |Y |. All in all, we get that

|N(U)| = |N(X) \ Y |+ |N(Y ) \ (X ∪N(X))| ≥ |N(X)| − |Y |+ |N(Y ) \ (X ∪N(X))|
≥ 2|X| − |Y |+ |N(Y )| − |Y | ≥ 2|X|+ 2|Y | = 2|U |,

as required.

The following lemma constitutes the main part of the proof of Lemma 4.1.

Lemma 4.7. Let ε > 0. For p = (log n + log log n + ω(1))/n, the random graph G ∼ G(n, p)
satisfies the following whp. Let W ⊆ V (G) be such that |W | ≥ 0.1n, and for every v ∈ W
it holds that d(v,W ) ≥ min{d(v), ε log n}. Then for every w ∈ W there exists Y ⊆ W with
|Y | ≥ n/40 such that for each y ∈ Y , there is a Hamilton path in G[W ] whose endpoints are w
and y.

Proof. We may and will assume ε is sufficiently small (it is enough to have ε ≤ min{1/10, c/2},
where c is the constant from Lemma 4.5). We will assume that the events defined in Lemma 3.4,
Lemma 4.4 and Lemma 4.5 hold (this happens whp), and show that in this case, the assertion
of Lemma 4.7 holds as well.

It will be convenient to set d0 := ε log n. LetW ⊆ V (G) be as in the statement of Lemma 4.7.
We select a random spanning subgraph H of G[W ] as follows. For each v ∈W , if d(v,W ) < d0

then add to H all edges of G[W ] incident to v. Otherwise, namely if d(v,W ) ≥ d0, then
randomly select a set of d0 edges of G[W ] incident to v and add these to H. Note that |E(H)| ≤
|W | · d0 ≤ εn log n. On the other hand, our assumption that d(v,W ) ≥ min{d(v), ε log n} for
every v ∈ W implies that δ(H) ≥ min{δ(G), d0}. Hence, as d0 ≥ 2 (for large enough n), we
have δ(H) ≥ 2 by Property (P1) of Lemma 4.4.

We claim that with positive probability (in fact, whp), H is a (|W |/4, 2)-expander. In light
of Lemma 4.6, it is sufficient to show that with positive probability, H satisfies Conditions 1–4
in that lemma. Here, we will choose the parameters of Lemma 4.6 as d := d0 and m := εn/500.
We already showed that δ(H) ≥ 2 (which is Condition 1 in Lemma 4.6). Condition 2 holds
because H is a subgraph of G and because the analogous statement holds for G, as guaranteed
by Property (P2) in Lemma 4.4 (here we assume that ε ≤ 1/10). Similarly, Condition 3 holds
because H is a subgraph of G and due to Property (P3) in Lemma 4.4 (note that 5m = εn/100).

Let us now prove that Condition 4 holds. Let U1, U2 ⊆ V (H) = W be disjoint sets satisfying
|U1|, |U2| = m = εn/500. SinceG is (γ, p)-pseudorandom with γ = ε/500 (in fact, with γ = o(1),
see Lemma 3.4), we have

|EG(U1, U2)| ≥ (1− γ)p · |U1||U2| ≥
|U1||U2| log n

2n
≥ ε2n log n

500000
= Ω(n log n) . (7)

Now, let us bound (from above) the probability that |EH(U1, U2)| = 0 (where the randomness is
with respect to the choice of H). Recall that H is defined by choosing, for each v ∈W , a random
set E(v) of min{d(v,W ), d0} edges of G[W ] incident to v, with all choices made uniformly and
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independently, and letting E(H) =
⋃

v∈W E(v). Fix any u1 ∈ U1 with d(u1, U2) ≥ 1, and
let Au1 be the event that there is no edge in E(u1) with an endpoint in U2. Observe that if
d(u1,W ) < d0 then P(Au1) = 0, and otherwise

P(Au1) =

(
d(u1,W )− d(u1, U2)

d0

)
/

(
d(u1,W )

d0

)
=

d0−1∏
i=0

d(u1,W )− d(u1, U2)− i
d(u1,W )− i

≤
(

1− d(u1, U2)

d(u1,W )

)d0

≤
(

1− d(u1, U2)

∆(G)

)d0

≤ e−d(u1,U2)· d0
∆(G) ≤ e−εd(u1,U2)/10 .

Here, in the last inequality we used Property (P1) in Lemma 4.4. Note that the events
(Au1 : u1 ∈ U1) are independent, and that if EH(U1, U2) = ∅ then Au1 occurred for every
u1 ∈ U1 with d(u1, U2) ≥ 1. It now follows that

P(EH(U1, U2) = ∅) ≤ exp

− ε

10
·
∑

u1∈U1

d(u1, U2)

 = exp
(
− ε

10
· |EG(U1, U2)|

)
≤ e−Ω(n logn),

where in the last inequality we used (7). By taking the union bound over all at most 22n

choices of U1, U2, we see that with high probability, EH(U1, U2) 6= ∅ for every pair of disjoint
sets U1, U2 ⊆W of size m each.

Finally, we apply Lemma 4.6 to conclude that whp H is a (|W |/4, 2)-expander. From now
on, we fix such a choice of H. Before establishing the assertion of the lemma, we first show that
G[W ] is Hamiltonian. To find a Hamilton cycle in G[W ], we define a sequence of graphs Hi,
i ≥ 0, as follows. To begin, set H0 = H. For each i ≥ 0, if Hi is Hamiltonian then stop, and
otherwise take a booster of Hi contained in G[W ] and add it to Hi to obtain Hi+1. That such
a booster exists is guaranteed by Lemma 4.5, as we will always have |E(Hi)| ≤ |E(H)|+ |W | ≤
|E(H)| + n ≤ εn log n + n ≤ c/2 · n log n + n ≤ cn log n, provided that ε is smaller than c/2,
where c is the constant appearing in Lemma 4.5. Note also that Hi is a subgraph of G[W ] for
each i ≥ 0. Evidently, this process has to stop (because as long as Hi is not Hamiltonian, the
maximum length of a path in Hi is longer than in Hi−1), thus showing that G[W ] must contain
a Hamilton cycle, as claimed.

Now let w ∈ W . As G[W ] is Hamiltonian, there exists a Hamilton path P of G[W ] such
that w is one of the endpoints of P . Evidently, P is a longest path in G[W ]. Furthermore, note
that G[W ] is a (|W |/4, 2)-expander because H, a subgraph of G[W ], is such an expander. Let
R be the set of all y ∈ V (P ) = W such that there exists a Hamilton path P ′ in G[W ] with
endpoints w and y. By Lemma 4.2, we have |NG[W ](R)| ≤ 2|R| − 1. Now, since G[W ] is a
(|W |/4, 2)-expander, it must be the case that |R| > |W |/4 ≥ n/40. So we see that the assertion
of the lemma holds with Y = R. This completes the proof.

Proof of Lemma 4.1. For convenience we show the existence of a partition V (G) = V ? ∪ V ′
with |V ?| ≤ 2εn instead of |V ?| ≤ εn (this clearly does not matter). We assume that G satisfies
the properties detailed in Lemma 4.4, and that it is a (γ, p)-pseudorandom for γ < 1/40 and
some p ∈ (0, 1), as guaranteed to happen whp by Lemma 3.4. Let U1, U2 be disjoint subsets
of V = V (G) satisfying (P4). Set V ? = U1 ∪ U2 and V ′ = V \ V ?, and let P ⊆ V ′ be a path
with |V (P )| ≤ 2n/3 and endpoints a1, a2. In particular, |V ?| ≤ 2εn. Our goal is to extend
P to a Hamilton cycle of G. Write V ′′ = V ′ \ V (P ), partition V ′′ = V ′′1 ∪ V ′′2 as equally as
possible. For i = 1, 2, let Wi = V ′′i ∪ Ui and choose a neighbour wi of ai in Wi; this is possible

16



U1

U2

V ′a1

a2

P

V ′′

W1

W2

w1

w2

y1

Y1

y2

Y2

Figure 2: Outline of the proof of Lemma 4.1.

since d(ai, Ui) ≥ ε log n/100 by (P4). Note that |Wi| ≥ n/6 and for every v ∈ Wi it holds
that d(v,Wi) ≥ min{d(v), ε log n/100}, hence by Lemma 4.7 there exists a set Yi ⊆ Wi with
|Yi| ≥ n/40 such that for every y ∈ Yi there is a Hamilton path spanning Wi from wi to y. Since
G is a (γ, p)-pseudorandom for γ < 1/40, it has an edge e between Y1 and Y2 with endpoints
yi ∈ Yi, say. For i = 1, 2, denote by Qyi the Hamilton path between wi and yi. We now
construct a Hamilton cycle of G as follows (as depicted in Fig. 2):

a1 → w1
Qy1−−→ y1

e−→ y2
Qy2−−→ w2 → a2

P−→ a1.

We now put together Theorem 3.1 and Lemma 4.1 in order to prove Theorem 1.1.

Proof of Theorem 1.1. Let r ≥ 2, ε > 0 and p = (log n+log log n+ω(1))/n, let G ∼ G(n, p) and
consider an r-colouring of the edge set of G. Let γ be the constant obtained from Theorem 3.1 by
plugging in r and ε. Let V ?∪V ′ be the partition guaranteed whp by Lemma 4.1 which satisfies
n′ = |V ′| ≥ (1 − ε)n. By Lemma 3.4 we know that G is (γ(1 − ε), p)-pseudorandom (whp),
hence G′ = G[V ′] is (γ, p)-pseudorandom. By Theorem 3.1 we know that there exists a path P
in G′ of length at most 2n′/(r+ 1) ≤ 2n/3 having at least (2/(r+ 1)− ε)n′ ≥ (2/(r+ 1)− 2ε)n
edges of the same colour. By Lemma 4.1 we can, whp, extend P into a Hamilton cycle of G,
still having at least (2/(r + 1)− 2ε)n edges of the same colour.

5 Perfect matchings

We now sketch a proof of Theorem 1.2. The first observation is that with mild modifications
of the proof of Lemma 4.1 we may prove a variant of the following form. Let ε > 0 and
p = (log n+ω(1))/n. Then G ∼ G(n, p) whp admits a partition of its vertex set V (G) = V ?∪V ′
with |V ?| ≤ εn such that (a) the set D1 of vertices of degree 1 in G and its neighbourhood
N(D1) are contained in V ′; and (b) for every subset X of V ′ with |X| ≤ 2n/3 and D1 ⊆ X,
the subgraph G[V ? ∪ (V \X)] contains a Hamilton path. We omit the proof details.

Having that lemma in hand, we proceed as follows. Let M0 be the set of edges incident
to vertices of D1; there are, whp, O(log n) such edges, and they form, whp, a matching. As
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G[V ′ \ V (M0)] is (whp) (γ, p)-pseudorandom by Lemma 3.4, we know by Theorem 3.1 that it
has an almost monochromatic path P of length (2/(r + 1) − ε)n, from which we can extract
a monochromatic matching of size at least (1/(r + 1) − ε′)n, for some ε′ > 0. Add it to M0,
creating an almost monochromatic matching M1 of size at least (1/(r+1)−ε′)n. We now apply
the lemma to find a Hamilton path in G[V ? ∪ (V ′ \V (M1))], from which we extract a matching
which completes M1 into a perfect matching, in which at least (1/(r + 1) − ε′)n edges are of
the same colour.
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